Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свободные носители заряда

По электрическим свойствам тела можно разделить на проводники и диэлектрики. Проводниками называют тела, через которые электрические заряды могут переходить от заряженного тела к незаряженному. Способность проводников пропускать через себя электрические заряды объясняется наличием в них свободных носителей заряда. Примерами проводников могут служить металлические тела в твердом и жидком состоянии, жидкие растворы электролитов.  [c.140]


Скорость упорядоченного движения электронов в проводнике. Для определения скорости упорядоченного движения свободных электрических зарядов в проводнике нужно знать концентрацию п свободных носителей заряда и силу тока I. Если концентрация свободных электрических зарядов в проводника п, то за промежуток времени Дг через поперечное сечение S проводника при скорости V их упорядоченного двин ения проходит электрический заряд Лд, равный  [c.153]

Рассмотрим полупроводник, не содержащий примесей и дефектов. Не будем также учитывать влияние поверхностных состояний. При T—QK электропроводность такого полупроводника равна нулю, поскольку в нем нет свободных носителей заряда. Действительно, валентная зона полностью заполнена электронами и не дает никакого вклада в проводимость, а зона проводимости пуста. При Т>ОК возникает вероятность заброса электронов из валентной зоны в зону проводимости (рис. 7.15). В валентной зоне при этом образуются дырки. Ясно, что концентрация электронов п равна концентрации дырок р  [c.242]

Если в полупроводник введена донорная или акцепторная примесь, то при низких температурах, когда энергии тепловых колебаний недостаточно для переброса электронов из валентной зоны в зону проводимости, свободные носители заряда могут появиться  [c.250]

В то же время, при наличии в диэлектрике примесных атомов, свободные носители заряда могут появиться за счет термической активации примесных уровней. Вследствие этого при нормальных и низких температурах проводимость в диэлектриках имеет примесный характер. Так же, как и в полупроводниках, носителями заряда здесь могут быть электроны и дырки. Если примесь имеет донорный характер, то основными носителями заряда являются электроны, а неосновными — дырки. Такой диэлектрик (по аналогии с полупроводником) называют электронным или диэлектриком п-типа. Если же примесь акцепторная, то основными носителями являются дырки. В этом случае диэлектрик называют дырочным или р-типа.  [c.272]

Собственное поглощение. Оно связано с переходами электронов из валентной зоны в зону проводимости. Выше уже отмечалось, что в идеальном полупроводнике при 7 = 0К валентная зона заполнена электронами полностью, так что переходы электронов под действием возбуждения в состояние с большей энергией в этой же зоне невозможны. Единственно возможным процессом здесь является поглощение фотона с энергией, достаточной для переброса электронов через запрещенную зону. В результате этого в зоне проводимости появляется свободный электрон, а в валентной зоне—дырка. Если к кристаллу приложить электрическое поле, то образовавшиеся в результате поглощения света свободные носители заряда приходят в движение, т. е. возникает фотопроводимость. Таким образом, для фотонов с энергией hvдлин волн (т. е. больших hv) имеет место сплошной спектр интенсивного поглощения, ограниченный более или менее крутым краем поглощения при hvинфракрасной области спектра. В зависимости от структуры энергетических зон межзонное поглощение может быть связано с прямыми или непрямыми оптическими переходами.  [c.307]


Рассматриваемые внутризонные переходы происходят с нарушением правил Отбора. Они осуществляются либо когда наряду с поглощением фотона происходит поглощение или испускание фо-нона, либо когда имеется рассеяние носителей на ионизованных примесях. Это обусловлено законом сохранения импульса. Расчеты показывают, что коэффициент поглощения свободными носителями заряда определяется проводимостью вещества  [c.311]

Проводимость вещества зависит от времени релаксации т, которое определяется механизмом рассеяния. Таким образом, на коэффициент поглощения свободными носителями заряда оказывают влияние механизмы рассеяния. Действительно, в полупроводниках рассеяние акустическими фононами приводит к поглощению, меняющемуся как рассеяние на оптических фононах дает зависимость к - -, а рассеяние ионизованными примесями — Если в веществе имеют место все три типа рассеяния, то коэффициент поглощения свободными носителями равен сумме трех членов  [c.311]

