Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Спектральная линия уширение

Мы уже упоминали (см. 1.6) о неоднородном уширении спектральной линии. Теперь можно исследовать этот важный эффект.  [c.391]

Рассмотрим более подробно природу доплеровского уширения спектральной линии. Пусть имеется некоторый ансамбль излучающих атомов (ионов), участвующих в хаотическом тепловом движении. В этом случае скорости частиц распределены по закону Максвелла, т.е. относительное число частиц dn/n, проекции скорости которых лежат в интервале от до l x + определяется выражением  [c.391]


Какими параметрами определяется доплеровское уширение спектральной линии  [c.453]

Однако надо иметь в виду, что видимость интерференционной картины существенно зависит от закона распределения энергии в используемом свето-вом спектральном интервале. Приведенный расчет справедлив для случая уширенной спектральной линии.  [c.91]

Наконец, следует упомянуть, что во всех газовых источниках света мы всегда имеем дело со светящимися атомами газа, летящими с довольно большими скоростями по всем направлениям (скорости от 100 м/с до 2 км/с в зависимости от молекулярного веса газа и его температуры). Вследствие допплеровского смещения спектральные линии оказываются расширенными. При значительном разрежении газа, когда столкновения между светящимися атомами и окружающими частицами сравнительно редки, явление Допплера служит главной причиной, определяющей ширину спектральной линии. Наблюдение уширения спектральных линий в указанных условиях также является подтверждением эффекта Допплера. Удалось установить, например, что при охлаждении такого источника жидким воздухом ширина линий уменьшалась соответственно уменьшению средних молекулярных скоростей.  [c.440]

Наконец, следует считаться с тем обстоятельством, что светящиеся атомы могут оказаться под действием магнитных и электрических полей окружающих атомов, вызывающих изменение излучаемой частоты вследствие эффекта Зеемана и эффекта Штарка. Так как изменение частоты различных атомов различно, то эта причина также ведет к различному уширению спектральных линий. Действие ее (особенно эффекта Штарка) может быть весьма заметным при наличии сильной ионизации и, следовательно, сильных электрических полей. По-видимому, при свечении в разряде электрической искры действие этого фактора очень значительно и вызывает сильное уширение (десятые ангстрема и больше) некоторых линий.  [c.575]

Каждая такая спектральная линия не представляет собой, однако, излучения строго определенной длины волны, а является, как уже не раз упоминалось, излучением в очень узком спектральном участке, в котором энергия распределена так, что интенсивность быстро падает от центра к краям. Измерение ширины спектральной линии (см. 158) показывает, что в излучении разреженного газа величина этого участка нередко ограничена сотыми и даже тысячными долями ангстрема. Однако условия возбуждения могут заметно влиять и на эту величину, равно как и на положение центра (максимума) спектральной линии. Внешнее электрическое (или магнитное) поле вызывает расширение (или даже расщепление) спектральной линии, а такие внешние поля (особенно электрические) могут в условиях газового разряда обусловливаться высокой концентрацией ионов в разряде и достигать заметной величины столкновение светящегося атома с соседними во время процесса излучения также ведет к уширению линии й тому же ведет и самый факт теплового движения атома вследствие эффекта Допплера. В специальных условиях, например при мощных разрядах, сопровождающихся сильной ионизацией, или при большой плотности газа эти искажения могут достигать значительной величины. Однако  [c.712]


Обсудим интерпретацию амплитудной, частотной и фазовой модуляции излучения в рамках квантовых представлений. Отметим, прежде всего, общую причину уширения спектральных линий, связанную со спонтанными переходами. Благодаря этим переходам длительность возбужденных состояний, а следовательно, и волновых цугов ограничена. В результате спонтанные переходы сами по себе приводят к уширению линии, причем а п ( ) имеет вид (ср. (22.13))  [c.740]

Уширение спектральных линий в плазме  [c.261]

Естественное уширение линий. Спонтанное излучение, ограничивающее время жизни возбужденного состояния изолированного атома, определяет естественное уширение спектральных линий.  [c.261]

Ширина спектральной линии, измеряемая как частотное расстояние между точками контура, в которых интенсивность равна половине максимальной, в случае естественного уширения связана с временем жизни т возбужденного состояния следующим образом  [c.262]

Доплеровское уширение линий. Хаотическое движение излучающих частиц приводит к доплеровскому уширению спектральных линий. При максвелловском распределении частиц по скоростям выражение для формы спектральной линии имеет гауссовский вид  [c.262]

Уширение линий давлением. Спектральные линии, излучаемые атомами или ионами, подвергающимися воздействию окружающих их нейтральных и заряженных частиц, дополнительно уширяются. Величина и вид уширения линий при этом зависят от характера взаимодействия частиц.  [c.263]

Штарковское уширение спектральных линий в плазме  [c.268]

