Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Типы кристаллических твердых тел

ТИПЫ КРИСТАЛЛИЧЕСКИХ ТВЕРДЫХ ТЕЛ 167  [c.167]

Типы кристаллических твердых тел  [c.167]

Плотнейшие упаковки составляют основу строения большинства кристаллических твердых тел. С точки зрения плотнейшей упаковки особенно просто описываются структуры окислов сульфидов и галогенидов, в которых основу плотнейшей упаковки составляют крупные анионы кислорода, серы и галогенов, а катионы, входящие в химическую формулу кристалла, распределяются в пустотах плотнейшей упаковки по определенному симметричному узору. Отдельные кристаллы отличаются типом плотнейшей упаковки, сортностью и числом заселенных катионами пустот, 30  [c.30]


Кристаллы металла. Связь между атомами в кристалле металла (в кристаллическом зерне или в монокристалле) имеет особенности, отличающие ее от связи между атомами во всех других кристаллических твердых телах, вследствие чего она носит название Связи металлического типа ). В металлах внешние электроны атомов ввиду слабой их связи с ядрами отрываются от последних и образуют так называемый электронный газ коллективизированные электроны), омывающий положительные ионы, которыми являются атомы, лишенные внешних электронов. Между положительными ионами, с одной стороны, и отрицательно заряженным электронным газом, с другой, имеются большие электростатические силы притяжения. Именно электронный газ объединяет положительные ионы в единое целое — металлическое тело. Положительные ионы металла, кроме сил воздействия со стороны электронно го  [c.225]

При температуре тела выше абсолютного нуля некоторое количество электронов, зависящее от температуры и величины запрещенной зоны, может обладать необходимой для перехода энергией и находиться в свободной зоне в основной зоне будет находиться равное количество незанятых уровней. Переход электронов из одной зоны в другую является непрерывным процессом, и состояние, характеризующееся наличием в среднем некоторого количества электронов в свободной зоне и равного ему количества незанятых уровней в основной зоне, является состоянием динамического равновесия, соответствующего данной температуре тела. Между указанными классами твердых тел нельзя провести резких границ некоторые кристаллические твердые тела проявляют свойства, характерные для нескольких типов связи.  [c.36]

За прошедшие полтора десятилетия мои собственные экспериментальные исследования позволили вскрыть незамеченную до тех пор упорядоченность поведения отожженных кристаллических твердых тел при больших деформациях, которая подчиняется описанию посредством обобщенных, линейно зависящих от температуры определяющих соотношений при простом и сложном нагружениях. Те же самые экспериментальные исследования обнаружили существование устойчивости структуры материала в кристаллических телах в виде дискретного распределения типов де рмаций и переходов второго порядка, которые происходят при фиксированных предсказуемых деформациях, существование соответствующей квантованной структуры для совокупности значений постоянных упругости элементов.  [c.32]


Другим важным аспектом, во многом определяющим физико-химические свойства вещества, является фазовый состав, поэтому изучение условий фазового равновесия, фазовых превращений и фазового состава необходимо для понимания свойств кристаллических твердых тел. Наиболее общим методом изучения условий равновесия и фазовых переходов со времени классического исследования Гиббса остается термодинамика в настоящем пособии дан вывод основных типов диаграмм равновесных состояний бинарных систем, проведена классификация фазовых превращений в твердом состоянии. Теоретические выводы проиллюстрированы, по возможности, экспериментальными данными.  [c.6]

По природе сил химической связи кристаллические твердые тела разделяются на следующие 4 типа  [c.43]

В этой главе рассматриваются задачи распространения волн в структурах, свойства которых изменяются в пространстве по периодическому закону. Примерами таких структур могут служить кристаллические твердые тела. Как известно, существует дальний порядок в расположении узлов решетки это приводит к пространственно-неоднородному распределению массы и потенциала электрического поля в кристаллах. Важную роль в технических приложениях играют искусственно созданные периодические структуры типа многослойных световых или акустических фильтров. В радиотехнике находят применение длинные цепочки из емкостей, индуктивностей и сопротивлений, расположенных в определенном порядке, а также замедляющие системы. В теории нелинейных волн обсуждаются задачи распространения волн в периодических структурах, неоднородность которых наведена полем другой волны. Эти задачи актуальны, например, в связи с проблемой создания оптических резонаторов для коротковолновых лазеров.  [c.141]

