Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поверхности — Сопряжение X. 588 — Состояние

На поверхности X конуса Маха сопрягаются два решения волнового уравнения, соответствующие состоянию покоя, ф= о, и состоянию возмущенного движения, ф = ср (т , у, 2, t). Подобные поверхности сопряжения решений с различными аналитическими свойствами называются характеристическими поверхностями уравнений с частными производными. Характеристическая поверхность — конус Маха является в общем случае поверхностью разрыва возмущений в рамках рассматриваемой теории эта поверхность будет поверхностью, на которой разрывы скорости, давления и других величин невелики. В пределе такие поверхности соответствуют слабым разрывам, на которых искомые функции непрерывны, но их производные по координатам вообще терпят разрыв. Очевидно, что скорость распространения поверхности характеристического конуса по неподвижной среде, нормальная к его поверхности, точно равна скорости звука.  [c.220]


Эпюра давлений на поверхности трения зависит от законов изнашивания. Если начальная эпюра давлений (в статическом состоянии или в период приработки) имела другой характер, то при изнашивании произойдет ее перераспределение в соответствии с полученными закономерностями. Поэтому эпюра давлений непосредственно не определяет процесса изнашивания поверхности сопряжений, так как сама является функцией законов изнашивания.  [c.285]

Площадки упорные 3. 240 Поверхности Сопряжение 1. 588 — Состояние 1. 305 --игольчатые 1. 376  [c.346]

Стабильность трения во времени при тяжелых условиях эксплуатации прибора (вибрация, вакуум, ударные перегрузки и т. д.) определяется стабильностью условий контактирования, состоянием поверхности сопряженных деталей и состоянием смазочного материала.  [c.95]

Разборка узла нарушает приработку поверхностей сопряженных деталей, и во время последующей эксплуатации увеличивается их износ. Колодка, пята и детали радиального подшипника могут работать длительное время без переборки, если не нарушается их приработка. В тех случаях, когда для выявления причин неисправности неизбежна частичная или полная разборка подшипника, рекомендуется тщательно проверять состояние всех разобранных деталей и степень их износа. После каждой переборки узла рабочие поверхности колодок целесообразно пришабривать с целью удаления задиров и рисок.  [c.125]

Р — коэффициент, характеризующий состояние поверхности сопряжения (для шлифованных и шаброванных поверхностей р=1,0).  [c.117]

Это явление было названо электродинамическим фактором изнашивания. Для его экспериментального изучения использовались различные сопряжения машин игольчатые подшипники карданных передач, шлицевые соединения и др. Их подвергали динамическому нагружению на стенде, причем амплитудно-частотные характеристики динамических нагрузок соответствовали их реальным эксплуатационным значениям. Измеряли амплитуду и скорость изменения потока, магнитной индукции в сопряжении, электрические потенциалы на поверхностях сопряженных деталей, контролировали состояние поверхностей, электрическое сопротивление между контактирующими деталями, их температуру (среднюю и в стыке), оценивали возможность появления электрических разрядов в зоне контакта сопряжен-  [c.115]

Провести контроль технического состояния деталей и, если необходимо, контрольные замеры базовых поверхностей. На картерах коробки передач и сцепления не должно быть трещин, сколов, а на поверхностях расточек для подшипников — износа или повреждений. На поверхностях сопряжения картеров сцепления и коробки передач не должно быть повреждений, которые могут привести к несоосности валов и потере герметичности прокладок. При проверке сальников необходимо убедиться, что на рабочих кромках нет неровностей и большого износа. Износ рабочей кромки сальника по ширине допускается не более 1 мм. Даже при незначительном повреждении сальник необходимо заменить. Все уплотнительные прокладки рекомендуется заменять новыми.  [c.231]


На рис. 49 показан разрезной твердосплавный резец, который использовали для исследования его теплового состояния при продольном точении стали 40Х НВ 220). Резец состоит из двух составных частей 1 п 2 с отверстиями, причем разъем резца проводили в плоскости, нормальной к режущей кромке, в пределах контактных площадок передней 4 и задней 5 поверхностей. Сопряжение частей резца осуществляли по поверхностям 3.  [c.109]