Рис. 102. Контур спектральной линии, получающийся в общей теории штарковского уширения линий Рис. 102. <a href="/info/14534">Контур спектральной линии</a>, получающийся в <a href="/info/506320">общей теории</a> <a href="/info/427445">штарковского уширения</a> линий
Общая теория штарковского уширения дает соотношения, позволяющие находить концентрацию Ne и кинетическую температуру Ге электронов по ширине и сдвигу спектральных линий. Для многих линий элементов от гелия до кальция, а также для цезия вычислены константы, характеризующие уширение за счет электронов w, ионов а и параметр сдвига с1, которые позволяют находить ширину линии АЛ и ее сдвиг бЛ (в нм) по следующим формулам  [c.271]

Знак минус в формуле (5.65) употребляется в области высоких температур для тех линий, у которых /ш при низких температурах отрицательно. Второй член в формуле (5.64) учитывает вклад ионов в уширение спектральной линии. Обычно он мал, поэтому АЛ слабо зависит от 7 е и с хорошим приближением уширение линии пропорционально Л/е- В формуле (5.65) ионный вклад более значителен.  [c.271]

Рассмотрим подробнее действие лазера. Учтем уширение энергетических уровней н спектральных линий. Поле резонатора на одной из его резонансных частот можно представить либо в виде стоячей волны, либо (что эквивалентно) в виде двух бегущих навстречу друг другу волн, направленных по оси резонатора. Если частота этих волн попадает в полосу усиления активной среды, т. е. располагается в пределах щирины линии рабочего перехода  [c.280]

Свойства активной среды в значительной степени зависят от ширины и формы спектральной линии рабочего перехода. Для дальнейшего существенно разные виды уширения спектральных линий разделить на два типа на однородное и неоднородное  [c.286]

К однородным видам уширения относятся естественное уширение (см. задачу 17) и уширение, обусловленное соударениями атома с другими атомами, ионами, электронами и со стенками сосуда. При однородном уширении контур спектральной линии излучения всегда совпадает с контуром линии поглощения и имеет так называемую дисперсионную форму, характерную для затухающего осциллятора  [c.286]

Распределение атомов по центральным частотам vo, определяющее неоднородную часть уширения, характеризуется функцией Я(vo—Vo), где vo — центральная частота этого распределения. В результате контур спектральной линии излучения всей совокупности атомов и совпадающий с ним контур линии поглощения могут быть получены путем свертки функций К и Я  [c.287]


Величина коэффициента усиления при стационарной генерации устанавливается вследствие явления насыщения усиления. Выше мы видели ( 3), что оно носит разный характер при однородном и неоднородном уширении спектральной линии рабочего перехода, вследствие чего спектральные свойства генерации оказываются различными, см. рис. 111. Здесь взят наиболее типичный случай, когда ширина атомной линии значительно превышает расстояние между соседними продольными модами резонатора. Для простоты предположено, что в ОКГ выделена одна поперечная мода. В случае однородного уширения (а) стационарная генерация осуществляется только на той продольной моде, которая ближе всего расположена к центру атомной линии vq. На других модах генерация не возникает, так как коэффициент усиления оказывается ниже уровня потерь. Если имеется неоднородное уши-рение (б), то генерация происходит на всех продольных модах, для которых К° ) Кп-  [c.292]

Здесь <1пл — поглощательная способность пламени в пределах наблюдаемой спектральной линии, —температура пламени, 6Х — ширина спектральной линии. Форма спектральной линии предполагается прямоугольной. Этот случай с хорошим приближением соответствует спектральной линии, уширенной за счет реабсорб ции. Сплошной фон в спектре пламени принимается равным нулю.  [c.254]

Для описания столкновительного уширения спектральных линий в видимой и ИК-областях спектра наибольшее распространение получили теории Лоренца, Вайскопфа и Андерсона. Согласно теории Лоренца, контур спектральной линии, уширенной столкновениями, описывается формулой  [c.17]

Если бы уровни энергии в действительности являлись геометрическими линиями, то атомы излучали бы строго монохроматическую волну и спектр был бы строго линейчатым (дискретным). Одиако, как показывают опыты, атомы излучают спектр частот определенной ширины. Уширение спектральной линии, согласно квантовой теории, объясняется тем, что сами энергетические уровни обладают некоторой шириной Дт, величина которой определяется так называемым соотношением неопределенностей Гейзенберга AojT h, где т — время жизни атома на энергетическом уровне шириной А(о, h — постоянная Планка. Из этого соотношения вытекает, что Асо /г/т, т. е. естественная ширина линий, согласно квантовой теории, обратно пропорциональна времени жизни атома в начальном состоянии.  [c.41]