Плотность состояний электронов в кристаллическом твердом теле описывается более сложной функцией, так как на нее влияет периодичность структуры кристалла. В результате кривая плотности состояний распадается на большое число различных участков, как схематически показано на фиг. 78. Такой тип структуры плотности состояний называется зонной структурой спектра  [c.256]

Виды элементарных связей в твердых телах. Характер и значение энергии элементарных связей (их прочность) зависят от природы вещества и типа кристаллической решетки твердого тела.  [c.8]

Этот результат, о котором мы уже упоминали в 8.1, называют законом Дюлонга и Пти. Он был экспериментально установлен этими авторами в 1819 году, задолго до всяких теорий, по измерениям вблизи комнатной температуры, проведенным на многих простых соединениях, т.е. таких, кристаллическая решетка которых состоит из отдельных атомов, а не из сложных молекул. Именно с таким простейшим по строению типом твердого тела мы имели дело в гл.З и во всем последуюшем изложении.  [c.174]

При взаимодействии атомов одного сорта с атомами другого сорта характер химической связи определяется их способностью захватывать или отдавать валентный электрон. Эта способность характеризуется так называемой электроотрицательностью атомов X. По существу, электроотрицательность — это параметр, выражающий тенденцию атома притягивать к себе электроны в конкретном твердом теле. Электроотрицательность — относительная мера взаимодействия атомов, она не является строго физической величиной, поскольку она не постоянна и зависит от природы другого атома, с которым химически связан данный атом. Один и тот же атом в химической связи иногда одновременно может выступать и как электроположительный, и как электроотрицательный. Электроотрицательность очень слабо зависит от типа связи и от конкретных особенностей кристаллической структуры, что делает ее некоторым объективным параметром атомов, который полезен при обсуждении свойств твердых тел.  [c.57]

К ковалентным кристаллам относят твердые тела, кристаллическая структура которых образована за счет ковалентной связи. Типичными представителями кристаллов с чисто ковалентной связью являются алмаз, кремний, германий, серое олово, которые построены по типу структуры алмаза (см. рис. 1.28).  [c.75]


При некоторых критических концентрациях радиационных дефектов кристаллическое состояние становится неустойчивым и происходит переход в аморфное состояние. Такой переход наиболее легко осуществляется в твердых телах с ковалентным типом связи.  [c.96]

Для упрощения полагают также, что вместо изучения движения всех электронов можно рассматривать движение одного (любого) из них, который движется в поле периодически расположенных ионов. Такой подход называют одноэлектронным. Будем также считать справедливым адиабатическое приближение, согласно которому координаты ядер можно считать фиксированными, поскольку массивные ядра движутся несравненно медленнее,, чем электроны. В случае, когда потенциал взаимодействия электронов с ионами принимается слабым, рассматриваемое приближение нередко называют приближением почти свободных электронов. Отметим, что в целом учет взаимодействия электронов с периодическим полем кристаллической решетки, как будет ясно из дальнейшего, позволил с единых позиций описать характеристики различных типов твердых тел, в том числе металлов, диэлектриков и т. д. Поэтому исходные положения модели и многие ее следствия в определенной мере относятся к любым кристаллическим телам.  [c.56]

Существуют различные подходы к классификации твердых тел. Их различают по типу кристаллических структур кубическая, гексагональная и т. д., по характерным физическим, химическим, механическим свойствам магнетики, сверхпроводники, полупроводники, сегнетоэлектрики, высокопрочные материалы и т. д.  [c.95]

