Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Технологический процесс обработки деталей на фрезерных станках

За время обучения фрезеровщик должен хорошо изучить основы фрезерования и в результате этого должен знать устройство и кинематику фрезерных станков, правила управления и эксплуатации их, технологический процесс обработки деталей на фрезерных станках, систему допусков и посадок и т. д.  [c.7]

ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС ОБРАБОТКИ ДЕТАЛЕЙ НА ФРЕЗЕРНЫХ СТАНКАХ  [c.502]

Составление технологической карты. Технологическая карта для обработки деталей на фрезерных станках с цифровым программным управлением имеет вид таблицы, содержащей все сведения, необходимые для изготовления программы. Форма этой карты и ее содержание несколько изменяется в зависимости от системы управления станка, для которого проектируется процесс, но имеется и ряд общих для всех систем положений.  [c.286]


В настоящее время при разработке технологических процессов обработки деталей на станках применяется метод групповой обработки деталей, при котором детали классифицируются по видам обработки (токарная, револьверная, фрезерная и др.) После этого детали каждого класса разделяются на группы деталей, сходных по форме и размерам и общности процесса их обработки. Затем разрабатывается технологический процесс не на отдельную деталь, а на группу деталей, технологически сходных и характеризующихся общей последовательностью обработки, одинаковым станком, приспособлением, режущим инструментом и наладкой.  [c.385]

Книга посвящена технологии обработки деталей на фрезерных станках. В ней подробно рассматриваются процессы обработки типовых поверхностей машиностроительных деталей — плоскостей, пазов и уступов, фасон-йых поверхностей и др. Весьма обстоятельно изложен вопрос о настройке делительных головок для таких работ, как нарезание зубьев зубчатых колес, фрезерование винтовых канавок и пр. Б этих разделах приводится много примеров из опыта работы фрезеровщиков — новаторов производства. Отдельные главы посвящены рассмотрению вопросов технологического комплекса — фрезерным станкам, приспособлениям и инструментам для фрезерных работ, рациональной организации рабочего места фрезеровщика.  [c.2]

Технологическим процессом механической обработки называется последовательное превращение заготовки (прутка, бруска, поковки, штамповки, отливки) в готовую деталь, т. е. действия, непосредственно связанные с изменением формы и размеров обрабатываемой заготовки от момента поступления ее в обработку до получения готовой детали. Фрезерование является одним из видов механической обработки, и все действия, связанные с обработкой заготовки на фрезерных станках, входят в технологический процесс механической обработки.  [c.290]

Т И.Л овой технологический про ц е с с — технологический процесс изготовления группы изделий с общими конструктивными и технологическими признаками. Детали, обрабатываемые на фрезерных станках, можно классифицировать по следующим основным признакам конфигурация обрабатываемых деталей тип инструмента, с помощью которого целесообразно производить обработку поверхностей деталей размеры обрабатываемых поверхностей деталей точность размеров и формы обрабатываемых поверхностей вид применяемого оборудования.  [c.148]


В единичном производстве используются преимущественно универсальные станки, с имеющимися на них нормальными 1>ри-способлениями, нормальный режущий и измерительный инструмент. Технологический процесс обработки деталей в единичном производстве, как правило, не разрабатывается подробно, а ограничивается установлением перечня операций с указанием станков, приспособлений и инструментов. Станки располагаются в цехах группами по типам токарные, сверлильные, строгальные, фрезерные, шлифовальные и др.  [c.133]

Конструкция детали оказывает большое влияние на выбор технологического процесса. Каждая деталь, входящая в машину, должна не только нормально работать, но и быть технологичной в изготовлении, иметь наименьшую трудоемкость и стоимость изготовления. Перечислим некоторые из требований, предъявляемых к конструкции детали в отношении ее технологичности. Во-первых, все поверхности, подлежащие механической обработке, должны иметь простую форму — плоскость или тело вращения (цилиндр, конус и т. п.). Эти поверхности легко обрабатываются на фрезерных, токарных и других станках с высокой производительностью. Криволинейные поверхности можно обрабатывать только с применением специальных станков, фасонного инструмента или копировальных устройств, что удорожает их изготовление. Во-вторых, для удобства обработки и контроля все поверхности по возможности должны располагаться параллельно или перпендикулярно по отношению друг к другу. Кроме того, детали должны иметь простую форму, образованную из простых геометрических фигур (цилиндр, конус, параллелепипед и т. д.). Размеры обрабатываемых деталей определяют не только габариты и тип оборудования, но и метод обработки, так как с увеличением размеров деталей возрастают трудности в достижении заданной степени точности.  [c.49]

