Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные понятия о напряжениях

Основные понятия о напряженном состоянии  [c.314]

Основные понятия о напряжениях и запасах прочности  [c.16]

ОСНОВНЫЕ ПОНЯТИЯ О НАПРЯЖЕНИЯХ  [c.29]

ОСНОВНЫЕ ПОНЯТИЯ о НАПРЯЖЕНИЯХ  [c.26]

Некоторые авторы в числе основных допущений излагают гипотезу Бернулли и даже принцип Сен-Венана. Видимо, это не имеет смысла. Первое из этих допущений следует впервые дать при определении нормальных напряжений при растяжении, с тем чтобы оно сразу же было использовано. Второе — на этой стадии изучения предмета вообще давать преждевременно, так как у учащихся еще нет понятия о напряжениях.  [c.54]


Надо заметить, что ранее в программе вопросы напряженного состояния были даны отдельной темой, изучавшейся непосредственно после темы Растяжение и сжатие . Конечно, более тесное объединение вопросов напряженного состояния с гипотезами прочности вполне логично и целесообразно. Во-первых, учащиеся к моменту изучения гипотез прочности уже лучше чувствуют идеи и методы предмета, их уровень развития становится выше, они могут лучше понять и усвоить сравнительно сложный материал о напряженном состоянии. Во-вторых, излагая гипотезы прочности после того, как основы теории напряженного состояния были изучены, неизбежно приходится вновь повторять основные сведения и понятия о напряженном состоянии, что приводит к непроизводительной затрате времени и, несомненно, ухудшает восприятие нового материала о гипотезах прочности. В-третьих, при такой системе изложения получается постепенное наслоение знаний о напряженном состоянии в самом начале учащемуся говорят о том, что напряжение зависит от положения площадки действия, затем его знакомят с напряженным состоянием при растяжении (сжатии), потом он изучает чистый сдвиг, наконец, непосредственно перед гипотезами прочности он получает достаточно полные и систематизированные сведения о напряженном состоянии.  [c.150]

Основные понятия о переменных напряжениях.  [c.170]

Основные понятия о влиянии переменных напряжений на прочность материала  [c.533]

В настоящей книге изложены основные понятия о характеристиках сопротивления усталости, методах их определения, факторах, влияющих на сопротивление усталости и традиционных детерминистических методах расчета на усталость по коэффициентам запаса прочности приведены методы статистической интерпретации случайной переменной нагруженности деталей и вероятностные методы расчета их на усталость. Эти методы касаются расчетов ресурса до появления первой макроскопической трещины усталости в тех деталях, которые испытывают за срок службы суммарное число циклов повторения амплитуд напряжений Л сум > Ю Циклов, т. е. расчетов на многоцикловую усталость. Даны примеры, поясняющие использование изложенных методов расчета.  [c.6]

Главное, что будет излагаться в этой книге, по существу, состоит из трех основных частей 1) основные понятия о перемещениях, внутренних напряжениях, деформациях и работе внутренних сил, а также о процессе нагружения малого элемента твердого тела 2) основные механические свойства твердых тел, такие, как упругость и идеальная пластичность, текучесть, ползучесть и релаксация, вязкость и динамическое сопротивление, усталость и разрушение 3) основные кинематические и геометрические гипотезы, упрощающие математическую постановку задач о напряжениях, деформациях, перемещениях и разрушениях твердых тел при различных внешних воздействиях, а также основные уравнения и методы решения задач о деформации и прочности тел. Методы сопротивления материалов отличаются от более строгих методов теории упругости и пластичности в основном введением ряда упрощающих предположений кинематического и геометрического характера и, тем не менее, в большинстве случаев оказываются достаточно точными.  [c.12]


В 2.6 были даны первичные понятия о напряженном состоянии в точке деформируемого тела и проведено исследование напряженного состояния для точек растянутого (сжатого) бруса. Здесь, не приводя пока никаких доказательств, рассмотрим основные положения общей теории напряженного состояния. Напомним, что напряженное состояние в данной точке тела характеризуется совокупностью нормальных и касательных напряжений, возникающих на всем бесчисленном множестве различно ориентированных в пространстве площадок, которые можно провести через эту точку.  [c.114]