Сформулируем соответствующие термоупругие граничные условия на поверхности сопряжения пластинки и включения. Для определения напряженно-деформированного состояния включения имеем соотношения для усилий, моментов, перерезывающих сил уравнения для радиального перемещения и и прогиба ш и краевые условия [4]  [c.104]

Модели изготовляют двумя способами. Их или склеивают из элементов, изготовленных из разных материалов [1, 7, 8, 16, 30], а также [21, с. 24—35, 67—78] или отливают в форму, в которую вставлены армирующие элементы [22, 25, а также 21, с. 92—115]. В склеиваемых моделях отсутствуют начальные напряжения. Поверхности сопряжения элементов модели тщательно подгоняются друг к другу, чтобы избежать на поверхности склейки напряженного состояния, затрудняющего определение напряжений на самой поверхности сопряжения. В отливаемых моделях такие возмущения отсутствуют, но при охлаждении в них возникают остаточные оптические эффекты, усложняющие расшифровку картины полос интерференции. Эти остаточные эффекты исключают путем проведения измерений два раза до и после приложения нагрузки [21, с. 108—115] или при двух разных уровнях нагрузки [21, с. 92—107] с последующим вычитанием полученных результатов. 286  [c.286]

Слив масло из корпусов насоса и регулятора, их полости тщательно промывают чистым дизельным топливом. Проверяют состояние трущихся поверхностей сопряженных деталей. Полный ход рейки должен быть не менее 25 мм, и на всей длине хода рейка должна перемешаться плавно. Рычаг регулятора и скоба кулисы должны действовать свободно.  [c.50]

Точки поверхности соответствуют наличию двух чисто мнимых сопряженных корней i o, точки Л о — одного нулевого. Поверхность нулевых корней yVo совпадает с поверхностью (7.15), определяющей границу области существования особой точки X (ц). Внутри каждой области, ограничиваемой поверхностями yv,,, и Л/ , состояние равновесия зависит от параметров (х непрерывно и имеет один и тот же тип, определяемый числами р и < .  [c.252]

Чтобы оценка относилась к материалам трущихся сопряжений, в исходном контролируемом состоянии экспериментальное определение f стремятся осуществлять в условиях однородного по поверхности трения контакта (равномерное на макроуровне распределение давления), при постоянных расчетной площади поверхности трения, скорости скольжения (не приводящей к ощутимому нагреву), некоторых характерных значениях давления (например, при давлении, равном твердости или определенной доли твердости).  [c.125]

Современное состояние теории зубчатого зацепления. Основы теории зубчатого зацепления были заложены в трудах Оливье и X. И. Гохмана . Но практическое развитие этой теории началось лишь с того времени, когда зубчатые колеса стали объектом массового производства и возникла необходимость в создании и усовершенствовании станков для нарезания зубьев. Основную работу по созданию достаточно полной теории зацепления выполнили Н. И. Колчин и В. А. Гавриленко 2. Установление ОСНОВНЫХ ЗаКОНОВ образования СОПрЯЖеННЫХ поверхностей и определение их характеристик позволило перейти к разработке новых видов зацепления, более приспособленных к современным и быстроходным машинам. В качестве примера можно указать на передачи Новикова. Кроме того, совершенствуются методы нарезания зубьев с целью создания высокопроизводительных станков. В последние годы особое внимание уделяется проектированию таких передач, которые имели бы малый износ зубьев и по возможности были бы бесшумные. Наибольшие успехи в этом направлении достигнуты при создании конических и гипоидных колес с круговыми зубьями.  [c.204]