Для автоматов и автоматических линий непрерывного действия технологическая производительность означает количество деталей, обрабатываемых в единицу времени при условии бесперебойной работы, т. е. при полном использовании возможностей технологического процесса (автоматические линии из бесцентровошлифовальных станков, работающих на проход барабанно-фрезерные станки, автоматы непрерывного протягивания и т. д.). Однако в большинстве случаев при проектировании линий конструктивно не удается полностью совместить холостые ходы с обработкой. В технологическом процессе появляются паузы для загрузки и выгрузки, межстаночного транспортирования, зажима и разжима деталей, т. е. уже в конструкции линии неполно используются возможности, заложенные в технологии, а следовательно, производительность по сравнению с технологической снижается. Так, в линии обработки ступенчатых валов холостыми ходами, не совмещенными с обработкой, являются межстаночное транспортирование изделий, их зажим и разжим на рабочих позициях, подвод и отвод суппортов. Так, если суммарное время холостых ходов линии составляет = 16 с, то длительность рабочего цикла линии  [c.84]

Книга знакомит читателя с условиями безопасной работы на фрезерных станках, с понятиями о допусках и посадках, с устройством контрольно-измерительных инструментов, необходимых фрезеровщику, и техникой измерений, с основами теории резания при фрезеровании. В ней рассмотрены также вопросы устройства фрезерных станков, правила управления ими, способы крепления и обработки деталей, а также даны основные понятия о технологическом процессе и об организации труда.  [c.2]

При числе операций более 7 в основу конструкций автоматических линий из нормализованных узлов кладется принцип прямолинейного расположения агрегатных станков, связанных между собой пульсирующим транспортером, поворотными и другими устройствами, позволяющими обрабатывать детали по нескольким поверхностям. Из большого числа работающих линий этого типа можно назвать линию, собранную из унифицированных узлов и предназначенную для обработки замка лопаток газовых турбин. В линию входят девять станков восемь фрезерных и один протяжной, которые одну деталь обрабатывают за 37,5 сек. вместо 12 мин., необходимых для ее обработки на универсальных станках. Сюда же относятся и полуавтоматические линии, действующие на Московском тормозном заводе и состоящие из нормализованных элементов — узлов, механизмов, деталей, полученных путем расчленения конструкций различного оборудования. Прямолинейные линии при изменении технологического процесса можно быстро перестроить, расположив станки в любой последовательности, и в зависимости от требуемых операций умень-  [c.127]


Особое внимание при проектировании технологического процесса на автоматических линиях должно быть уделено обеспечению такого распределения операций по станкам, чтобы был обеспечен единый такт выпуска автоматической линии. Это достигается применением комбинированных режущих инструментов (сверло-развертка, ступенчатые сверла, ступенчатые зенкера, развертка-метчик, комбинированный резец и и др.) разделением технологических операций обработки детали на участки (фрезерные, сверлильные, токарные, шлифовальные и др.) изменением режимов резания на отдельных операциях в сторону увеличения или (в отдельных случаях) некоторого их уменьшения применением на трудоемких операциях двух или нескольких параллельных потоков обработки де-тал ей созданием на одной или на нескольких операциях заделов обрабатываемых деталей, хранящихся в специальных бункерных устройствах.  [c.214]

Технологическим оборудованием для формообразования деталей резанием являются металлорежущие станки. По способу осуществления процесса резания металлорежущие станки делятся на следующие группы токарные, сверлильные, фрезерные, строгальные, протяжные, шлифовальные, специализированные, специальные и др. Технологические операции- обработки деталей резанием по точности и чистоте обработки делятся на предварительные и финишные. К финишным относятся операции, завершающие технологический процесс механической обработки и обеспечивающие получение поверхностей высокой точности и чистоты. В предварительных операциях обрабатывают поверхности заготовок с невысокой точностью размеров и форм.  [c.214]