Для того, чтобы сравнить оценку Lkoi- по формуле (5. 54) с дан ными опыта, надо выбрать определенный источник света. Пуегь интерферометр освещается излучением газоразрядной плазмы низкого давления, когда столкновениями можно пренебречь, а основной причиной уширения спектральной линии служ1гг хаотическое тепловое движение излучающих атомов. Механизм этого доплеровского уширения рассмотрен в гл. 7, а сейчас мы ограничимся некоторыми простыми оценками.  [c.232]

Нетрудно показать, что контур линии при таком уширении будет гауссовским. Доплеровская ширина спектральной линии б д зависит от длины волны излучаемого света и пропорциональна V т/м, где Т — термодинамическая температура гаал, М — его молярная масса. Она в среднем более чем на два порядка превышает естественную ширину спектральной линии, обуслов ленную процессами излучения. В грубом приближении можно  [c.232]

Мы усматриваем аналогию с разложением излучения в спектр, которое проводилось для выявления истинной структуры спектральной линии, замаскированной уширением, создаваемым спектральным прибором, которое также называлось аппаратной функцией. Эта а11 алогия весьма глубокая, так как обе эти операции основаны на преобразовании Фурье, имеющем непосредственное отношение к данной проблеме (см. 6.6).  [c.338]

При рассмотрении интерференции света (см. гл. Ь) указывалось, что во. чногих практически важных случаях (iianpn.Mep, при свечении плазмы низкого давления) уширение спектральной линии в основном определяется изменением наблюдаемой частоты, связанным с хаотическим движением излучающих атомов. Такое уширение линии, легко наблюдаемое на опыте, является  [c.382]

Исрейдсм теперь к исследованию следствий хаотического движения излучающих свет атомов (ионов). В этом случае возникает уширение спектральной линии, которое часто маскирует те или иные физические эффекты (в том числе и доплеровское смещение частоты, возникающее при направленном движении излучающих частиц). Вследствие такого уширения спектральных линий иногда оказывается неэффективным увеличение разрешающей силы и дисперсии спектральных приборов.  [c.391]

Доплеровское уширение спектральных линий в значительной степени лимитирует возможности оптической спектроскопии высокого разрешения. Известно (см. 5.7), что, увеличивая коэффициент отражения зеркал интерферометра при высокой точности их изготовления, повышая расстояния между отражающими поверхностями и используя сложные интерфером.етры (мультиплексы), можно довести разрешающую силу интерферометра до значения порядка 10 и даже более. Однако при реализации столь большой разрешающей силы в оптических экспериментах часто возникают серьезные затруднения. Конечно, могут появиться задачи, при которых требуется с высокой точностью записать широкий контур, но если обратиться к возможности раздельного наблюдения двух близких по длине волны линий при учете неизбежных флуктуаций источника, то, даже используя прибор высокой разрешающей силы, нельзя их разрешить, если доплеровские контуры сильно перекрываются. Нетрудно оценить ту область, где возникают такие перекрытия пусть л = 5000А и 6Лдо = 0,005А тогда У./ЪУ. 10 , что и объясняет трудность реализации разрешающей силы, если она составляет несколько миллионов.  [c.393]

Можно продолжить перечисление технических трудностей, появляющихся при наблюдении сигнала биений, возникающего при освещении интерферометра уширенной спектральной линией, но они ничего не меняют в принципиальной постановке проблемы. Бесспорно, задав тем или иным способом корреляцию между двумя исследуемыми волнами, можно наблюдать их интерференцию. Если частота о>2 задается равномерным движением зеркала, от которого отражается часть исследуемого излучения, то будет происходить интерференция любой волны с частотой roi, лежащей в пределах контура спектральной линии, с другой волной частоты (02, отличающейся от частоты первой на разностную частоту 2л/. Тогда будет наблюдаться сигнал биений, который позволяет определять сколь угодно малую скорость движения зеркала, так как можно зарегистрировать очень малые изменения интерференционной картины. Та минимальная скорость v, которую еще можно измерить, определится условиями опыта. Е1о, конечно, это будут значения на много порядков меньше, чем те громадные скорости, о которых шла речь ранее. Приведенная выше оценка точности астрономических измерений лучевой скорости по эффекту Доплера (и 1 км/с) соответствует сравнению никак не скоррелированных источников света, которыми являются исследуемая звезда и какой-то земной источник света, излучающий ту же спектральную линию.  [c.397]


Всякая причина, обусловливающая затухание электронных колебаний в атоме, влияет, конечно, на ширину спектральной линии, ибо вследствие затухания колебание перестает быть синусоидальным, и соответствующее излучение будет более или менее отличаться от монохроматического. Поэтому и затухание вследствие излучения и затухание, обусловленное соударениями, ведут к тем больщему уширению спектральной линии, чем больше значение этих факторов. Затухание вследствие излучения должно характеризовать атом, поставленный в наиболее благоприятные условия, т. е. вполне изолированный от воздействия каких-либо внешних агентов. Поэтому ширину, обусловленную этой причиной, называют естественной или радиационной шириной спектральной линии. Величина ее обусловлена механизмом излучения атома. Рассматривая атом как электрический диполь, колеС>лющийся по законам  [c.572]

