Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы снятия остаточных напряжений

НОВЫЙ ЭКСПРЕСС-МЕТОД СНЯТИЯ ОСТАТОЧНЫХ НАПРЯЖЕНИЙ  [c.148]

МЕТОДЫ СНЯТИЯ ОСТАТОЧНЫХ НАПРЯЖЕНИЙ  [c.223]

В некоторых случаях возникает необходимость в уменьшении или полном снятии остаточных напряжений в изделии. Для этого могут быть использованы различные способы приложение к детали (имеющей остаточные напряжения) усилий, вызывающих пластическую деформацию, различные виды термических обработок и т. д. Вопросам о методах снятия остаточных напряжений и прежде всего вопросу об изменении величины остаточных напряжений в зависимости от времени посвящено значительное количество исследовательских работ.,  [c.224]


Снятие остаточных напряжений путем приложения к детали или конструкции внешней нагрузки. Сущность метода снятия остаточных напряжений путем приложения внешней нагрузки состоит в следующем при приложении к детали внешней нагрузки напряжения, вызываемые ею, складываются с остаточными напряжениями, уже имеющимися в детали, и вызывают местную пластическую деформацию в местах наибольших остаточных напряжений. Пластическая деформация снимает остаточные напряжения в той или иной степени или приводит к нх перераспределению по поперечному сечению детали.  [c.225]

Снятие остаточных напряжений при помои(и термической обработки изделий. В некоторых случаях из соображений прочности конструкции возникает необходимость в полном снятии остаточных напряжений. Лучшим способом для этого считают термическую обработку. Наиболее распространенным и действенным методом снятия остаточных напряжений является высокий отпуск изделий, который состоит в нагревании их до 600 —650° С с последующим медленным охлаждением. Такая температура выбрана исходя из того, что при ней у конструкционной стали происходит полное снятие остаточных напряжений. Перед охлаждением изделие, нагретое до этой температуры, выдерживают примерна 2,5—3 мин на каждый миллиметр толщины изделия.  [c.225]

Характерной особенностью разнородных сварных соединений является наличие остаточных напряжений, вызванных разностью коэффициентов линейного расширения аустенитных и перлитных сталей. В зависимости от марок сталей эта разность может составлять более 30%. Наиболее эффективным методом снятия остаточных напряжений в конструкциях из сталей одного легирования является отпуск. Если разнородные сварные соединения работают при высоких температурах, то отпуск необходим для сохранения размеров этих соединений. Поэтому перед окончательной механической обработкой изделие следует нагреть до температуры, превышающей рабочую на 100—200° С.  [c.155]

Наиболее эффективным методом снятия остаточных напряжений в отливках является отжиг (искусственное старение) по следующему режиму  [c.54]

Методы борьбы с холодными трещинами основываются на уменьшении степени подкалки металла, снятии остаточных напряжений, ограничении содержания водорода.  [c.44]

При экономической нецелесообразности применения дорогостоящих высоколегированных сталей используют малоуглеродистые низколегированные стали с припуском на коррозию иногда до 6—10 мм с учетом скорости проникновения коррозии и расчетного срока эксплуатации оборудования. Однако во избежание сероводородного растрескивания эти стали должны применяться при ограниченной твердости металла — не выше HR 22. Это ограничение накладывается и на металл сварного соединения. Кроме того, все сварные соединения должны быть подвергнуты послесварочной обработке. Наиболее распространенный метод снятия остаточных сварочных напряжений — термическая обработка сварного соединения (высокий отпуск). При этом очень существенны скорости нагрева и охлаждения, которые обязательно регламентируются для каждой из марок сталей. Так, для малоуглеродистых сталей типа стали 20 режим термической обработки следующий нагрев до температуры 893—933 К выдержка после прогрева 1 ч скорость нагрева 523—573 К/ч охлаждение до 573 К совместно с печью. И только для стыков диаметром менее 114 мм, имеющих толщину стенки менее 6 мм, режим может быть упрощен увеличением скорости нагрева до 873 К/ч, сокра-щение.м времени выдержки до 0,5 ч и нерегулируемым охлаждением.  [c.177]


Помимо тер.мообработки существуют в нашей стране методы снятия остаточных, сварочных напряжений при гидравлических испытаниях повышенным давлением и послесварочной взрывной обработкой. 100% сварных соединений установок подготовки газа подвергаются контролю просвечиванием рентгеновскими или гамма-лучами для обнаружения дефектов до обработки и снятия остаточных сварочных напряжений и 20%—с выборочным дублированием после обработки (в этом случае контроль допускается любыми физическими методами).  [c.177]