Понятие о напряжении поверхностной силы является основным при определении силового воздействия среды на тело. В самом деле, силы воздействия жидкой среды на твердое тело суть силы поверхностные и подобно силам, действующим на жидкий объем, могут быть охарактеризованы своими напряжениями. Разница здесь состоит лишь в том, что кроме факторов, от которых зависит напряжение поверхностной силы для площадки  [c.30]

Основная задача определения силового взаимодействия между средой и находящимся в ней твердым телом приводится, таким образом, к определению напряжений поверхностной аэродинамической силы. Знание этих напряжений в точках на поверхности летательного аппарата необходимо как для расчета конструкции па прочность, так и для определения результирующих сил и моментов, к которым приводится воздействие среды. Отсюда ясно, что понятие о напряжении поверхностной силы относится к числу важнейших понятий аэродинамики.  [c.30]

Электродвижущая сила в проводнике, вращающемся в магнитом поле. Основные понятия о переменном токе. Понятие о периоде и частоте. Эффективный ток и эффективное напряжение. Самоиндукция и емкость в цепи переменного тока. Понятие о фазе. Трехфазный ток. Соединение звездой и треугольником. Мощность трехфазного тока.  [c.507]

При изложении явлений поляризации предполагается, что основные понятия о поляризации света известны читателю из курса общей физики. Однако для однозначности понимания явлений напомним некоторые общеизвестные понятия и определения. Плоскостью поляризации называется плоскость, которая проходит через направление распространения луча и плоскость колебания электрического вектора напряженности электромагнитного поля.  [c.194]

Основные понятия о социалистической организации производства. Организация производства капиталистических предприятий служит интересам капиталистов. Она направлена на разработку таких методов производства, которые повышают напряженность труда рабочих и увеличивают прибыли предпринимателей. Все мероприятия по организации производства разрабатываются без участия рабочих и направлены против их интересов. Показателем экономической выгодности новых методов организации производства, внедрения новой техники и т. д. является увеличение прибыли капиталиста. Таким образом, организация производства при капитализме преследует только интересы предпринимателей, базируется на выдуманных экономических законах , ничего общ,его не имеющих с объективными экономическими законами.  [c.269]

Сила. Понятие о силе в элементарной статике является основным. Известно, что сила, действуя на материальную точку, сообщает ей ускорение, направленное по силе поэтому действие силы на точку зависит 1) от направления силы и 2) от напряжения (численного значения или модуля) силы.  [c.184]

Первые две главы посвящены выводу основных уравнений теории упругости для пространственной и плоской задач. В качестве приложения плоской задачи приводится расчет толстостенных цилиндров с днищем от внутреннего и внешнего давления и вращающихся дисков. Исследуются напряжения при действии силы на острие клина и полуплоскость. В пособии рассматриваются контактные напряжения и деформации при сжатии сферических и цилиндрических тел, дан расчет тонких пластин и цилиндрических оболочек, рассматривается кручение стержней прямоугольного, круглого постоянного и переменного сечений, дается понятие о задачах термоупругости, приводятся расчет цилиндров и дисков на изменение температуры, общие уравнения теории пластичности, рассматривается плоская задача, приводятся примеры.  [c.3]


Циклы переменных напряжений. В изложении, точнее в усвоении, этого по существу несложного вопроса есть одна тру,ц-ность, свойственная всей рассматриваемой теме — обилие новых терминов и определений, которые подлежат усвоению и запоминанию. Подчеркнем, что все термины, обозначения и определения, даваемые преподавателем, должны соответствовать ГОСТ 23207—78 Сопротивление усталости. Основные термины, определения, обозначения . Естественно, говоря о запоминании определений, мы не имеем в виду текстуальное запоминание важно, чтобы учащиеся усвоили смысл этих понятий (циклы напряжений, максимальное, минимальное, среднее и амплитудное напряжения цикла, коэффициент асимметрии цикла) и могли своими словами, не искажая смысла данного понятия, дать его определение.  [c.171]

Важнейшие и основные из них—это понятия о деформации и напряжении. В теоретической механике твердые тела условно рассматриваются как абсолютно твердые, т. е. совершенно не изменяюш,ие своей формы под действием приложенных к ним сил. Однако из опыта известно, что все твердые тела под действием приложенных к ним сил деформируются.  [c.10]