МА на износ сопряжения палец — втулка верхней головки шатуна. По оси абсцисс — средний износ в процентах к среднему износу пальца с чистотой обработки по VIO. Цифрами обозначено время испытаний в часах. Из результатов испытаний следует, что с увеличением первоначальной шероховатости поршневого пальца значительно увеличивается износ самого пальца и втулки верхней головки шатуна. При чистоте обработки поверхности пальца по VIO износ сопряженных деталей минимальный. Дальнейшее улучшение поверхности приводит к некоторому увеличению износа деталей сопряжения. Аналогичные результаты получены и для пары гильза цилиндра — кольцо. После 367 час испытания в полевых условиях оптимальной для гильзы цилиндра явилась чистота V9 — VIO. С ухудшением и улучшением первоначальной чистоты обработки по отношению к оптимальной увеличивался как износ гильз цилиндров, так и средний износ поршневых колец. После 367 час испытания микрогеометрия всех цилиндров, независимо от первоначального их состояния, устанавливалась постоянной и соответствовала V9(6).  [c.16]

В процессе трения и изнашивания деталей машин микрогеометрия контактирующих поверхностей претерпевает значительные изменения. При этом наибольшие изменения претерпевает более мягкая из сопряженных поверхностей ее шероховатость в процессе приработки изменяется в сторону приближения к шероховатости твердого контртела до тех пор, пока не наступит некоторое равновесное состояние, характерное для данных условий трения [95].  [c.50]

Натурные детали в большинстве случаев существенно отличаются от образцов, изготовленных из того же материала, по эпюре остаточных напряжений, градиенту изменения механических свойств по сечению, структуре в связи с различными скоростями охлаждения при закалке, текстуре волокнистой структуры, состоянию поверхности, концентрации напряжений в зоне сопряжения различных сечений.  [c.211]

Трение почти всегда сопровождается износом, постепенно подводящим механическую систему к состоянию непригодности. Из трех причин, которые, по мнению автора [3], приводят служащие человеку предметы к потере их полезных свойств,— устаревание, разрушение и износ — последний является наиболее опасным для различного рода механических систем, занимающих все большее место в жизни современного человеческого общества. Например, автомобиль может устареть, разбиться в результате аварии, но наиболее распространенная причина его непригодности—износ сопряженных сочленений. Потери, связанные с износом, невосполнимы и исчисляются огромными суммами. Только в Англии, например, убытки от износа составляют более чем 700 млн. фунтов стерлингов в год [4]. Практика эксплуатации механического оборудования в нашей стране показывает, что большая часть теряет свою работоспособность не вследствие поломок, а в результате износа поверхностей отдельных деталей, 60—70% автомобильных двигателей поступает в ремонт из-за износа подшипников, валов и т. д. На ремонт парка экскаваторов ежегодно расходуется средстве 1,3 раза больше, чем на производство новых экскаваторов [5]. Износ сопряженных сочленений — один из существенных каналов утечки материальных и энергетических ресурсов, поэтому разработке эффективных методов борьбы с ним в последнее время уделяется огромное внимание.  [c.5]

Автомобили эксплуатировались на дорогах с асфальтобетонным и булыжным покрытием. Промежуточные вскрытия и осмотры ступиц колес автомобилей в плановом порядке проводили после пробега 12 ООО км лишь выборочно на отдельных автомобилях. Перед началом и в конце зимней и летней эксплуатации вскрывали и осматривали ступицы колес, производили тщательный осмотр и замер рабочих поверхностей трения. Частые вскрытия ступиц колес нарушают техническое состояние сопряженных деталей и, следовательно, оказывают влияние на последующую работу соединений и результаты испытаний. Поэтому при эксплуатационных испытаниях автомобилей техническое состояние узлов ходовой части определяли минимальной разборкой. За весь период эксплуатации число вскрытий узлов составило в среднем 5—7 на один автомобиль. Для качественного контроля состояния узлов трения, эксплуатирующихся с МПС (правая ступица) и консистентными смазками (левая ступица), применяли метод непрерывной записи исследуемых процессов осциллографами. Приборы для непрерывной записи процессов были смонтированы на двух контрольных автомобилях. Результаты осмотров при выборочных вскрытиях узлов ходовой части автомобилей сравнивались с записями на ленте осциллографа контрольных автомобилей.  [c.84]