Основными параметрами качества поверхностного слоя деталей после механической обработки металлическим или абразивным инструментом является шероховатость поверхности, глубина и степень наклепа и технологические макронапряжения. Для определения степени влияния каждого из них в отдельности на характеристики усталости, в данной работе использован метод изотермических нагревов в вакууме образцов после заданных режимов механической обработки. Вакуум необходим для предохранения от окисления поверхностного слоя образцов при нагревах. Для этой цели образцы после механической обработки на заданных режимах разделены на три группы. Образцы первой группы испытывали на усталость непосредственно после механической обработки, образцы второй и третьей групп до испытания на усталость подвергали изотермическим нагревам в вакууме для снятия технологических макронапряжений (вторая группа) и для снятия поверхностного наклепа (третья группа). Относительную значимость каждого параметра качества поверхностного слоя в отдельности оценивали путем сравнения характеристик усталости образцов после термообработок для снятия остаточных напряжений, поверхностного наклепа и образцов, не подвергавшихся термической обработке.  [c.173]

Метод кольца [7] применяется для определения склонности материала к снятию остаточных напряжений путём отпуска. Сущность  [c.216]

Для получения кривой усталости при комнатной температуре испытывают 8—10 одинаковых по своей геометрии образцов 147]. Для сталей при 20° С требуется база не менее 10 циклов лучше 10 циклов. Особое внимание должно быть обращено на изготовление образцов. Образцы термически обрабатывают в специальных ваннах, обеспечивающих полное снятие остаточных напряжений и отсутствие окалины. Припуск на шлифовку не должен превышать 0,1 мм. ГОСТом 2860—65 предусмотрены методы усталостных испытаний гладких стандартных образцов и образцов с надрезом.  [c.442]

Сопоставление различных методов повышения усталостной прочности сварных соединений за счет снятия растягивающих и создания сжимающих остаточных напряжений показывает, что сварные соединения с растягивающими остаточными напряжениями имеют низкие пределы усталости. Снятие остаточных напряжений растяжения отпуском или создание в местах концентрации (усиление шва) сжимающих остаточных напряжений точечным нагревом, местным пластическим обжатием и т. п. повышает предел выносливости на 40—110% [47].  [c.19]

Применение стыковых швов предпочтительнее, так как они обладают невысокой концентрацией напряжений по сравнению с угловыми и, особенно, точечными швами. Циклическую прочность сварных соединений можно повышать также технологическими методами — проводить старение или отжиг (для снятия остаточных напряжений), удалять механической обработкой утолщение стыкового шва или придать вогнутость угловому шву, создавать наклеп (например, обдувом дроби). Эти мероприятия в сочетании с инструментальным контролем качества шва в значительной мере снижают концентрацию напряжений, а для стыковых швов она практически снимается.  [c.94]

Технологические методы, регулирующие остаточные напряжения. В связи с неблагоприятным влиянием сварочных растягивающих остаточных напряжений на усталостную прочность соединений во многих случаях возникает необходимость в снятии напряжений или хотя бы в уменьшении их неблагоприятного проявления. Для этого используют различные технологические приемы, целью которых является наведение в наиболее опасных местах соединений благоприятных сжимающих остаточных напряжений.  [c.222]

Сущность методов местного пластического деформирования сварного соединения после сварки для снятия остаточных напряжений и их перераспределения заключается в пластической осадке металла в зоне приложения нагрузки, что приводит к релаксации остаточных сварочных напряжений или вызывает напряжение сжатия. Существует несколько способов местного деформирования  [c.520]

Простейший, широко принятый в настоящее время в области физики полимеров способ определения таких характеристик основан на получении термомеханических и термооптических кривых. Последние получаются в результате измерения величины деформации и двойного лучепреломления под действием постоянной нагрузки на исследуемый образец в широком интервале температур. В области высокоэластичного состояния деформации устанавливаются не сразу и поэтому принимается определенный временной режим испытания. Знание этих кривых особенно важно при работе по методу замораживания и при выборе режимов отжига заготовок материала для снятия остаточных напряжений. Переход от стеклообразного к высокоэластичному состоянию занимает интервал температур, который может достичь нескольких десятков градусов. По ту и другую сторону от этого интервала деформация и двойное лучепреломление мало зависят от температуры. За температуру стеклования обычно  [c.193]


Первый метод вычисления остаточных напряжений, вызванных течением. В металлах, обладающих определенным пределом текучести, остаточные напряжения после разгрузки в первом приближении можно вычислить, исходя из предположения, что после пластического деформирования и последующего снятия нагрузки эти металлы ведут себя как идеально упругие тела. Пусть материал идеально пластичный примером  [c.517]

