Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные характеристики механических свойств и методы их определения

Основные характеристики механических свойств и методы их определения  [c.69]

Основные расчетные нагрузки, категории напряжений, методы определения напряжений и расчетные характеристики механических свойств приведены в пн. 2.3.1—2.3.7 2.  [c.246]

К основным параметрам, которые характеризуют предельное состояние деталей и узлов и могут быть использованы для практического прогнозирования эксплуатационной долговечности, относятся механические свойства металла, применяемые в качестве расчетных характеристик для многих элементов энергооборудования. Физические методы определения механических свойств и структуры металла энергооборудования позволяют  [c.204]


В монографии изложены основные направления и методы исследования свойств металлических порошков дисперсионный анализ, включающий анализ порошков по фракциям, измерение удельной поверхности, определение размеров, форм, микроморфологии и микроструктуры отдельных частиц испытание физических и физико-механических свойств, определяющих плотностные, реологические и электромагнитные характеристики порошков рентгенографические методы исследования структурных несовершенств и инструментальные физические методы локального и общего химического анализа способы анализа фаз и, наконец, оценка условий безопасной работы с порошками.  [c.111]

Демпфирующим свойствам материалов посвящена большая литература. Отметим литературные источники, в которых приводится библиография по этому вопросу Пановко Я- Г, Внутреннее трение при колебаниях упругих систем. — М. Физматгиз, 1960 Писаренко Г. С. Рассеяние энергии при механических колебаниях. — Киев Наукова думка, 1962 Писаренко Г. С., Яковлев А. П., Матвеев В. В. Вибропоглощающие свойства конструкционных материалов (справочник). Киев Наукова думка, 1971. Помимо основных понятий о демпфирующих свойствах материалов обсуждены основные методы определения характеристик рассеяния энергии при продольных, крутильных и изгибных колебаниях (энергетический, термический, статической петли гистерезиса, динамической петли гистерезиса, кривой резонанса, фазовый, резонансной частоты, затухающих колебаний, нарастающих резонансных колебаний) и приведена информация о демпфирующих свойствах многих материалов.  [c.68]

Для развития теории поверхностной прочности и решения основных вопросов трения и изнашивания необходимо знать количественные характеристики и механизм процесса деформации поверхностных слоев при контактировании твердых тел. Прямые методы определения механических свойств поверхностных слоев твердых тел при действии нормальных, а также нормальных и тангенциальных усилий до настоящего времени не разработаны, хотя были предложены приборы И методы, позволяющие косвенно судить о некоторых их прочностных характеристиках.  [c.212]

Опыт показывает, что физико-механические свойства материалов иногда существенно зависят от методов и условий их определения. Так, например, твердость по Бринеллю может зависеть от размера применяемого для испытаний шарика, прилагаемой нагрузки и других факторов. Прочностные характеристики зависят от формы и размеров применяемых образцов, динамики приложения нагрузки и скорости деформирования. Коэффициент трения и износ зависят от большого числа факторов (давления, скорости скольжения, температуры и др.). Поглощение жидких сред (воды, масла, бензина) может зависеть от размеров образца. Например, большой по размерам образец не сможет равномерно пропитаться жидкостью по всему объему, произойдет в основном насыщение поверхностных слоев. Поэтому поглощающая способность большого образца будет меньше такой способности маленького образца. На тепловую усадку будет влиять режим термообработки.  [c.258]


В книге описаны неразрушающие методы определения механических, жаропрочных и структурных характеристик металла энергетического оборудования. Приведены сведения об условиях работы основных элементов котлотурбинного оборудования электростанций. Систематизированы данные об изменении структуры и свойств металла в процессе длительной его работы при высоких температурах. Освещены новые методы контроля и наблюдения за металлом энергетического оборудования.  [c.87]

Твердость связана с основными механическими характеристиками металла, определяемыми растяжением. На основе этой связи, подтвержденной теоретически и экспериментально, разработаны без-образцовые методы определения механических свойств металла по характеристикам твердости [29].  [c.389]