Важным качеством образцов, оснащенных бронзовыми вставками, является существенное влияние на износ и состояние поверхности образцов цилиндровых втулок. Применение бронзовых вставок снижает износ и шероховатость сопряженной поверхности. Исследование поверхностей чугунных образцов цилиндровых втулок и поршневых колец, имеющих вставки, показывает, что тонкие поверхностные слои содержат значительное количество меди. Наличие меди на поверхностях трения выявлено микро-исследованием и методом экзоэлектронной эмиссии. Это дает основание утверждать, что снижение износа происходит в результате проявления эффекта ИП.  [c.169]

Выглаживание и обдувка дробью являются методами обработки давлением в холодном состоянии и относятся к области упрочняющей технологии. Эти методы обработки уплотняют поверхностный слой, благодаря чему увеличивается сопротивление детали переменным нагрузкам, а также увеличивается сопротивление износу трущихся поверхностей сопряженйых пар.  [c.205]

Эти передачи обычно начинают собирать с узла червячного колеса, т. е. при отдельно выполненных зубчатых венцах (рис. 413) — со сборки венца со ступицей. Венец напрессовывают с помощью пресса или в приспособлении на ступицу (рис. 413, а) в холодном, чаще в подогретом состоянии до упора в бурт 1. Затем сверлят отверстия и нарезают в них резьбу для стопоров, ввертывают стопоры с последующим раскерниванием их. При сверлении отверстий под стопоры оси их смещают на 1—2 мм к оси колеса относительно поверхности сопряжения, с тем чтобы исключить увод сверла. Стопор в виде винта под ключ (рис. 413, б) более рационален, так как затяжка его надежнее. Посадку в сопряжении венца со ступицей выбирают такой, чтобы при насаживании венец не деформировался (обычно Г или П ). После этого колесо проверяют на биение венца в центрах на оправке.  [c.454]


Вырезанный кусок пасты смачивается посредством тампона ацетоном по поверхности, подлежащей сопряжению с подготовленной под заклейку металлической поверхностью, для подрастворения пасты и выдерживается до образования на поверхности отлипного состояния пленки.  [c.25]

Данный метод может быть применен и для напрессовки охватывающей детали на вал. При этом в конструкцию соединения (фиг. 177) вводят промежуточную коническую втулкупредварительно насаживаемую на шейку вала 2 в горячем состоянии. При нагнетании масла в отверстие детали 3 усилие запрессовки, осуществляемое затяжкой гайки 4, уменьшается в 10—12 раз. Конусность втулки принимают равной 1 25. Поверхности сопряжения должны быть шлифованы или обработаны тонким точением.  [c.228]

В соответствии с ГОСТ 2789—73 основными параметрами для оценки шероховатости поверхностей являются Яа — среднее арифметическое отклонение профиля на базовой длине / / тах — наибольшая высота неровностей профиля Яг — высота неровностей профиля по десяти точкам 5 — средний шаг неровностей по вершинам. Номинальное числовое значение параметра шероховатости 1Ш чертежах указывается в соотв.етствии с требованиями ГОСТ 2.309—73 . Шероховатость поверхностей сопряженных деталей влияет на выбор их посадок, герметичность и себестоимость изготовления. Поэтому в каждом конкрет-1юм случае параметры и характеристики шероховатости следует выбирать в соответствии с назначением этих деталей. Состояние поверхности после обработки оказывает большое влияние ка эксплуатационные свойства деталей. Возникающие при механической обработке трещины и задиры с возможными остаточными напряжениями способствуют развитию усталостных трещин и коррозии, снижают контактную и объемную прочность деталей.  [c.42]

В технической диагностике используются понятия структурного и диагностического параметров. Структурный параметр — это характеристика (мера) технического состояния детали или узла двигателя (размер, форма, чистота поверхности, сопряжение деталей и т. д.). Диагностический параметр — это косвс1 ное проявление структурного параметра. В двигателе диагностическими параметрами могут служить параметры различных процессов (мощность, давление, температура деталей и газов, уровень шума и вибрации, состав выпускных газов и т. п.).  [c.208]