Столкновения между атомами обусловливают ударное ушире-ние спектральной линии. При очень низких плотностях, когда соударения редки, или в потоке свободно несущихся каналовых частиц, которые практически не сталкиваются, влияние этой причины уширения может быть сделано настолько малым, что им можно пренебречь. Но при обычных условиях газового свечения, например в разрядной трубке или в ртутной лампе, она может являться одной из серьезнейших или даже самой серьезной причиной уширения линий. Так, в современных ртутных лампах сверхвысокого давления, где давление паров ртути достигает 20—30 атм, линии ртутного излучения настолько уширены, что само выражение спектральные линии теряет смысл. Наблюдалось также заметное ушире-иие спектральных линий при добавлении к светящемуся газу значительных количеств постороннего газа.  [c.574]

Так как в обычных разрядных трубках светящиеся молекулы газа носятся вследствие теплового движения по всем направлениям, то для наблюдателя, измеряющего ширину спектральной линии, выступает еще одна причина уширения, уже отмечавшаяся в 22 свет посылается движущимися атомами, так что частота его изменена эс[)фектом Допплера (см. 128). Поскольку движение атомов происходит по всевозможным направлениям, составляющим все-возмоя ные углы с направлением наблюдения, то изменение частоты  [c.574]

Эффект Доплера существенно сказывается на структуре спектральных линий источников света. Вообще следует отметить, что во. всех газоразрядных источниках света атомы и ионы газа летят с большими скоростями во всех направлениях. В зависимости от скорости они будут давать разное доплеровское смещение частоты юлучения, в результате чего спектральные линии оказываются расщиренными. Это явление называют доплеровским уширением спектральных линий.  [c.220]

Ширина спектральных линий в полом катоде обусловлена в основном доплеровским уширением. Для его уменьшения прибегают к охлаждению катода. Вследствие выделения тепла при разряде температура газа внутри полости катода может быть заметно выше температуры его стенок. Для линий водородоподобных атомов, сильно подверженных эффекту Штарка, может оказаться существенным их уширение заряженными частицами в плазме. Резонансные линии элементов нередко испытывают уширение вследствие самопоглощения. (Об уширенин спектральных линий см. задачу 17 I.)  [c.74]

Б. При столкновениях однородных частиц между ними возникает сильная резонансная связь. Происходит перекачка энергии от излучающего атома к невозбужденному. В результате быстрого затухания колебаний в излучающем атоме спектральная линия расширяется. Резонансное уширение линий в десятки и более раз превышает лоренцовское уширение. Оно особенно велико на резонансных линиях атомов.  [c.263]

Уширение линий при реабсорбции. В плазме, имеющей заметную оптическую толщину, наблюдаемый контур спектральной линии искажается вследствие реабсорбции излучения (поглощения излучения такими же атомами, находящимися в более низком энергетическом состоянии). В зависимости от того, какова степень однородности плазмы и какова ее оптическая плотность, контур реабсорбированной линии может иметь различный вид. В одних случаях реабсорбированная линия имеет сглаженную или уплощенную вершину, а в других — в центре линии возникает провал интенсивности. Ширина линии в результате реабсорбции возрастает.  [c.264]

Для неоднородного уширения выражение (6.21), как и (6.15), справедливо только при малой спектральной плотности излучения на частоте атомного перехода, когда оно не может существенно изменить распределение атомор по частотам. Учитывая нормировку функции 5(т—То), из (6.21) можно получить, что коэффициент усиления на центральной частоте й(то) обратно пропорционален ширине спектральной линии.  [c.288]


Смотреть страницы где упоминается термин Спектральная линия уширение : [c.325]    [c.10]    [c.48]    [c.423]    [c.65]    [c.318]    [c.392]    [c.393]    [c.192]    [c.265]    [c.289]   
Температура и её измерение (1960) -- [ c.300 ]



ПОИСК



Классическая модель излучателя. Спектральный состав излучения Лоренцева форма и ширина линии излучения. Время излучения. Форма линии поглощения. Квантовая интерпретация формы линии излучения Квазимонохроматическая волна Уширение спектральных линий

Линии уширение

Линия спектральная

Механизмы уширения спектральных линий

Обменная модель уширения спектральных линий

Определение температуры по допплеровскому уширению спектральных линий

Поглощение света и уширение спектральных линий

Спектральное уширение

Уширение спектральных линий допплеровское

Уширение спектральных линий допплеровское естественное

Уширение спектральных линий допплеровское ударное

Уширение спектральных линий допплеровское штарковское



© 2025 Mash-xxl.info Реклама на сайте