Технологический процесс штамповки, карта раскроя, спецификации, чертежи деталей (используются бл а НК-чертежи), технологические процессы изготовления деталей штампов, программы для обработки деталей штампов на фрезерных, сверлильных и электроэрозионных станках с ЧПУ Чертежи деталей штампов, спецификация, программы для электроэрозионной обработки, данные для координатной разметки  [c.435]

При разработке технологического процесса применительно к производственным условиям с расположением оборудования по типам станков (токарный участок, фрезерный и т. д.) следует назначать последовательность обработки с учетом возможности группирования однотипных операций. Это позволит избежать лишней транспортировки деталей с одного участка на другой.  [c.134]

Технологический процесс фрезерной обработки должен обеспечить возможность обработать на данном оборудовании при заданных условиях работы наибольшее количество деталей высокого качества при возможно лучшем использовании станка и инструмента, а также с наименьшими затратами.  [c.502]

Большинство деталей машин обрабатываются не только на токарных, но и на других станках — сверлильных, фрезерных, строгальных, шлифовальных. Поэтому и технологический процесс механической обработки обычно состоит из операций, выполняемых на разных станках, В данной главе рассматриваются вопросы, касающиеся операций, выполняемых только на токарных станках.  [c.131]

Недостатком типовых технологических процессов является слабая загрузка части оборудования в линиях. Поэтому в условиях мелкосерийного и серийного производства целесообразно применять легко переналаживаемое оборудование, например, с программным управлением и др. При отсутствии на заводах такого оборудования необходимо расширить технологические возможности имеющихся станков, применяя приспособления многошпиндельные сверлильные головки с регулируемым расположением шпинделей, трех- или четырехшпиндельные фрезерные головки ц др. На таких станках при небольшой переналадке можно обрабатывать разные детали, имеющие конструктивные отличия и входящие в один тип. Для полной загрузки оборудования в линиях целесообразно создавать групповые операции на незагруженных станках, обрабатывая детали нескольких типов или даже классов. Эти операции будут общими для нескольких линий обработки разнотипных деталей [46]. Поэтому для наибольшего использования типовых и групповых технологических процессов и возможности создания поточных линий с замкнутым циклом следует применять комплексный метод подготовки производства, основанный на 1) одновременном применении типовых и групповых технологических процессов 2) разработке типовых технологических процессов и групповых операций, общих для нескольких типов деталей  [c.14]

Роль технолога при переходе к станкам с ПУ значительно возрастает, так как разработанный технологический процесс в дальнейшем не может быть существенно изменен. Поэтому важно учитывать специфические требования станков с ПУ к заготовке, инструменту, режимам резания, последовательности переходов и другим технологическим параметрам, зависящим от типа станка, вида системы ПУ, конструкции изготовляемых деталей и условий обработки. Технологичность деталей при использовании станков с ПУ отличается от понятия технологичности для обычного металлорежущего оборудования. Так, например, технологичными для фрезерных и токарных станков с непрерывными системами программного управления являются детали с криволинейными поверхностями, заданными их мате.ма-тическими уравнениями. Для обычных станков такие поверхности могут задаваться только подбором радиусов или таблицей координат. Размеры на рабочих чертежах деталей обычно проставляются из условия возможности контроля. Для станков с ПУ выполнение этого требования является не обязательным.  [c.24]

В отличие от схем классификации деталей, применяемых при типизации технологических процессов, при групповом методе в основу положен принцип классификации деталей по видам обработки, т. е. создаются классы деталей обрабатываемых на автоматах, револьверных, токарных, фрезерных, сверлильных и других станках.  [c.240]


Групповым называют технологический процесс изготовления группы изделий с разными конструктивными, но общими технологическими признаками. Метод групповой обработки позволяет повысить производительность и экономичность обработки в условиях единичного, мелкосерийного и серийного производства. В основу этого метода положен принцип классификации деталей по видам обработки, предполагающий создание классов деталей, обрабатываемых на автоматах, револьверных, токарных, фрезерных, сверлильных и других станках. Классификационная группа деталей характеризуется общностью применяемого оборудования, единой технологической оснасткой и общей настройкой станка. Для каждой такой группы деталей разрабатывается комплексная деталь, содержащая все элементарные поверхности, присущие деталям данной группы.  [c.321]