Принятые обозначения и г размеры поверхности сопряжения р расстояние от точки поверхности до осн вращения / 1 и Кг — коэффициенты, характеризующие износостойкость материала первой и второй детали в зависимости от смазкн, состояния поверхности и т. п. п — частота вращения, мин t — время работы показатель степени скорости изнашивания т — пока-йатель степени давления (в зависимости от условий работы 1 < т < 3, для приработанных поверхностей т 1) VI- — скорость изнашивания сопряжения а — угол между нормалью к поверхности трения и направлением возможного сближения деталей у — абсцисса точки поверхности и осг — координаты дуги контакта шаровой поверхности.  [c.44]

Обозначения состояния формы. Размеры, определяющие форму и положение всех рабочих сопряженных и присоединительных поверхностей, должны иметь предельные отклонения (допуски и посадки), зависящие от функции каждой поверхности. Также должна бьпь указана пюроховатость поверх-гюстей.  [c.225]

С ростом количества вещества в капле ее химический псГтенци-ал уменьшается, а в фазе с плоской границей (г = оо) он не изменяется. Поэтому в отличие от испарения капли при испарении индивидуальной жидкости с плоской поверхности единственным результатом процесса является изменение масс фаз состояние системы меняется, а состояние фаз нет. И в общем случае при нейтральных равновесиях термодинамические силы в каждой из фаз не зависят от сопряженных с ними термодинамических координат.  [c.120]

При этом режим в первом канале не будет нарушен и его глубина ко сохранится на всем верховом участке. Поток вступит на низовой участок в бурном состоянии. Так как уклон второю участка го2<Фь то скорость потока начнет уменьшаться, а глубина возрастать. В связи с этим удельная энергия потока будет у.меяьшаться вниз по течению,. а свободная поверхность примет форму кривой по,дпора типа Сь Глубина будет увеличиваться Еипз по течению до тех пор, пока не станет равной /гфг, сопряженной с глубиной Ао2. в этом сечении закончится кривая подпора и образуется прыжок, у которого вторая сопряженная глубина к" = 1цч.  [c.235]

Полным решением задачи теории идеальной пластичности называется такое решение, которое удовлетворяет уравнениям равновесия, условию пластичности в пластических областях, где напряжения и скорости деформирования связаны ассоциированным законом, и граничным условием, статическим и кинематическим. При этом должно выполняться еще одно условие, относящееся к возможному распределению напряжений в жестких зонах. По доказанному в жесткой зоне может существовать любое напряженное состояние, удовлетворяющее условиям равновесия, граничным условиям и условиям сопряжения с пластическими законами. Необходимо, чтобы напряженное состояние, возможное в жесткой зоне, удовлетворяло условию /"(ооО О, т, е. было допустимым для жесткопластического тела. При этом достаточно, чтобы можно было найти хотя бы одно точное раснределение напряжений. В отношении распределения скоростей и конфигурации жестких зон полное решение не единственно, однако из теоремы о единственности распределения напряжений следует единственность предельной нагрузки, переводящей тело в пластическое состояние, если условие пластичности строго выпукло. Если поверхность текучести только не вогнута, то предельная нагрузка определяется неединственным образом как правило, природа этой неединственности находит простое объяснение.  [c.490]

Влияние вида трения на условия взаимодействия микровысту-пов сопряженных поверхностей схематично показано на рис. 77. При жидкостном трении каждый участок поверхности нагружен постоянным давлением, не изменяющимся при относительном перемещении поверхностей, т. е. статической нагрузкой. Эта нагрузка не в состоянии разрушить микровыступы, так как возникающие напряжения находятся в области больших запасов прочности. -,t  [c.248]

Аналогичные результаты получены при исследовании влияния шероховатости металлических поверхностей на трение и изнашивание П. Т. Ф. Е. (тефлона) [136]. Показано, что состояние поверхности образцов из тефлона практически не оказывает влияния на коэффициент трения, поскольку тефлон быстро прирабатывается к сопряженному металлическому образцу. Зависимость коэффициента трения и величины весового износа тефлона от шероховатости металлических поверхностей имеет минимум, причем для обеих зависимостей положение минимума соответствует оптимальному значению параметра в пределах от 0,2 до 4 мкм (удельное давление 300 кг1см , скорость 1 м1сек). Таким образом, для пар металл — полимер так же, как для пар металл — металл, зависимость коэффициента трения и интенсивности изнашивания от степени шероховатости металлического контртела имеет минимум в некотором диапазоне изменения степени шероховатости.  [c.9]