Так, более подробно разобраны понятия тензоров напряжений и деформаций и их разложение на шаровой тензор и девиатор, добавлен закон Гука в тензорной форме. В новой, V главе рассматриваются простейшие задачи теории упругости чистый изгиб прямого призматического стержня и кручение круглого стержня постоянного сечения. В главе VI добавлен расчет балки-стенки. Далее добавлены следую-ш,ие параграфы Понятие о действии сосредоточенной силы на упругое полупространство , Понятие о расчете гибких пластинок , Понятие о расчете гибких пологих оболочек . Переработан раздел о математическом аппарате теории пластичности, добавлено понятие о теории пластического течения, дано понятие о несущей способности балок и плит на основе модели жесткопластического материала. Вновь написаны главы ХП1 и XIV об основных- зависимостях теории ползучести и даны простейшие задачи теории ползучести.  [c.3]

В механике в качестве основного объекта исследования внутренних напряжений и деформаций тела берется малый его объем такой, что практически он содержит очень много атомов и даже много зерен, но в математическом отношении он предполагается бесконечно малым. Допускается, что перемещения, напряжения и деформации являются непрерывными и дифференцируемыми функциями координат внутренних точек тела и времени. Предполагается, далее, что возникающие за счет внешних воздействий на тела внутренние напряжения в каждой точке зависят только от происходящей за счет внешних воздействий дефор мации в этой точке, от температуры и времени. Таким образом, наряду с понятием абсолютно твердого тела в механике возникает новое понятие материального континуума или непрерывной сплошной среды и, в частности, сплошного твердого деформируемого тела . Это понятие оказалось чрезвычайно плодотворным не только в теоретическом и расчетном отношении, поскольку позволило для исследования прочности привлечь мощный аппарат математического анализа, но и в экспериментальном, поскольку выявило, что для исследования прочности твердых тел имеют значение лишь механические свойства, т. е. связь между напряжениями, деформациями, временем и температурой, а не вся совокупность сложных взаимодействий, определяющих полностью физическое состояние реального твердого тела. Отсюда возникли специальные экспериментальные методы исследования механических свойств различных материалов. Возникла, и притом более ста лет тому назад, механика сплошных сред или континуумов и такие основные науки о прочности твердых тел, как сопротивление материалов, строительная механика, теория упругости и теория пластичности.  [c.12]

При анализе прочности в случае наличия трещин используют понятие о концентрации напряжений в том виде, в каком оно разработано в теории упругости. Основная конфигурация рассматриваемого образца показана на рис. 2. Этот лист с эллиптическим отверстием, к которому приложена осевая растягивающая нагрузка  [c.428]

Понятие о режиме сварки. Под режимом сварки понимают совокупность условий протекания процесса сварки. Параметры режима сварки подразделяют на основные и дополнительные. К основным параметрам режима сварки при ручной сварке относят величину, род и полярность тока, диаметр электрода, напряжение, скорость сварки и величину поперечного колебания конца электрода, а к дополнительным—величину вылета электрода, состав и толщину покрытия электрода, начальную температуру основного металла, положение электрода в пространстве (вертикальное, наклонное) и положение изделия в процессе сварки.  [c.102]

К осени 1822 г. Когци ) открыл большинство основных элементов чистой теории упругости. Он ввел понятие о напряжении и деформациях в дапной точке. Показал, что они могут быть определены шестью соответствуюш,ими компонентами. Исходя из гипотезы о сплошном и однородном строении твердого тела, Коши получил уравнения движения (или равновесия). Он впервые ввел в уравнения теории упругости две упругие постоянные, в то время как уравнения Павье содержали лишь одну. Соотношения, связываюш,ие малые деформации и перемегцения, названы его именем.  [c.11]

К осени 1822 г. Коши открыл большинстно основных элементов чистой, теории упругости . Он ввел понятие о напряжении в данной точке, определяемом силами, отнесенными к единице площади различных плоских  [c.21]