На ЭВМ возлагаются не только геометрические расчеты, но и отдельные этапы технологического проектирования построение оптимальных траекторий движения инструментов определение последовательности операций выбор инструментов и т. д. В результате САП становится системой автоматизированного проектирования технологических процессов (САПР ТП). Как правило, каждая из современных САП предназначена для станков определенной группы (токарных, фрезерных, расточных, сверлильных). САП подразделяются на следующие группы 1) универсальные, позволяющие программировать обработку широкой номенклатуры деталей, контуры которых ограничены простыми, наиболее распространенными поверхностями (плоскость, цилиндр, конус, сфера и т. д.) 2) специальные — для программирования обработки сложных поверхностей определенного типа. В общем случае структура современной САП (рис. 17.17) и процесс переработки исходных данных в УП выглядят следующим образом. Подготовка исходных данных состоит в том, что технолог-программист с помощью специального технологического языка записывает основную информацию для программирования геометрические характеристики деталей с чертежа название станка, на котором будет обрабатываться заготовка марку материала детали общие технологические указания (например,  [c.363]

Автор считает необходимым отметить участие преподавателя технического училища № 2 (Москва) инж. Б. И. Обшадко в переработке для третьего издания написанных им главы XII Элементарные сведения о технологическом процессе и главы XXXI Технологический процесс обработки деталей на фрезерных станках .  [c.4]

Различные методы удаления заусенцев применяют и в конце технологического процесса. Большое распространение получили механические методы, особенно с использованием ручного механизированного инструмента фрезерных нли абразивных головок, металлических щеток, шлифовальных кругов, ленточных шлифовальных установок. Для удаления заусенцев, получения фасок и переходных поверхностей используют также металлорежущие станки (рис. 6.109). Фаски на деталях типа тел вращения протачивают на станках токарной группы (рис. 6.109, а), а на деталях в виде корпусов, плат, планок — на фрезерных станках (рис. 6.109,6). Целесообразно использование специального режущего инструмента — фасонных фрез. Широко используют станки сверлильнорасточной группы (рис. 6.109, б). Фаски на выходе отверстий получают специальными зенковками или обычными сверлами. Производительную обработку кромок деталей проводят на протяжных станках (рис. 6.109, г). Протяжки выполняют по форме обрабатываемых граней, расположенных на наружных или внутренних поверхностях. Используют зуборезные станки (рис. 6.109, д) для снятия заусенцев и получения фасок методом огибания (например, на шлицевых валах).  [c.380]

Физико-химические методы коренным образом изменяют технологию изготовления ряда деталей. Так, при лучевых методах технологический процесс обработки алмазных волок, рубиновых подшипников и других подобных деталей сокращается на 2...3 операции. Использование одного электроэрозион-ного станка при обработке штампов высвобождает до 3...4 фрезерных станков и несколько квалифицированных рабочих. Применение ультразвука при алмазном сверлении позволяет в 3...5 раз увеличить производительность процесса и глубину обработки, а также снизить щельный расход алмазов.  [c.229]

В качестве примера на рис. IV.32, а показан общий вид линии, спроектированной ЭНИМСом и изготовленной на заводе Станкокон-струкция для обработки вала электродвигателя, сборки его с ротором, совместной обработки и балансировки вала-ротора. Рис. 1У.32, б иллюстрирует технологический процесс обработки изделия. Линия состоит из фрезерного и центровального автоматов, двух гидрокопировальных станков, двух многокамневых шлифовальных станков, станков для накатки рифлений и фрезерования шпоночного паза, устройства для запрессовки вала в ротор, токарного автомата для обточки вала с ротором в сборе и балансировочного станка. Разгрузка и выгрузка деталей осуществляется автоматически. После операции X в линии установлен магазин для хранения запаса ротаторов.  [c.301]