В работе [83], наоборот, совсем не учитывается кристаллизационное перенапряжение при оценке электродного потенциала деформированного медного электрода в водном растворе USO4. При этом утверждается, что деформированный металл (медь), погруженный в раствор собственных ионов, никогда не принимает обратимого потенциала. Предполагается, что в прямой анодной полуреакции растворения участвует деформированный металл, а в сопряженной обратной катодной полуреакции осаждения — равновесный электровосстановленный (т. е. недеформированный металл). В результате между ними устанавливается не обратимый, а смешанный потенциал, хотя баланс массопереноса сохраняется. Такое предположение находится в прямом противоречии с известными экспериментальными данными о катодном выделении меди на поверхности медных усов [84], свидетельствующими о большом кристаллизационном перенапряжении (до 100 мВ). При этом анодное растворение кристаллов меди происходило в определенных слабых местах, на которых затем обратно осаждался металл при последующем включении катодной поляризации, тогда как на остальной поверхности выделения металла не происходило. Возвращение ад-атома в кристаллическую решетку при катодном процессе, связанное с преодолением кристаллизационного перенапряжения, переводит атом в первоначальное состояние напряженного металла, и элементарный акт растворения — восстановления является обратным при соответствующем равновесном потенциале.  [c.92]

Поскольку процесс взаимного контактирования микронеровностей двух сопряженных поверхностей носит случайный характер, выявление определенных закономерностей, связанных с изменением состояния поверхностного слоя в процессе фрикционно-контактного воздействия, возможно лишь при обработке достаточного количества экспериментальных данных. Так, было установлено, что частичная релаксация микронапряжений происходит после некоторого (отличного от единицы) числа воздействий, что является подтверждением усталостной природы процесса в смысле необходимости многократного воздействия для нарушения сплошности исследуемого материала — образования микротрещин. Таким образом, среднее для каждой нагрузки расстояние между минимальными значениями ширины линии (220) a-Fe является числом циклов до разрушения по критерию образования микротрещин. Число циклов до разрушения существенно зависит от внешних условий трения. С увеличением нагрузки на иБдентор оно уменьшается (рис. 29).  [c.54]

Иш-ибирование сред заключается во введении в них веществ, тормозящих коррозионное разрушение металлов. Ингибиторами называются вещества, которые при растворении в жидкой (или газообразной) агрессивной среде способны адсорбироваться из нее на поверхности металлов и снижать скорость их коррозии. Иш ибиторы могут существенно снижать скорость коррозии металлов, иногда даже в несколько сот раз. Большинство ингибиторов — это вещества смешанного типа, т. е., адсорбируясь на поверхности металла, они тормозят как анодный, так и катодный сопряженный процессы. Пассивирующие ингибиторы способствуют образованию на поверхности металла защитной 1шен-кн и переводу его в пассивное состояние [1,3].  [c.107]

Влияние поперечного стеснения на напряженное состояние плоской композитной модели рассматривалось в ряде работ [105, 107, 126, 127]. В работе [107] величина этого эффекта, названного пинчинг-эффектом , оценивалась как разница напряжений на поверхности скрепления при трехмерном и плоском напряженных состояниях. Из условий контакта двух сопряженных пластин следует  [c.31]


Смотреть страницы где упоминается термин Поверхности — Сопряжение X. 588 — Состояние : [c.65]    [c.38]    [c.10]    [c.411]    [c.506]    [c.467]    [c.13]    [c.28]    [c.45]    [c.69]    [c.272]   
Основы конструирования Справочно-методическое пособие Кн.3 Изд.2 (1977) -- [ c.305 ]



ПОИСК



Поверхность состояние

Сопряжение

Сопряжение поверхностей



© 2025 Mash-xxl.info Реклама на сайте