Межзонное рекомбинационное излучение. Выше отмечалось, что поглощение света полупроводником может привести к образованию электрона в зоне проводимости и дырки в валентной зоне. Если межзонный переход является прямым, то волновые векторы этих носителей заряда одинаковы к —к. Образовавшиеся свободные носители заряда участвуют в процессах рассеяния, в результате чего за время релаксации —10 с) электрон опускается на дно зоны проводимости, а дырка поднимается к потолку валентной зоны. При их рекомбинации генерируется фотон, т. е. возникает излучение света. Переходы электронов из зоны проводимости в валентную зону могут быть прямыми и непрямыми (так же как переходы при поглощении света). Прямой излуча-тельный переход изображен на рис. 9.7.  [c.314]

Цель третьей главы — Статистика электронов в полупроводниках и металлах — пояснить эффекты вырождения электронного газа и показать на примере легированных полупроводников определяющую роль концентрации свободных носителей заряда.  [c.3]

Легирование электронного полупроводника акцепторной примесью или полупроводника р-типа донорной примесью приводит к перераспределению носителей заряда между донорным и акцепторным уровнями (компенсация примесей). Введением компенсирующих примесей можно уменьшить число свободных носителей заряда и приблизить сопротивление примесного полупроводника к его собственному сопротивлению. При компенсации примесей осуществляется переход электронов с донорных уровней на акцепторные, что при достаточно низких температурах приводит к некоторому уменьшению числа свободных носителей заряда.  [c.94]

Вещества, в которых при Г=0 К верхняя из заполненных электронами энергетических зон (валентная зона) и нижняя из незаполненных электронами энергетических зон зона проводимости) не перекрываются, являются полупроводниками или диэлектриками. Граница между ними весьма условна — в полупроводниках энергетический зазор между зоной проводимости и валентной зоной не очень велик, что приводит к появлению в зонах заметного числа свободных носителей заряда при Т О К.  [c.454]

Диэлектриками называют вещества, основным электрическим свойством которых является способность к поляризации и в которых возможно существование электростатического поля. Такое поле может длительно сохраняться лишь в средах, плохо проводящих электрический ток. Электропроводность — способность проводить электрический ток—обусловлена наличием в веществе свободных носителей заряда—электрически заряженных частиц, которые под действием внешнего электрического поля направленно перемещаются сквозь толщу материала, создавая ток проводимости (положительно заряженные носители движутся по направлению вектора напряженности электрического поля Е, отрицательно заряженные— против). Параметром вещества, количественно определяющим его электропроводность, является удельная электрическая проводимость у, См/м, а также удельное объемное электрическое сопротивление p = l/Y, Ом-м, причем  [c.543]


Беспримесный, химически чистый полупроводник называется собственным. При температуре Т=0 К в собственном полупроводнике нет свободных носителей заряда, его электрическая проводимость а=0.  [c.49]

Рис. 3.5. Образование свободных носителей заряда в кремнии собственном (а, б), электронном (в, г) и дырочном (д, е) Рис. 3.5. Образование свободных носителей заряда в кремнии собственном (а, б), электронном (в, г) и дырочном (д, е)
Рассмотрим примесные полупроводники. Содержащиеся в них примесные ато.мы могут оказывать сушественное влияние на электропроводность полупроводника. На рис. 3.5, а, в, д схематически представлены процессы образования свободных носителей заряда, способных участвовать в электропроводности, в собственном и примесном кремнии, эти же процессы показаны и на энергетических диаграммах (рис. 3.5, б, г, е). Для кремния характерны примеси замещения, V. е. атомы примеси заменяют атомы кремния в узлах кристаллической решетки.  [c.50]

В единичном объеме полупроводника находится определенное для данных полупроводника и температуры количество свободных носителей заряда, оно называется концентрацией.  [c.52]

Таким образом, область раздела полупроводников п- и р-типа окажется обедненной свободными носителями заряда. Эту область называют истощенным или обедненным слоем. Она, собственно, и составляет толщину р-п-перехода.  [c.68]

В равновесное состояние система приходит при условии равенства потоков свободных носителей заряда, вызванных градиентом их концентраций и электрическим полем объемного заряда.  [c.68]