На рис. 66 показан технологический процесс обработки ступенчатого вторичного вала коробки передач автомобиля ЗИЛ-130. Первая операция производится на фрезерно-центровальном станке типаМР-71, остальные на гидрокопировальных полуавтоматах типа 1722 с зажимом в центрах. Такой технологический процесс является типовым. Общность технологии в сочетании с общностью применяемого оборудования, которое пригодно для встраивания в автоматические линии, делает весьма заманчивой перспективу создания гаммы типовых автоматических линий сходной конструкции с типовыми транспортно-загрузоч-ными механизмами. Однако создание надежных в работе и высокоэффективны автоматических линий для обработки ступенчатых валов является одной из труднейших задач автоматизации, прежде всего ввиду сложности операции межстаночной транспортировки. Сложная конфигурация обрабатываемых деталей с большим отношением длины к диаметру, а также большое количество вьюнковой стружки, выделяющееся при обработке практически исключают возможность межстаночной транспортировки качением под действием силы тяжести. С другой стороны, необходимость обработки со всех сторон не позволяет применять обработку и транспортировку на приспособлениях-спутниках, с использованием простейших транспортирующих устройств, характерных для линий по обработке корпусных деталей. Поэтому транснор-168  [c.168]

Необходимо отметить, что такого рода стандарты имеют в виду только станки общего назначения. К станкам общего назначения относятся все универсальные и специализированные станки, широко распространенные в различных отраслях машиностроения, причем под универсальными станками понимаются станки, на которых может выполняться самая разнообразная работа, присущая данному типу станка (различные операции), например, токарные, револьверные или фрезерные станки и т. д., а под специализированными— станки, на которых может производиться только определенная операция, например, ножевки, циркульные пилы, болтонарезные и гайконарезные станки и т. д. Для станков специальных, но предназначу для обработки определенных деталей и используемых в даннов сли машиностроения (например, станки для автотракторного прорводства, транспортного машиностроения и т. д.), создавать стандарты нет особой необходимости, так как тип и размеры этих станков предопределяются технологическим процессом обработки определенных деталей. К тому же эти детали лишь в некоторых случаях сохраняют свою форму и размеры неизменными на длительный период, например, вагонные оси, буфера в других же случаях, наоборот, конструкция и размеры деталей (например блоки цилиндров автомобилей, шатуны и т. п.) изменяются чаще, так как это тесно связано с техническим прогрессом в данной отрасли машиностроения — поэтому и нет возможности установить размеры станков для обработки подобных деталей на продолжительный срок времени.  [c.88]


Назависимо от характера выполняемых винипластовых работ технологический процесс включает в себя следующие основные операции разметку и раскрой листов винипласта, нагрев заготовок и придание им необходимой формы, сварку или склеивание заготовок, проверку качества сварных или склеенных швов. Некоторые изделия и узлы аппаратов, изготовленных из винипласта, подвергают механической обработке сверловке болтовых отверстий, нарезке резьбы, обработке деталей на токарных и фрезерных станках и др.  [c.226]

Независимо от характера выполняемых винипласто- вых работ технологический процесс состоит из основных операций разметки и раскроя листов винипласта нагрева заготовок и придания им необходимой формы сварки пли склеивания заготовок проверки качества сварных или склеенных щвов. Некоторые изделия и узлы аппаратов, изготовленных из винипласта, подвергают механической обработке сверлению болтовых отверстий, нарезке резьбы, обработке деталей на токарных и фрезерных станках и др.  [c.248]

На участке механической обработки выполняются процессы станочной обработки деталей технологической оснастки и инструментов. Особенностью станков, используемых в инструментальном цехе, является их универсальность. Кроме высокоточных универсальных станков общего назначения (токарных, фрезерных, строгальных, шлифовальных, сверлильных, долбежных и др.) инструментальные цехи имеют и специализированные станки, предназначенные для выполнения сложных инструментальных работ координатно-расточные, координатно-шлифовальные, оптические профилешлифовальные, фасонно-строгальные, копировально-фрезерные, резьбошлифовальные, заточные, токарно-затыловоч-ные, гравировальные, а также станки для электроимпульсной и ультразвуковой обработки.  [c.7]