Структура твердых тел, описание кристаллических решеток и другие аналогичные вопросы достаточно подробно излагаются в курсе молекулярной физики. Там же описаны механические и тепловые свойства твердых тел. В этой книге рассмотрены главным образом электронные свойства твердых тел. Но прежде необходимо проанализировать типы связи атомов и молекул в кристалле, которые обеспечивают устойчивое существование кристаллической решетки.  [c.332]

Часть этих уровней (рис. В-7) заполнена электронами в нормальном, невозбужденном состоянии атома, на других уровнях электроны могут находиться только после того, как атом испытает внешнее энергетическое воздействие при этом он возбуждается. Стремясь прийти к устойчивому состоянию, атом излучает избыток энергии в момент возвращения электронов на уровни, при которых энергия атома минимальна. При переходе газообразного вещества в жидкость, а затем при образовании кристаллической решетки твердого тела все имеющиеся у данного типа атомов электронные уровни (как заполненные электронами, так и незаполненные) несколько смещаются вследствие действия соседних атомов друг на друга. Таким образом, из отдельных энергетических уровней уединенных атомов в твердом теле образуется целая полоса —зона энергетических уровней.  [c.13]

В таком случае приложение нагрузки т (меньшей предела текучести) к металлу, имеющему несовершенства кристаллического строения, вызовет неоднородное распределение внутренних напряжений в очагах локального плавления приложенное напряжение преобразуется в гидростатическое давление (фазовое состояние близко к жидкому, дальний порядок отсутствует) а в остальной части кристалла напряжение в элементарных объемах подчиняется законам упругости твердого тела. Таким образом, в местах дефектов структуры типа дислокаций возможно равенство т = Р. Например, в работе [16] при вычислении свободной энергии вакансий постулируется справедливость этого соотношения для некоторых областей материалов .  [c.28]

Несовершенства (дефекты) строения реальных кристаллов металла. Описанная в предыдущем разделе кристаллическая решетка является идеальной. На основе физики твердого тела теоретически найдены механические характеристики, которые должны быть у кристаллов строго идеальной структуры. Сопоставление этих характеристик с обнаруживаемыми в опыте показывает значительное (в десятки и даже в сотни раз) превышение теоретическими значениями опытных. Последнее расхождение объясняется тем, что в реальных кристаллах всегда имеются отклонения от идеального характера атомной решетки, называемые несовершенствами или дефектами строения кристаллов ). Известны различные типы дефектов классификация их дана в табл. 4.3.  [c.233]

Действие облучения на материалы, как правило, приводит к значительным изменениям свойств этих материалов, к изменениям физических и химических процессов, происходящих в веществе, а также к новым качественным состояниям вещества. Изменения эти связаны не только с дозой облучения, но и с целым рядом ускоряющих или замедляющих факторов. Следовательно, чтобы характеризовать условия облучения, необходимо кратко рассмотреть общие вопросы, связанные с воздействием излучения на твердые тела. Взаимодействие излучения с твердыми телами приводит к структурным нарушениям кристаллической решетки, в результате физико-механические свойства вещества изменяются. В зависимости от энергии и типа излучения в материалах наблюдаются следующие явления иони-  [c.86]

Изучение причин появлений инварного эффекта всегда было важным вопросом физики твердого тела, но окончательное решение проблемы еще не найдено [124]. Можно лишь теоретически обобщить явления, протекающие в кристаллических аустенитных и аморфных сплавах на основе железа, и то с известной долей произвольности интерпретации. Следует подчеркнуть, что в этих сплавах весьма велика объемная спонтанная намагниченность, что подтверждается расчетами на основе электронной теории. Предлагаются различные модели, однако они не могут дать полностью адекватного объяснения этому эффекту. Такое объяснение появится, вероятно, тогда, когда будет полностью разработана теория ферромагнетизма переходных металлов типа железа.  [c.176]