Термическая обработка наиболее целесообразна для снятия остаточных напряжений в мелких и средних отливках. Для крупных отливок этот метод не всегда применим, так как для нагрева отливок необходимы печи больших размеров. Термическая обработка заключается в медленном нагреве заготовок до 500—600° С, выдержке их при этой температуре в течение 1—6 ч (в зависимости от размера отливок) и последующем медленном охлаждении с печью до 150—200° С. Скорость нагрева должна быть небольшой (60—150°/ч), чтобы избежать большого перепада температур между толстыми и тонкими стенками отливки.  [c.127]

Эта оценка не должна применяться, когда ставятся совершенно другие цели, так как в таких случаях указанные рекомендации могут измениться. Например, для повышения стойкости сварных конструкций при работе их в агрессивных средах снятие остаточных напряжений является целесообразным. При этом более подходящим методом снятия напряжений в этом случае будет отжиг, а не растяжение, которое неизбежно вызывает пластические деформации, понижающие сопротивляемость коррозии.  [c.133]

В зарубежной практике для базовых деталей, находят применение легированные чугуны с присадками никеля, хрома, ванадия и некоторых других добавок. Для снятия остаточных напряжений во избежание коробления базовых чугунных деталей их необходимо подвергать старению. В станкостроении наибольшее распространение получили следующие методы старения.  [c.106]

Естественное старение является наиболее универсальным и надежным способом снятия остаточных напряжений, но связано с большими затратами на незавершенное производство. Кроме того, этот метод при обычной продолжительности естественного старения (6—12 месяцев) затягивает общие сроки создания новых станков.  [c.106]

Снять остаточные напряжения после предварительного шлифования заготовки можно высоким отпуском, а после ее окончательного шлифования — обкатыванием роликом, алмазным выглаживанием, обычным и виброконтактным полированием. При обработке этими методами на поверхности заготовки образуются сжимающие напряжения. Остаточные напряжения можно уменьшить также, применяя рациональную схему закрепления заготовки в приспособлении, при которой возможна деформация заготовки в наиболее выгодных направлениях. Регулирование остаточных напряжений в поверхностном слое является резервом повышения эксплуатационных свойств деталей машин. Кроме остаточных напряжений в поверхностном слое шлифованной детали образуется наклеп. Он возникает в результате больших градиентов температур и больших деформаций, приводящих поверхностные слои к упрочнению.  [c.130]

Как известно, в результате нер 1в номерного нагрева и охлаждения металла при сварке в сварном шве и околошовной зоне возникают остаточные напряжения, которые в ряде случаев отрицательно сказываются на работоспособности сосудов и других металлических конструкций. Все методы снятия остаточных напряжений условно ргаделяются на две группы, основанные на термическом и силовом воздействии.  [c.332]

Указанным критериям отвечает новый метод снятия остаточных напряжений физические основы которого можно сформулировать сле> дующим образом. Как показано при теоретическом исследовании, каждому кристаллическому материалу соответствует вполне определенный дискретный спектр собственных частот колебаний атомов в решетке. Последний определяется типом дислокаций, характерных для данной структуры твердого тела, и может быть, в принципе, рассчи> тан для любого материала. Если подвести к кристаллу анергию, равную величине Wi = hv,, (Wi — пороговый уровень энергии, h — постоянная Планка, — частота колебаний 1-моды в спектре), то эта энергия избирательно поглотится кристаллической решеткой, что приведет к резкому повышению амплитуды атомных колебаний i-моды.  [c.149]

Различные методы снятия остаточных напряжений по-разному влияют на прочность сварного соединения. Наиболее эффективный из них — высокий отпуск в течение одного часа при температуре 650°С [101]. Предварительный подогрев с варьированием температуры от 100 до 300°С не дает эффекта улучшения, как и последующий нагрев и выдержка в течение одного часа при 250°С. При местном нагреве сварных соединений до 650°С Р. Кеннеди [101] получил худщие результаты по сравнению с теми, что были найдены для соединений, не подвергавшихся этой операции.  [c.74]

Для предотвращения коррозионного растрескивания сварных соединений по месту шва наиболее распространенным методом является снятие остаточных напряжений термическим отжигом. Его рекомендуется проводить при текшера рах 620-700 °С (остаточное напряжение снимается практически полностью).  [c.130]