Экономическая эффективность использования САУ автоматической перенастройкой по точностным параметрам. Проведенные экспериментальные исследования автоматической размерной пере- астройки гидрокопировальных токарных и фрезерных станков с использованием разработанных систем автоматического управления показали достаточно высокую эффективность предлагаемого способа. Так, при обработке различных типоразмеров деталей типа валов на гидрокопировальных полуавтоматах 1722 точность стабилизации размера динамической настройки не превышает 0,005—0,008 мм, а точность стабилизации размера статической настройки составляет 0,004—0,005 мм. Это позволило производить обработку деталей различных типоразмеров за один проход с точностью 0-,04—0,05 мм в партии при колебании припуска от 1 до 4 мм. При обычной обработке (без использования САУ) точность обработки ниже в 3—5 раз. Точность перенастройки системы СПИД с обработки одного типоразмера детали на другой, оцениваемая средними величинами размеров деталей, составляет 0,006 мм. Значительно сокращается время на настройку и перенастройку системы СПИД. Так, при обычной обработке переход на новый типоразмер детали требует 20—30 мин, причем основная доля этого времени уходит на размерную настройку методом пробных проходов с использованием 2—3 пробных деталей. При использовании САУ время на перенастройку не превышает 5 мин, причем основная его часть затрачивается на смену программоносителя, режущего инструмента, а размерная настройка составляет несколько секунд. При этом не требуется производить пробных проходов, использовать пробные детали. Оптимальная партия деталей практически может состоять из одной детали. Наладчик исключается из технологического процесса, его функции выполняют САУ. При автоматизации смены программоносителя и режущего инструмента общее время на перенастройку гидрокопировальных полуавтоматов не превышает 1 мин.  [c.624]

Токарная обработка в большинстве случаев является первой частью технологического процесса за ней следует обработка на других станках — шлифовальных, зуборезных, сверлильных и т. д. Бывает, что детали сначала проходят обработку на фрезерных, строгальных, сверлильных и иных станках. Для некоторых деталей весь технологический процесс сводится к токаряой обработке.  [c.14]

При проектировании технологического процесса целесообразно предусмотреть вначале проведение черновых обдирочных операций значительных по площади поверхностей и других второстепенных операций до начала чистовой обработки точных ответственных поверхностей. Такая естественная последовательность обработки необходима и для наиболее благоприятного распределения внутренних напряжений во избежание деформации деталей. Наличие в сложных корпусных деталях плоских и внутренних цилиндрических поверхнойей, строго координированных между собой, вызывает необходимость расчленения технологического процесса на большое число операций, или большое число позиций в случае обработки на автоматических линиях. Обработка плоскостей ведется на карусельно-фрезерных или барабанно-фрезерных станках торцовыми фрезами, или на горизонтально-протяжных станках, а точных отверстий — на многошпиндельных расточных и хонинговальных станках или алмазно-расточных станках, а отверстий под резьбу — на агрегатных станках с многошпиндельными головками и поворотными столами.  [c.67]

Содержание технологической операции включает в себя номер и наименование операции (например, операция 005 фрезерно-центровальная) указание, какие поверхности из данной операции обрабатываются окончательно, а какие предварительно (например, обработать поверхность 30Н7 окончательно, 0 80 Л6 с припуском на шлифование) наименование и номер модели станка (например, токарно-винторезный станок мод. 16К20) наименование приспособления (например, поводковый плавающий центр) и его краткую характеристику, содержащую наименование и число одновременно закрепленных деталей (например, трех местное) вид зажимных элементов (например, губки призматической формы) и вид привода зажима (например, пневмопривод) наименование и метрологические данные (цена деления, диапазон измерений) измерительной оснастки для наладки и контроля в процессе обработки наименование и краткую характеристику режущих инструментов (размеры, материал режущей части, геометрия режущих элементов и др.).  [c.320]


Смотреть страницы где упоминается термин Технологический процесс обработки деталей на фрезерных станках : [c.4]    [c.47]    [c.625]    [c.37]    [c.59]    [c.572]    [c.168]    [c.237]    [c.325]    [c.142]   
Смотреть главы в:

Фрезерное дело  -> Технологический процесс обработки деталей на фрезерных станках

Фрезерное дело Издание 5  -> Технологический процесс обработки деталей на фрезерных станках



ПОИСК



888, 889, 926 фрезерные

Обработка деталей на фрезерных станках

Обработка на фрезерных станках Фру мин)

Процесс обработки

Станок фрезерный

Технологический процесс обработки

Технологический процесс обработки детали

Технологический процесс станках



© 2025 Mash-xxl.info Реклама на сайте