Дефекты в кристаллической решетке оказывают большое влияние на протекание процессов диффузии и самодиффузии, которые во многом определяют скорости химических реакций в твердом теле, а также ионную проводимость кристаллов. Распределенные нужным образом по объему кристалла дефекты кристаллической решетки позволяют создавать в одном образце области с различными типами проводимости, что необходимо при изготовлении некоторых полупроводниковых элементов.  [c.10]

При прохождении нейтронов через твердое тело наблюдаются два типа взаимодействия нейтронов с ядрами кристаллической решетки. В первом случае в результате взаимодействия происходит изменение природы атомов, соударяющихся с нейтронами, т. е. процесс ядерного деления тяжелых атомов и образование новых. Во втором случае й результате взаимодействия природа атомов не меняется, но в твердом теле протекают процессы возбуждения атомных ядер с поглощением атомами нейтронной энергии в квантах и отдача ее при возвращении атомов в нормальное состояние.  [c.689]

Диффузия — это перенос вещества, обусловленный беспорядочным тепловым движением диффундирующих частиц. При диффузии газа его молекулы меняют направление движения при столкновении с другими молекулами. Основными типами движения при диффузии в твердых телах являются случайные периодические скачки атомов из узла кристаллической решетки в соседний узел или вакансию.  [c.144]

Трехмерные дефекты. Трехмерными дефектами кристаллического строения твердых тел являются включения, поры, остроконечные полости типа трещин и др.  [c.31]

С появлением и развитием ядерной энергетики стали активна изучаться другие методы введения дефектов. Когда частицы с высокой энергией (электроны, нейтроны, осколки деления атд-мов и т. д.) проходят через твердое тело, то это, естественно, приводит к нарушению его кристаллической решетки. Природа образующихся несовершенств определяется видом частиц и их энергией, однако часть получающихся нарушений составляют меж-узельные атомы и вакансии, т. е. точечные дефекты. На полученных таким путем образцах можно проводить два вида исследований. В одном из них изучение скорости исчезновения дефектов при различных температурах дает возможность получить значение их на основании чего возможна идентификация типа диффундирующих дефектов. Другой вид исследований позволяет с помощью радиации изучать такие диффузионные процессы, как переход порядок — беспорядок или искусственное старение. Это дает определенную информацию об атомном механизме этих процессов, а также показывает, какие изменения происходят в твердых телах, используемых в качестве реакторных материалов  [c.153]

Результаты проведенных исследований свидетельствуют о тесной связи характеристик трения и износа и типа кристаллической решетки твердого тела. Более того в работе [44] отмечено, что критерий перехода от пластического оттеснения к разрушению трущихся поверхностей зависит от типа кристаллической решетки. Тип решетки, в свою очередь, определяет пластифицирующее действие поверхностно-активных веществ при трении.  [c.40]

Совершенно очевидно, что материалы, обладающие разными свойствами, по-разному сопротивляются кавитационному воздействию. Из широкого разнообразия физических, химических, электрических и термодинамических свойств материалов такие свойства, как предел упругости, твердость, пластичность, упрочнение наклепом, зависимость свойств материала от температуры, модуль упругости, плотность, предел усталости, энергия деформации при разрушении, предельная работа деформации, теплопроводность, температура плавления, химическая инертность, сцепление окислов с поверхностью, кристаллическая структура и электропроводность, изучались исследователями ранее. Сочетая эти свойства с разными видами кавитационного воздействия, можно видеть, что число различных возможных комбинаций может быть огромным. Поэтому естественно сделать вывод, что вряд ли удастся найти единое объяснение всех причин кавитационного разрушения. Другой вывод состоит в том, что разрушение в конкретной системе твердое тело—жидкость начинается с наиболее слабого звена. Наконец, третий вывод состоит в том, что степень воздействия разных факторов, определяющих кавитационное разрушение, может меняться с изменением параметров течения жидкости. Следовательно, данный материал при разных условиях может подвергаться совершенно различным типам кавитационного разрушения.  [c.429]