В сварочной лаборатории МВТУ им. Баумана разработан метод определения объемных остаточных напряжений в стыковых сварных соединениях большой толщины. Метод позволяет определять напряжения как в глубине сварного соединения (объемные напряжения), так и на его поверхности (двухосные напряжения). Сущность его состоит в следующем в сварном соединении большой толщины сверлят специальные ступенчатые отверстия, ориентированные по главным осям поля напряжений или под некоторым углом к ним. В эти отверстия помещают специальные цилиндрические вставки с наклеенными на их поверхность тензодатчиками сопротивления. Перед установкой в образец вставки тарируют на машине для испытаний на растяжение. Коме того, перед проведением измерения напряжений вставке сообщают определенный предварительный натяг, который дает возможность регистрировать его деформации обоих знаков. После установки вставки и снятия прибором показания соответствующего напряжения предварительного натяга из образца вырезают столбик с отверстием и вставкой. Затем снимают повторное показание прибора. Практика измерений показала, что оптимальными размерами вырезаемого столбика является размер АОХА мм. Увеличение этого размера ведет к увеличению степени осреднения искомого компонента напряжения, а его уменьшение — к усилению влияния отверстия на результат измерения деформации. По разности произведенных замеров определяют величину упругой деформации, вызванной снятием остаточных напряжений, и подсчитывают величину этих напряжений.  [c.215]

Тензометрирование, измерение перемеигений и метод лаковых покрытий при снятии остаточных напряжений с применением разрезки деталей рентгентензометрия без разрезки деталей. При лабораторных и стендовых испытаниях на натурных деталях и конструкциях  [c.488]

Шлицевые валы, изготовленные методом пластического деформирования, имеют ряд существенных преимуществ по сравнению с валами, полученными фрезерованием. Как показали наши исследования, зерна в поперечном сечении сильно вытянуты в радиальном направлении (особенно в углу перехода боковой стороны шлица к впадине). Во впадине шлицевого вала глубина наклепанного слоя достигает 1,5—2,1 мм, на боковой стороне наклепанный слой значительно мень-шйй —0,3—0,7 м,м. При накатке шлицев обнаружена значительная неравномерность деформации. В поперечном сечении вала наибольшей деформации металл подвергается в местах перехода боковой стороны шлица к впадине. Неравномерность деформации приводит в свою очередь к неравномерности наклепа и твердости по сечению вала. Увеличение дробности деформации (т. е. увеличение числа проходов накатки) увеличивает глубину наклепанного слоя, а также размельчает зерна, в результате чего увеличивается твердость металла. В местах перехода от шлица к виадине зерна, сильно вытянуты и завихрены. В этих местах возможно появление самых больших напряжении, поэтому после пластической деформации валы следует подвергнуть термообработке. Для снятия остаточных напряжений 1-го рода и сохранения наклепа можно рекомендовать низкотемпературный отжиг.  [c.159]


На фиг. 48 приведены результаты исследований Л. А. Гликмана и В. П. Тэхта [84] по определению режима термической обработки для снятия остаточных напряжений в деталях из аустенитной стали 1Х18Н9Т. Исследования проводились на дисках диаметром 170 мм, в которых методом закалки в воде создавались остаточные напряжения. В отличие от перлитных сталей в данном случае полное снятие остаточных напряжений наступает лишь при 800°.  [c.90]

Гораздо лучше использовать листы наибольшего размера (массой до 50 т), что позволяет избежать нахлестовых или крестообразных швов. Все листы необходимо контролировать неразрушающими методами, чтобы выявить продольные дефекты и избежать проведения испытаний образцов, вырезаемых из толщи листа. Сварка является наиболее ответственной операцией и выполняется или ручным дуговым способом, или с помощью автоматов с применением соответствующих электродов и основных без-водородистых флюсов. Не рекомендуется делать сразу корневые швы. Например, когда кромки сферической крышки сваривают вручную, может наблюдаться коробление и смещение кромок, в результате чего образуются выступы. В этом случае сварщик вынужден заполнять появившиеся полости серией швов как с одной, так и с другой стороны листа. Поэтому отдельные листы собирают и прихватывают вместе сваркой с использованием специальных прокладок процесс начинают с этих подготовленных участков с наружной стороны, а затем переходят на внутреннюю. Избыточный металл сварного шва позднее удаляют механическим стюсобом. Сложные, на всю толщину корпуса, сварные шйы делают для приварки патрубков, которые изготавливают из отдельных поковок. В настоящее время используют заранее подготовленные секции с вваренными патрубками. В этом случае сварные швы легче подвергнуть термической обработке для снятия внутренних напряжений. Все сварные швы накладывают параллельно кромке, что позволяет обеспечивать достаточное пространство для передвижения электрода. Неразрушающему контролю подвергают все сварные швы (100%) до и посл снятия остаточных напряжений. Вся внутренняя поверхность корпуса реактора PWR и нижние части реактора BWR, которые подвергаются воздействию воды, имеют покрытие из аустенитной стали. Внутренняя поверхность патрубков также имеет аустенитное покрытие, которое выходит на наружную поверхность патрубков, чтобы обеспечить соединение их с трубами из аустенитных сталей.  [c.165]