При освещении полупроводника концентрация свободных носителей заряда в нем может возрасти за счет носителей, возбужденных поглощенными кванта-.ми света. При оптическом возбуждении электронов из валентной зоны в зону проводимости возникает пара свободных носителей - электрон и дырка. Если за счет света происходит переход электрона из валентной зоны на примесные уровни или с примесных уровней в зону проводимости, образуются свободные носители одного знака - дырки или электроны. В соответствии с увеличением концентрации свободных носителей заряда в полупроводнике за счет облучения его светом возрастает и его удельная проводимость  [c.70]

Формулы (3.69) и (3.70) получены без учета рассеяния свободных носителей заряда. Расчет показывает, что при наличии рассеяния свободных носителей заряда на тепловых колебаниях решетки для электронного полупроводника  [c.76]

При изготовлении большинства полупроводниковых элементов применяют монокристалличе-ские материалы. Это объясняется тем, что подвижность и время жизни свободных носителей заряда в монокристаллах выше, чем в поликристаллическом материале, который к тому же обладает и значительной неоднородностью свойств.  [c.81]

В ряде случаев концентрация свободных носителей заряда может достигать очень больших значений. Это обычно может происходить, например, при воздействии ионизирующих излучений рентгеновских и гамма-лучей, потоков нейтронов и т.п. Заряженные ионы, так же,как и окружающие их не имеющие электрического заряда молекулы газа, совершают беспорядочные тепловые движения, и вследствие диффузии происходит выравнивание концентрации ионов в газе. При встрече положительных и отрицательных ионов происходит их рекомбинация. В стационарном случае, когда число ионов не изменяется с течением времени, между процессами генерации и рекомбинации заряженных частиц устанавливается динамическое равновесие.  [c.102]

Диапазон изменения электросопротивления у полупроводниковых материалов весьма широк (р = 10 - - 10 ом-см) однако материалы характеризуются некоторыми другими специфическими свойствами, отличающими их от металлов и изоляторов, Например, если электросопротивление металлов возрастает с повышением температуры, то у полупроводниковых материалов оно падает, т. е. полупроводники в большинстве случаев обладают отрицательным температурным коэффициентом электросопротивления примеси уменьшают электропроводность металлов, но увеличивают проводимость полупроводниковых материалов. Полупроводники обладают фотопроводимостью, т. е. при действии излучений у них возникают дополнительные свободные носители заряда. В приборной технике полупроводники нашли широкое применение, поскольку они могут служить выпрямительными элементами, генерировать огромные термо-э. д. с., усиливать ток, позволяют увеличить ресурс и надежность электронных устройств, уменьшить размеры и вес приборов, а также сократить потребление электрической энергии.  [c.279]

На энергетической диаграмме, представленной на рис. 8.2, в. акцепторная примесь имеет энергетический уровень Ец, расположенный на небольшом расстоянии над потолком валентной зоны. При ионизации акцепторной примеси происходит переход электрона из валентной зоны на уровень Eg, а в валентной зоне появляется дырка, которая и является свободным носителем заряда.  [c.270]

Дрн этом дя концентрации свободных носителей заряда харак-  [c.272]

На рис. 8.4 представлена температурная зависимость полупроводника с различной концентрацией примеси. Повышение удельной проводимости полупроводника с увеличением Т в области низких температур обусловлено увеличением концентрации свободных носителей заряда за счет ионизации примеси (рис. 8.4, участки аЬ, de, kl).  [c.272]

Воздействие сильного электрического поля приводит к значи-тельному росту концентрации свободных носителей заряда. Разли-  [c.274]

До сих пор мы рассматривали возникновение свободных носителей заряда под влиянием тепловой энергии. Перевод электрона в свободное состояние или образование дырки может осуществляться также под воздействием света.  [c.275]

Селен в отличие от других полупроводников обладает аномальной температурной зависимостью концентрации свободных носителей заряда она уменьшается с ростом температуры, подвижность носителей заряда при этом возрастает. Электрические свойства, селена измерялись многими исследователями, однако данные весьма противоречивы.  [c.289]


Электрический ток проводимости — явлеш1е направленного движения свободных носителей заряда в веществе или в вакууме.  [c.116]