Следуя за описанием серии экспериментов, в которых она рассматривала эффект Тарстона при паузах 0,5 ч и до 22 ч при конечном шаге в процессе испытания в области конечных деформаций, Элам представила сравнение очень медленных и очень быстрых опытов с алюминиевым сплавом, в котором проявился эффект типа Савара — Массона (Портвена — Ле Шателье), наблюдаемый тогда, когда опыты проводятся на жестких машинах. Эти результаты, показанные на рис. 4.119, обеспечивали такую же функцию напряжение — деформация для очень медленного опыта при сравнении с быстрым опытом. Таким образом, аномалия в смысле вязкопластичности не ограничивалась армко-железом. Отсюда мы ясно обнаруживаем, имея противоречивые экспериментальные факты, что к 1938 г. роль вязкости в пластическом деформировании кристаллических твердых тел была еще не выяснена-  [c.193]

Интерес к исследованию эволюции дефектной структуры в процессе пластической деформации начал проявляться в конце 50-х годов. Среди отечественных ученых пионерами в эгон области были В. И. Трефилов и его ченики —С. А. Фирстов и Ю. В. А ильман. В последнее время это направление получило блестящее развитие в работах В. В. Рыбина, Э. В. Козлова, Н. А. Коневой, А. Д. Коротаева и др. Однако несмотря на имеющуюся классификацию типов дефектных структур деформированных металлов [18, 19], на сегодняшний де 1Ь отсутствуют общая теория структурообразования при пластической деформации и теория переходов из одного структурного состояния в другое. Кроме того, не вполне ясен вопрос об участии структурообразования и структурных переходов в конкретных проявлениях пластического течения кристаллических твердых тел.  [c.59]

Экситоны в молекулярных кристаллах. Молекулярные кристаллы могут служить примерами тех веществ, в которых могут образовываться френкелевские экситоны, т. е. экситоны, отвечающие модели сильной связи. В молекулярных кристаллах ковалентная связь внутри молекулы значительно сильнее ван-дер-ваальсовой связи между молекулами. Линии спектра поглощения молекулярного кристалла, обусловленные возбуждением электронов внутри отдельных молекул, будут проявляться в спектре кристаллического твердого тела как экситонные линии, часто несколько смещенные по частоте. При низких температурах спектр весьма четкий, хотя там основные линии могут иметь тонкую структуру и таким образом отличаться от линий обычного спектра молекулы ). В кристаллах этого типа  [c.639]

Дислокации в кристаллических твердых телах обычно возникают при выращивании или обработке. Дислокации, возникающие при обработке, как правило, образуются в результате пластического течения, вызванного деформацией. Днслокаци1 могут быть чисто краевыми, чисто винтовыми или представлять смесь обоих чистых типов дислокаций. Как показано на рис. 5.6.1, в кристаллах, содержащих атомы одного сорта, краевые дислокации образуются в результате присутствия лишней атомной плоскости. Эта лишняя атомная плоскость можёт образовываться вследствие деформации кристалла в направлении вектора сдвига (вектора Бюргерса), показанного на рисунке. Ядром дислокации является край лишней плоскости. Плоскость, вдоль которой должны двигаться атомы при образовании дислокаций, называется плоскостью скольжения. Чисто краевая дислокация перпендикулярна вектору сдвига. Краевая дислокация может быть следствием рассогласования периодов решетки на гетерогранице. Для элементарного кубического кристалла этот случай показан на рис. 5.6.2. Она также может быть следствием деформации, вызванной изменением состава в слоях переменного состава. Винтовая дислокация, как и краевая дислокация, может быть создана сдвигом. В этом случае, как показано на рис. 5-6.3, д, часть кристалла сдвигается параллельно вектору сдвига, а другая часть неподвижна. Как показано на рис. 5.6.3, б, в результате образуется дислокация, параллельная вектору сдвига. Плоскости в кристалле, перпендикулярные вектору сдвига, практически представляют собой единственную атомную плоскость, изогнутую по винтовой поверхности. Линия дислокации совпадает с осью винта, поэтому такая дислокация называется винтовой. Участок кристалла непосредственно в окрестности как краевой, так и винтовой дислокации искажен и поэтому деформирован.  [c.60]