А. Вёлер ввел понятие о физическом пределе выносливости — максимальном циклическом напряжении, при котором нагрузка может быть приложена неограниченное число раз, не вызывая разрушения при выбранной базе (числе циклов до разрушения К). Для металлических материалов, не имеющих физического предела выносливости, предел выноашлости (7ц - значение максимального по абсолютной величине напряжения цикла, соответствующее задаваемой долговечности (числу циклов до разрушения). Для металлов и сплавов, проявляющих физический предел выносливости, принята база испытаний Ю циклов, а для материалов, ординаты кривых усталости которых по всей длине непрерывно уменьшаются с ростом числа циклов, - 10 циклов (рис. 2). Первый тип кривой особенно характерен для ОЦК - металлов и сплавов, хотя может наблюдаться при определенных условиях у всех металлических материалов с любым типом кристаллической решетки, второй тип -преимущесгвеипо у П (К - металлов и сплавов (алюминиевые сплавы, медные сплавы и др.). N(11 и N( 2 на рис.2 обозначают базовые числа циклов нагружения. На рис. 3 представлены основные параметры цикла при несимметричном нагружении и возможные варианты циклов при испытаниях на усталость.  [c.7]

Объем изучаемого материала невелик и в известной мере ре-цептурен, так как формулы для определения коэффициентов запаса даются без выводов. Достаточно подробно рассматриваются параметры циклов переменных напряжений дается понятие о природе усталостного разрушения, о построении кривой усталости (кривой Вёлера) и экспериментальном определении предела выносливости проводится ознакомление с основными факторами, влияющими на предел выносливости даются формулы для определения коэффициента запаса прочности при одноосном напряженном состоянии и чистом сдвиге, а также при упрощенном плоском напряженном состоянии. Весь подлежащий изучению материал имеется в учебнике [12] менее подробно, но в объеме, достаточном для немашиностроительных техникумов, он изложен в учебнике [22].  [c.170]

Во всех рассмотренных выше разделах классической физики обьекто [ исследования была материя в форме вещества. Другой формой материи, в исследовании которой физика достигла больших успехов, стала полевая форма. Электрические и магнитные явления открыты очень давно, но теория этих явлений развивалась сравнительно медленно и лишь в 60-х годах XIX столетия была завершена созданием теории Максвелла. После этого были открыты электромагнитные волны, которые существуют независимо от породивших их зарядов и токов. Это послужило экспериментальным доказательством самостоятельного существования электромагнитного ноля и обосновало представление об электромагнитном поле как о форме существования материи. Движение этой формы материи описывается уравнениями Максвелла. Они представляют закон движения электромагнитного поля и описывают его порождение движущимися зарядами. Действие электромагнитного ноля на заряды, носителями которых является материя в корпускулярной форме, описывается силой Лоренца. Основными понятиями, на которых основываются уравнения Максвелла, являются напряженность и индукция электромагнитного поля в точках пространства, изменяющиеся с течением времени, электромагнитное поле, порожденное зарядом, движущимся аналогично материальной точке по определенной траектории, и действующее на заряд. Это показывает, что теория, основанная на уравнениях Максвелла, относится к классической физике, релятивистски инвариантна и полностью относится к релятивистской классической физике.  [c.14]

В восемнадцати предшествующих главах были изложены различные разделы механики деформируемого твердого тела, при этом практическая направленность каждого из них не очень акцентировалась. Но основная область приложения механики твердого тела — это оценка прочности реальных элементов конструкций в реальных условиях эксплуатации. С этой точки зре-нпя различные главы приближают нас к решению этого основного вопроса в разной степени. Классическая линейная теория упругости формулирует свою задачу следуюш им образом дано пекоторое тело, на это тело действуют заданные нагрузки, точки границы тела претерпевают заданные перемещения. Требуется определить поле вектора перемещений и тензора напряжений во всех точках тела. После того как эта задача решена, возникает естественный и основной вопрос — что это, хорошо или плохо Разрушится сооружение или не разрушится Теория упругости сама по себе ответа на этот вопрос не дает. Правда, зная величину напряжений, мы можем потребовать, чтобы в каждой точке тела выполнялось условие прочности, т. е. некоторая функция от компонент о.-,- не превосходила допускаемого значения. В частности, можно потребовать, чтобы нигде не достигалось условие пластичности, более того, чтобы по отношению к этому локальному условию сохранялся некоторый запас прочности, понятие о котором было сообщено в гл. 2 и 3. Мы знаем, что для пластичных материалов выполнение условия пластичности в одной точке еще не означает потери несущей способности, что было детально разъяснено на простом примере в 3.5. Поэтому расчет по допустимым напряжениям для пластичного материала безусловно гарантирует прочность изделия. Для хрупких материалов условие локального разрушения отлично от условия наступления текучести и локальное разрушение может послужить началом разрушения тела в целом. Поэтому расчет по допускаемым напряжениям для хрупких материалов более оправдан. Аналогичная ситуация возникает при переменных нагрузках и при действии высоких температур. В этих условиях даже пластические материалы разрушаются без заметной пластической деформации и микротрещина, возникшая в точке, где 42  [c.651]