В области низких температур электроны и дырки, локализованные на диекретных уровнях, м огут перемещаться по кристаллу лишь путем прыжков (перескоков) с одного уровня на другой. Для преодоления потенциального барьера, разделяющего примесные атомы, требуется энергия активации. В случае малой концентрации примесных атомов расстояния между ними получаются большими, а поэтому вероятность перескока оказывается небольшой и значения подвижности (скорость дрейфа носителей заряда в электрическом поле с напряженностью 100 В/м) также очень малы. Прыжковую проводимость можно обнаружить лишь при настолько низких температурах, что концентрация свободных носителей заряда становится совсем небольшой (но при Т = 0 тепловая активация невозможна). Представление об изолированных атомах примеси оправдано лишь в том случае, если не перекрываются ни их силовые поля, ни волновые функции электронов, локализованных на этих уровнях.  [c.120]

Пятая особенность сильно легированных полупроводников связана с ролью экранирования поля заряженных атомов примеси. Причины, вызывающие эффект экранирования, могут быть различными перераспре Деление свободных носителей заряда в пространстве, преимущественное расположение отрицательно заряженных ионов примеси около положительных (в случае компенсации) и т. д. Рассмотрим следствия из этого факта.  [c.123]

В сильно легированном полупроводнике можно добиться условия, при котором Го ав, где ав —радиус первой боров-ской орбиты 1ВО Дородоподо1бного иона в кристалле. Указанное соотношение между го и Зв при экранировании приводит к исчезновению дискретных уровней, создаваемых примесным ионом. Поэтому если исчезают примесные уровни, то не может существовать примесная область спектра. Попутно поясним, что роль экранирования определяется и концентрациями свободных носителей заряда, и концентрацией заряженных атомов примеси. Но указанные величины зависят от характера энергетического спектра системы—от того, существуют ли и в каком количестве примесные уровни. Поэтому задача сводится к тому, что сам энергетический спектр сильно легированного полупроводника следует определять самосогласованным полем.  [c.123]

Диэлектрики, в силу того, что свободных носителей заряда в них мало, состоят по сути из связанных заряженных частиц положительно заряженных ядер и обращающихся вокруг них электронов в атомах, молекулах и ионах, а также упруго связанных разноименных ионов, )асположенных в узлах решетки ионных кристаллов. Толяризация диэлектриков — упорядоченное смещение связанных зарядов под действием внешнего электрического поля (положительные заряды смещаются по направлению вектора напряженности поля , а отрицательные— против него). Смещение / невелико и прекращается, когда сила электрического поля, вызывающая движение зарядов относительно друг друга, уравновешивается силой взаимодействия между ними. В результате поляризации каждая молекула или иная частица диэлектрика становится электрическим диполем — системой двух связанных одинаковых по значению и противоположных по знаку зарядов q, Кл, расположенных на расстоянии I, м, друг от друга, причем q — это либо заряд иона в узле кристаллической решетки, либо эквивалентный заряд системы всех положительных или системы всех отрицательных зарядов поляризующейся частицы. Считают, что в результате процесса поляризации в частице индуцируется электрический момент p=ql, Кл-м. У линейных диэлектриков (их большинство) между индуцируемым моментом и напряженностью электрического поля , действующей на частицу, существует прямая пропорциональность р = аЕ. Коэффициент пропорциональности а, Ф-м , называют поляризуемостью данной частицы. Количественно интенсивность поляризации определяется поляризованно-стью Р диэлектрика, которая равна сумме индуцированных электрических моментов всех N поляризованных частиц, находящихся в единице объема вещества  [c.543]

Газы в слабых электрических полях и при не очень высоких температурах обладают весьма малой удельной проводимостью. При этих условиях весьма немногочисленные свободные носители заряда — электроны и ионы — образуются лишь под действием внешних ионизаторов невысокой интенсивности—космических лучей и естественного ионизирующего излучения. Поэтому при указанных условиях газы являются отличными диэлектриками с удельным сопротивлением порядка 10 Ом-м, практически не имеющим диэлектрических потерь (tg б порядка 10 ). Повышение электропроводности газов происходит при высоких температурах, начиная с 10 — Ю К, когда энергия теплового движения частиц газа велика и при столкновении они могут ионизовать друг друга (происходит термическая ионизация). Термоионизация воздуха нарастает, начиная с температуры 8000 К. При 20 ООО К воздух ионизуется практически полностью  [c.545]

В случае, когда электроны зоны проводи.мости и электроны не полностью заполненной валентной зоны за счет света переходят внутри зоны с одного уровня на другой, происходит тгпощение света свободными носителями заряда. Это поглощение пропорционально концентрации свободных носителей за-  [c.69]