Указанным критериям отвечает новый метод снятия остаточных напряжений физические основы которого можно сформулировать сле> дующим образом. Как показано при теоретическом исследовании, каждому кристаллическому материалу соответствует вполне определенный дискретный спектр собственных частот колебаний атомов в решетке. Последний определяется типом дислокаций, характерных для данной структуры твердого тела, и может быть, в принципе, рассчи> тан для любого материала. Если подвести к кристаллу анергию, равную величине Wi = hv,, (Wi — пороговый уровень энергии, h — постоянная Планка, — частота колебаний 1-моды в спектре), то эта энергия избирательно поглотится кристаллической решеткой, что приведет к резкому повышению амплитуды атомных колебаний i-моды.  [c.149]

Перейдем теперь к описанию проблем, составляющих основу магнитоупругости. Исследование взаимодействия магнитного поля с упруго-деформируемыми электропроводящими телами составляет предмет магнитоупругости. Укажем лишь некоторые из них магнитострикционная деформация кристаллических тел пьезомагнетизм магнитоупругость тел, обладающих свойством магнитной поляризуемости задачи индукционного нагрева тел задачи разрушения тел под действием импульсных электромагнитных полей и др. Перечисленные проблемы возникают, в частности, при создании импульсных соленоидальных катушек, магнитогидродинамических ускорителей, различных типов магнитокумулятивных генераторов при управлении движением плазмы и во многих других прикладных задачах, где влияние магнитного поля существенно сказывается на деформации твердого тела. Более сложными задачами магнитоупругости являются задачи взаимодействия с электромагнитным полем материалов, обладающих свойством магнитной поляризуемости (ферромагнетики, антиферромагнетики, ферримагнетики). Это объясняется, прежде всего, отсутствием простых фундаментальных з -  [c.239]

Сплавы внедрения являются ваншейшими материалами, широко применяющимися в различных областях техники. Для создания таких материалов с требуемыми свойствами первостепенное значение имеют вопросы о количестве и характере размещения внедренных атомов в кристаллической решетке, а также об их подвижности. Концентрация атомов внедрения и их размещение в различного типа междоузлиях кристаллической решетки определяют прочность, а также другие важнейшие свойства сталей и ряда других материалов. Факт наличия или отсутствия внедренных атомов в кристаллической решетке может полностью обусловить появление (или исчезновение) ферромагнетизма, антиферромагнетизма и сверхпроводимости. Добавление атомов внедрения способно даже изменить тип твердого тела, вызвав фазовый переход из металлического в неметаллическое состояние.  [c.6]

Когда атомы плотно упакованы в кристаллической решетке твердого тела, их квантовые уровни расщепляются на множество подуровней, близко лежащих друг к другу. Эти подуровни столь близки друг к другу, что в результате образуются сплошные зоны дозволенной энергии. Во многих твердых веществах энергетические зоны отстоят друг от друга на величину энергии, носящей название зоны запрещенной энергии или просто запрещенной зоны. Самые нижние уровни энергии всегда заполнены электронами. Зона, которую занимают внешние — валентные — электроны, носит название валентной зоны. Электрические свойства твердого тела определяются структурой энергетических зон и заполненностью их электронами. Типы расположения энергетических зон показаны на рис. 5.7. Имеется четыре типа расположения этих зон. Б первом случае нижняя зона заполнена не полностью. Это означает, что число энергетических состояний в этой зоне больше, чем число электронов. Вследствие этого электроны могут свободно перемещаться в кристаллической решетке. При втором типе расположения энергетических зон нижняя зона полностью заполне-  [c.96]