Осветим бегло содержание книги Нейманна. В первых пяти главах он выводит основные уравнения теории упругости изотропного тела, вводя понятие компонент напряжения и деформации и устанавливая соотношения между ними через две упругие постоянные. Его обозначения для компонент напряжения были впоследствии приняты многими авторами в частности, их принял Ляв (А. Е. Н. Love). В следующих трех главах дается вывод основных уравнений с помощью гипотезы о молекулярном строении твердых тел. Излагаются работы Навье и Пуассона. Выводятся уравнения для неравномерного распределения температуры, исследуется теорема об единственности решений уравнений упругости. Следующая часть книги посвящена приложениям основных уравнений к частным задачам. Глава, в которой описывается  [c.303]

Хорошо известно из истории науки, что из простейших задач механики развились многие весьма содержательные математические дисциплины. Так, задача о форме кривой наибыстрейшего ската в однородном поле силы тяжести (задача о брахистохроне) привела к созданию вариационного исчисления, а затем и функционального анализа. Обобщения основных понятий механики (момента силы, работы силы, напряжения, деформации) составляют, в сущности, реальное основание векторного и тензорного анализа. Мы думаем, что конкретные задачи механики и физики обогащали математику идейным содержанием и оттачивали ее логические построения не меньше, чем абстрактные, предельно формализованные исследования в чисто внутренних областях математики. Абстрактные исследования содержательны и эвристичны при условии, что в их основе лежат (или предугаданы) некоторые количественные закономерности объективно существующих форм движения материи.  [c.10]


Даже беглого взгляда на оглавление достаточно, чтобы увидеть, какие темы освещаются в этой книге. Сюда входят и методы расчета элементов конструкций при продольном нагружении, кручении и изгибе, и основные понятия механики материалов (энергия преобразование напряжений и деформаций, неупругое деформирование и т. д.). К частным вопросам, интересующим инженеров, относятся влияние изменения температуры, поведение непризматических балок, большие прогибы балок, изгиб несимметричных балок, определение центра сдвига и многое другое. Наконец, последняя глава представляет собой введение в теорию расчета конструкций и энергетические методы, включая метод единичной нагрузки, теоремы взаимности, методы податливостей и жесткостей, теоремы об энергии деформации й потенциальной энергии, метод Рэлея — Ритца, теоремы о дополнительной энергии. Она может служить основой для дальнейшего изучения современной теории расчета конструкций.  [c.9]

О ТОМ, что главные напряжения в каждой точке улругого тела пропорциональны соответственным главным удлинениям. Но наряду с упругим телом Коши рассматривал и неупругое тело и жидкость. В своей основной работе ), сообщение по которой было сделано ещё в 1822 г., в 3 Коши рассматривает движение внутри неупругой среды и вместо проекций смещений вводит проекции вектора скорости смещения и свою основную гипотезу формулирует так главные напряжения в каждой точке пропорциональны мгновенным главным удлинениям или сжатиям. На основании этой гипотезы Коши получает дифференциальные уравнения, отличающиеся от современных уравнений движения вязкой жидкости только отсутствием слагаемого с давлением. Затем он видоизменяет свою гипотезу, полагая напряжение состоящим из двух слагаемых, из которых первое считается пропорциональным мгновенным сжатиям или расширениям, а второе считается зависящим только от положения точки. Далее, второе слагаемое принимается пропорциональным скорости объёмного расширения. Вследствие этого получаются дифференциальные уравнения, сходные с уравненрмми движения вязкой сжимаемой жидкости. Таким образом, Кощи, создавая основные понятия теории упругости, вместе с этим установил и некоторые основные понятия теории движения вязкой жидкости.  [c.19]