Для проверки погрешности измерения остаточных напряжений методом механической обработки столбиков были замерены остаточные напряжения в образце из стали 20ГСЛ, который был отожжен при температуре 880° С, что, по-видимому, должно привести практически к полному снятию остаточных напряжений.  [c.25]

Механическая обработка шва. Зачистка и снятие методами резания усиления шва способствует повышению усталостной прочности соединений вследствие снижения концентрации напряжений. Эффективным средством повышения сопротивления усталости стыковых соединений из низколегированной стали 15ХСНД и среднелегированных сталей 34ХМ, 40ХН и др. является сочетание механической зачистки шва и термической обработки (снятие остаточных напряжений и улучшение структуры металла околошовной зоны).  [c.116]

Снять остаточные напряжения после предварительного шлифования можно отжигом детали, а после ее окончательной обработки— виброконтактным полированием. Последнему методу свойственно образование на поверхности сжимающих напряжений. Величину остаточных напряжений можно уменьшить также, применяя рациональную схему закрепления детали в приспособлении, при которой возможна деформация детали в главных направлениях. Регулирование остаточных напряжений в ттоверхностном слое представляет собой большой резерв повышения эксплуатационных свойств деталей машин.  [c.191]

Корпусы и крупные детали приспособлений, полеченные литьем, с целью снятия остаточных напряжений, а те.м самым исключения их коробления, подвергают старению. Термическую обработку чугунных отливок можно осуществить низкотемпературным отжигом U естественным старением на открытоь воздухе, вибра-циоины . старением методом статической перегрузки, созданием временных температурных напряжений (термоударов). Для корпусов нормальной точности достаточно применение низкотемпературного oTjKnra, который снижает напряжения до 60—80% в результате быстрой релаксации их в условиях весьма существенного повышения пластических свойств материала отливки при нагреве ее до 500—600 С. В результате механической обработки после напряжения в отливке изменяется, вновь вызывая коробление детали.  [c.63]

Интересно указать, что при смещении датчиков от границы наплавленного металла в переходную зону на 5 мм выше наплавленного металла последние отмечают деформацию в 2—3 раза меньшую, чем в металле шва, что свидетельствует о значительной чувствительности и возможности обнаружения (методом электротензометрии концентрации напряжений и о значительном их градиенте. Датчики, установленные на расстоянии 560 мм от сварного шва, как и следовало ожидать, обнаруживают весьма незначительную деформацию и соответственно величину остаточных напряжений, достигающих лишь 3,5 кГ1мм , что также подтверждает надежность примененного метода. После полуторагодичного вылеживания и многократной транспортировки конструкций остаточные напряжения не снизились. Отпуск, как и следовало ожидать, приводит практически к полному снятию остаточных напряжений.  [c.186]

Из приведенной формулы вытекают первые три метода снижения технологических остаточных деформаций маложестких деталей. Существующие технологические процессы, как правило, включают в себя операции для снижения уровня остаточных напряжений в заготовке до минимально возможного, обеспечив требуемые свойства металла. Наиболее распространенным методом снижения остаточных напряжений является термообработка. Значительно реже используется виброобработка, многократный упр>то-пластический изгиб или пластическое растяжение. Однако, исходя из условий бездеформационной обработки с учетом влияния остаточные деформации последующей обработки, полное снятие остаточных напряжений в заготовке в большинстве случаев нецелесообразно. Оно имеет смысл только тогда, когда последующая обработка не вносит в поверхностный слой существенных начальных напряжений, что характерно, например, для электрохимической обработки (ЭХО). В других случаях минимальные технологические остаточные деформации при двухсторонней обработке будут обеспечиваться тогда, когда наиболее близко будет соблюдаться условие равенства суммарных изгибающих моментов на противоположных сторонах обрабатываемой детали.  [c.825]


Смотреть страницы где упоминается термин Методы снятия остаточных напряжений : [c.148]    [c.149]    [c.76]    [c.288]    [c.423]   
Смотреть главы в:

Материалы в машиностроении Выбор и применение Том 2  -> Методы снятия остаточных напряжений



ПОИСК



В остаточное

Метод напряжений

Напряжение остаточное

Напряжения Снятие — Методы

Напряжения снятие

Снятие тяг



© 2025 Mash-xxl.info Реклама на сайте