Начальной стадией деформации металла является упругая деформация (участок АВ рис. 2.8). С точки зрения кристаллического строения, упругая деформация проявляется в некотором увеличении расстояния между атомами в кристаллической решетке. После снятия нафузки атомы возвращаются в прежнее положение и деформация исчезает. Другими словами, упругая деформация не вызывает никаких последствий в металле. Чем меньшую деформацию вызывают напряжения, тем более жесткий и более упругий металл. Характеристикой упругости металла являются дна вида модуля упругости модуль нормальной упругости (модуль Юкга) - характеризует силы, стремящиеся оторвать атомы друг от друга, и модуль касательной упругости (модуль Гука) - характеризует силы, стремящиеся сдвинуть атомы относительно друг друга. Значения модулей упругости являются константами материала и зависят от сил межатомного взаимодействия. Все конструкции и изделия из металлов эксплуатируются, как правило, в упругой области. Таким образом, упругость - это свойство твердого тела восстанавливать свою первоначальнуто фор.му и объем после прекращения действия внешней нагрузки. Модуль упругости практически не зависит от структуры металла и определяется, в основном, типом кристаллической решетки. Так, например, модуль Юнга для магния (кристаллическая решетка ГП% ) равен 45-10 Па, для меди (ГКЦ) - 105-10 Па, для железа (ОЦК) - 21010 Па.  [c.28]

Принципиальным отличием лазеров на конденсированных средах от газовых является то, что атомы и молекулы в них либо совсем не могут совершать какого-либо направленного поступательного движения, что имеет место в твердых телах, либо, если могут, то это движение настолько ограниченно и не существенно по сравнению с колебательным или вращательным (характерными для жидкостей), что его можно не учитывать. Колебательное или вращательное движение структурных элементов в конденсированных средах определяют главным образом релаксационные процессы и спектральное уширение линий, соответствующих переходам между парами отдельных энергетических уровней. Для твердых активных сред, которые в большинстве случаев представляют собой ионные кристаллы, характерно колебательт ное движение, которое, в зависимости от типа кристаллической решетки,, может соответствовать либо только акустическим ветвям колебаний, либо — акустическим и оптическим. В настоящее время наиболее широкое применение находят лазеры на растворах органических красителей, состоящих из сложных молекул, имеющих сложную систему энергетических уровней, сводимую в большинстве случаев к четырехуровневой схеме. В молекулах жидкостей могут также совершаться колебательные движения, которые, как и в кристаллах, сопоставимы либо с акустическими, либо с оптическими ветвями колебаний. С этой точки зрения между сложными молекулами и кристаллами мбжет быть установлена полная аналогия, если весь кристалл в целом рассматривать как большую молекулу. Основное различие заключается в том, что в сложных молекулах на уширение и усложнение системы энергетических уровней существенное влияние могут оказать вращательные движения. Кроме того в молекулах, как правило, отсутствует трансляционная симметрия, существенная для кристаллов и определяющая зонную структуру энергетических уровней твердых тел.  [c.175]

Расположение атомов в кристалле твердого тела представляют в виде пространственных схем или элементарных кристаллических ячеек, под которыми понимается наименьший комплекс атомов, позволяющий при своем многократном повторении воспроизвести пространственную. кристаллическую решетку. Простейшим типом решетки является куб. Повышенной плотности атомов соответствуют более плотные упаковки объемноцентрированный куб, гранецентриро-ванный куб, гексагональная плотноупакованная решетка.  [c.27]

На протяжении почти всей истории развития науки о трении твердых тел основной тенденцией являлось увеличение твердости материа.тюв триботехнического назначения или их поверхностных слоев. Эта тенденция соответствовала законам трения и эмпирическим закономерностям [83 ]. Увеличение твердости контактирующих поверхностей приводит к уменьшению площади фактического контакта трущихся материалов и снижению макроскопических [шпряжений сопротивления относительному перемещению. Вместе с тем напряжения и энергия, рассеиваемая на отдельных микронеровностях, могут возрастать. Для материалов, близких по типу структурного упорядочения и характеру межатолмных взаи.модействий, возрастание твердости является косвенным, но надежным признаком уменьшения химической и адгезионной активности. Усиление связей между атомами твердого тела затрудняет подстройку его кристаллической решетки, необходимую для установления когерентной границы и образования новых межатомных связей при адгезионном взаимодействии.  [c.4]