При пайке в печи с очищенным водородом (при 1100° С) мягкой стали серебром, не образующим химических соединений со сталью, максимальный предел прочности стыкового соединения близок к пределу прочности стали 392 Мн1м (40 кГ мм ) [256]. По данным работы [171], полученным при сварке и пайке высокопрочной стали, прочность бездефектного соединения непрерывно увеличивается и при нулевом зазоре равна 970 Мн1м (99 кГ/мм ) при сварке армко-железом, 174 Мн/ж (17,8 кР/мм ) — при пайке оловом, 67 Mh m (6,9 кГ л1М ) — при пайке свинцом. Согласно работе [171] эти напряжения соответствуют возможному пределу прочности припоя. Это значение предельной прочности припоя, полученное экстраполяцией, не следует, с нашей точки зрения, смешивать с прочностью стыкового соединения из основного материала, получаемого, по существу, путем диффузионной сварки, производимой по температурному режиму пайки. Следует также учитывать, что при введении понятия о предельной прочности припоя не учитывалось диффузионное взаимодействие между припоем и паяемым металлом. Согласно схеме, представленной У. Ростокером [103] по данным В. Лерера, наибольшая прочность паяного соединения наблюдается не при нулевой, а при какой-то небольшой величине зазора (см. рис. 63, г). Резкое уменьшение прочности соединения объясняется переходом от сопротивления разрыву с участием сдвиговой деформации к сопротивлению разрыву при достижении предельных значений нормальных напряжений (сопротивление отрыву) [103]. Такая схема принципиально вероятна, но отчетливо не вытекает из опытных данных, на основании которых она построена.  [c.113]


Смотреть страницы где упоминается термин Основные понятия о напряжениях : [c.51]    [c.12]    [c.644]    [c.9]    [c.21]   
Смотреть главы в:

Расчёты и контроль деталей машин 1974  -> Основные понятия о напряжениях

Расчёты и контроль деталей машин Издание 3 1985  -> Основные понятия о напряжениях



ПОИСК



Внутренние усилия и напряжения при изгибе стержней Основные понятия

Г лава I ОСНОВНЫЕ ПОНЯТИЯ и АКСИОМАТИЗАЦИЯ Напряжения

Г лава XI. Контактные напряжения и деформации I 11.1. Основные понятия

Деформации, напряжения и термообработка при сварке Основные понятия. Связь между напряжением и деформациями. Виды напряжений

Кокиль -- Выбор расположения поверхности разъема 79 — 81 — Выпучивание стенок 95 — Конструирование 95—103 — Методы изготовления 99—101 — Нанесение облицовки (покрытия) на рабочие поверхности 66, 102 — Напряжения и деформации в рабочих стенках 93 — 95, 103 — Образование трещин 94 — Основные разновидности 75, 76 — Особые приемы изготовления рабочих стенок 101, 102 — Относительная толщина стенки 92 — Понятие

Контактные напряжения Основные понятия

Косой изгиб. Основные понятия и определения. Формула нормальных напряжений

Напряжение Понятие

Основные понятия о влиянии переменных напряжений на прочность материала

Основные понятия о напряжениях и запасах прочности

Основные понятия о переменных напряжениях. Предел выносливости

Основные понятия, связанные с изучением турбулентного потока . . — Турбулентные касательные напряжения в осреднением потоке

Основные понятия, связь между напряжениями и деформациями

Расчет пластинок (П. Я. Артемов) Основные понятия. Усилия, напряжения, деформации

Расчеты на прочность при напряжениях, переменных во времени Циклы напряжений. Основные понятия об усталости ме i таллов

Расчеты на прочность при переменных напряжениях Любошиц) Основные понятия

Стесненное кручение тонкостенных стержней открытого профиля (П. Я. Артемов) Основные понятия. Напряжения при стесненном кручении



© 2025 Mash-xxl.info Реклама на сайте