Удельная электрическая проводимость полуп юводника в отсутствие внешнего воздействия на него, в том числе и света, определяется равновесной концентрацией свободных носителей заряда щкро, генерируемых за счет тепловой энергии решетки  [c.70]

Рассмотрим механизм образования термо-э. д. с. на примере однородного по.тупроводникз. Пусть один из концов полупроводника нагрет больше, чем второй. Свободные носители заряда у горячего конца будут иметь более высокие энергий и скорости, чем у холодного. Кроме того, благодаря значительной зависимости концентрации свободных носителей заряда в полупроводнике от температуры у горячего конца концентрации свободных носителей заряда окажется больще, чем у холодного. В силу этих причин поток свободных носителей от горячего конца к холодному будет больше, чем от холодного к горячему. Если концентрация свободных электронов и дырок в полупроводнике или их подвижности неодинаковы, то концы полупроводника окажутся противоположно заряженными. Состояние равновесия наступит при равенстве потока свободных носителей заряда, обусловленного градиентом температур, потоку, обусловленному действием электрического поля, возникшего в результате разделения зарядов. Установивгоуюся в состоянии равновесия термо-э. д. с. называют объемной тер.мо-э. д. с.  [c.73]

Если изменение абсолютного значения скорости свободного носителя заряда за счет внешнего поля на среднем пути между соударениями сравнимо с тепловой скоростью, то подвижность носителей заряда будет зависеть от электрического поля, причем она может как увеличиваться, так и уменьшаться в зависимости от температу-окружаю1цей среды.  [c.274]

Общие представления. Для большинства полупроводниковых приборов используются примесные полупроводники. Поэтому в практике важное значение имеют такие полупроводниковые материалы, у которых ощутимая концентрация собственных носителей заряда появляется при возможно более высокой температуре, т. е. полупроводники с достаточно широкой запрещенной зоной. В рабочем интервале температур поставщиками свободных носителей заряда являются примеси. Примесями в простых полупроводниках служат чужеродные атомы. Под примесями в полупроводниковых химических соединениях понимают не только включения атомов посторонних элементов, но и избыточные по стехиометрическому составу атомы тех самых элементов, которые входят в химическую формулу самого соединения. Кроме того, роль примесей играют всевозможные дефекты кристаллической решетки пустые узлы, атомы или ионы, оказавшиеся в междоузлиях решетки, дислокации или сдвиги, возникающие при пластической деформации кристалла, микротре-дины и т. д. (стр. 12). Если примесные атомы находятся в узлах кристаллической решетки, то они называются примесями замещения, если в междоузлиях — примесями внедрения.  [c.233]


Появление локальных потенциалов деформации само по себе еще не определяет ускорения электрохимического растворения металла. Действительно, если говорить конкретно об изменении работы выхода иона металла, то следует учесть, что химический потенциал металла складывается из химического потенциала ионного остова и химического потенциала свободных электронов . Потенциал деформации связан с изменением последней составляющей численно равен из1УГенению энергии свободного носителя зарядов — электрона, которая является лишь небольшой частью химического потенциала металла Поэтому для изменения работы выхода иона на величину, которая проявится в сдвиге стандартного электродного потенциала (за счет изменения ионного обмена), эквивалентном максимальному значению потенциала деформации, потребуется затратить неизмеримо больше энергии, чем для полученного выше изменения энергии носителя на величину потенциала деформации.  [c.13]


Смотреть страницы где упоминается термин Свободные носители заряда : [c.156]    [c.273]    [c.306]    [c.10]    [c.71]    [c.81]    [c.271]    [c.274]    [c.282]   
Лазерная термометрия твердых тел (2001) -- [ c.13 , c.16 , c.81 , c.84 , c.222 ]



ПОИСК



Газ-носитель

Зависимость концентрации свободных носителей заряда от температуры

Заряд

Заряды свободные

Концентрация свободных носителей заряда в невырожденном и вырожденном полупроводниках

Магнетооптика свободных носителей заряда

Механизмы рассеяния и подвижность свободных носителей заряда

Поглощение свободными носителями заряда

Подвижность свободных носителей заряда в области пространственного заряда

Подвижность свободных носителей заряда и ее зависимость от температуры

Положение уровня Ферми и концентрация свободных носителей заряда в собственных и примесных полупроводниках

Электростатическое экранирование свободными носителями заряда



© 2025 Mash-xxl.info Реклама на сайте