При исследованиях процессов в зоне контактного взаимодействия твердых тел обычно встречаются с трудностями, связанными, с одной стороны, с противоречив выми данными исследований состояния поверхностей трения. К ним относятся результаты, показывающие неоднозначность влияния поверхностно-активной среды, типа кристаллической структуры, распределения плотности дислокаций и т. п. С другой стороны, эти сложности определяются отсутствием литературы, посвященной детальному сопоставлению различных методов исследования, их возможностей, преимуществ и недостатков при анализе поверхностей трения. Совершенно естественно, что в одной книге авторы не могли обсудить и решить все основополагающие вопросы трения и изнашивания, однако попытались привести и проанализировать наиболее важные и перспективные, по мнению авторов, направления анализа структуры и методы изучения поверхностных слоев металла, деформированного трением, и показать в этой связи некоторые специфические особенности. Так, представления о закономерностях структурных изменений при пластическом деформировании рассмотрены с новых позиций развития в объеме и поверхностных слоях материала деструкционного деформирования — накопления микроскопических повреждений в процессе деформирования. Большое внимание уделено диффузионным процессам при трении, как одному из факторов, доступному для управления поведением пар трения. До сих пор фактически нет данных о характере перераспределения легирующих элементов контактирующих материалов, которые кардинально изменяют свойства поверхностных слоев и, следова тельно, механизм контактного взаимодействия. Более того, вообще нет сведений о структурных изменениях в поверхностных, слоях толщиной 10" —10 м, определяющих в ряде случаев поведение твердых тел в процессе деформирования. В связи с этим описан специально разработанный метод анализа слоев металла указанной толщины, а также показана его перспективность при изучении поверхностей трения и, главное, при разработке комплексных критериев процесса трения для создания оптимальных условий на контакте, реализации явления избирательного переноса.  [c.4]


В аспекте изучения чувствительности процесса деформации твердых тел к свойствам смазочной среды интересна работа [44], в которой исследовано влияние типа кристаллической решетки металлов на интенсивность износа при трении в разных смазочных средах. Во всем диапазоне испь1тываемых нагрузок наблюдали увеличение упрочнения, снижение степени разрушения поверхности по сравнению с сухим трением. Пластифицирующее действие ПАВ при трении зависит от типа кристаллической решетки. Так, если для кобальта влияние ПАВ незначительно (известно, что металлы с ГПУ решеткой в процессе пластической даформации слабо упрочняются из-за малого числа систем скольжения), то при трении в среде с ПАВ никеля и железа наблюдают существенное упрочнение и снижение степени разрушения поверхности по сравнению с сухим трением. Степень упрочнения для никеля больше, чем для железа, а степень разрушения поверхности меньше При трении с ПАВ по сравнению с сухим трением. Отмеченные экспериментальный данные объясняются тем, что ПАВ снижают свободную поверхностную энергию для металлов с ГЦК решеткой на большую величину, чем для металлов с ОЦК решеткой. Авторы констатируют, что пластифицирующее действие ПАВ при трении определяется типом кристаллической решетки испытываемых металлов.  [c.48]

Твердый раствор образуется тогда, когда компоненты сплава обладают взаимной растворимостью друг в друге как в жидком состоянии, так и в твердом. Твердый раствор — однородное (однофазное) крист ллическое тело, имеющее один тип кристаллической решетки, поскольку в решетку основного компонента (растворителя) входят атомы растворенного элемента.  [c.78]


Смотреть страницы где упоминается термин Типы кристаллических твердых тел : [c.456]    [c.48]    [c.33]    [c.178]   
Смотреть главы в:

Справочное руководство по физике  -> Типы кристаллических твердых тел



ПОИСК



Кристаллические

ТИПЫ И СИММЕТРИЯ ТВЕРДЫХ ТЕЛ Кристаллические структуры



© 2025 Mash-xxl.info Реклама на сайте