Обычно нормируемая предельная величина дополнительной усадки при Температурах от 1350 до 1600° С лежит в пределах десятых долей процента. Рост нормируется лишь для динасовых огнеупоров. Температура деформации под нагрузкой огнеупоров имеет существенное значение в тех случаях, когда срок службы длителен, а статические нагрузки на огнеупор значительны. Эта температура измеряется при нагрузке 2 кгс/см для различных степеней деформации. За точку начала принимается сжатие образца на 0,6%. Термическая стойкость огнеупорных изделий определяется по стандарту путем одностороннего нагрева образцов при 1300° С и охлаждения в воде, причем норма устанавливается по количеству теплосмен, выдерживаемых образцом до потери веса 20%. Приводимые в справочнике величины относятся именно к этому методу определения термической стойкости, кроме специально оговоренных случаев. Огнеупоры в службе большей частью испытывают температурные колебания, нередко довольно резкие, поэтому термической стойкости при выборе огнеупора следует придавать большое значение. Имеется еще ряд технических характеристик огнеупорных изделий, не нормируемых действующими ГОСТами и ТУ шлакоустойчивость, теплопроводность, теплоемкость, ранее упоминавшаяся газопроницаемость и некоторые другие. Определение этих показателей выполняется институтами и заводскими лабораториями в ходе исследовательских работ или по отдельным заданиям. Кроме химических и физико-механических показателей свойств огнеупоров, для изделий устанавливаются допустимые предельные отклонения размеров, дефекты внешнего вида и структуры. В связи с выходом в 1975 г. официального сборника стандартов Огнеупоры и огнеупорные изделия в настоящем справочнике помещены только основные сведения из ГОСТов без данных о рме и размерах, которые при необходимости следует брать из действующих стандартов.  [c.13]

Существует много стандартных методов определения механических свойств металлов. Это испытания на растяжение, испытания гладких образцов на статический изгиб и надрезанных образцов на ударный изгиб, определение твердости металла, испытание на длительную прочность и многие другие. Основное назначение этих испытаний состоит в получении количественных характеристик металла, необходимых для выполнения инженерных расчетов. Часть методов предназначена для получения характеристик металла, которые хотя и не участвуют как количественные в расчетах на прочность, но используются для качественной оценки работоспособности изготовляемых из него деталей или для установления соответствия металла техническим условиям на его поставку.  [c.88]

Изучите основные методы определения механических свойств металлов и физический смысл полученных характеристик. При рассмотрении разрушения металлов особое внимание уделите хрупкому разрушению, как наиболее  [c.5]

Исследуем аналитическими и численными методами задачу о радиальных колебаниях цилиндрической массы жидкости, совершающей циркуляционное движение [3]. Она допускает полное интегрирование в квадратурах и определение основных характеристик колебаний существенно нелинейной системы, обладающей интересными механическими свойствами.  [c.3]


Контроль качества сварного соединения с помощью образцов-свидетелей. Для контроля качества сварных соединений применяют периодические испытания контрольных технологических образцов-свидетелей. Эти образцы удобны для проведения испытаний и измерений, и их легко изготовить. При обеспечении одинаковых условий сварки образцов и сварных изделий (однородность материала, подготовка свариваемых поверхностей, режим сварки и др.) можно по измеренным характеристикам сварного соединения образцов судить о качестве сварного соединения готовых изделий. Качество сварки на контрольных образцах оценивают по результатам испытаний и измерений, проводимых соответственно требованиям, предъявляемым к сварным соединениям. Кроме механической прочности, нередко предъявляются требования особых свойств. Например, сохранение электрических свойств одного из металлов без изменения их в зоне сварного соединения или сохранение оптических свойств в сварной зоне и геометрических размеров изделий, получаемых способом ДС кварцевых элементов, и т. д. В ряде случаев к сварным соединениям не предъявляются повышенные требования по прочности. Например, для элементов электродов электролизеров, изготовленных способом ДС из пористых и сетчатых материалов, основной является электрохимическая характеристика, полученная при различных плотностях тока. Имея указанные выше данные, необходимо провести статистическую обработку результатов испытаний и измерений, используя математические методы. Основной задачей такой обработки является оценка среднего значения характеристики того или иного свойства и ошибки в определении этого среднего, а также выбор минимально необходимого количества образцов (или замеров) для оценки среднего с требуемой точностью. Эта задача является стандартной для любых измерений и подробно рассматривается во многих руководствах [8]. Следует иметь в виду, что, несмотря на одинаковые условия сварки образцов и изделий, качество соединения может быть различным по следующим причинам. При сварке деталей, имеющих значительно большие размеры по сравнению с контрольными образцами, возможны неравномерность нагрева вдоль поверхности соединения, а также неравномерность передачи давления. Образцы и изделия вообще имеют различную кривизну свариваемых поверхностей, что не обеспечивает идентичности условий формирования соединения. В ряде случаев, особенно для соединений ответственного назначения, перед разрушающими испытаниями образцов и изделий целесообразно, если это возможно, проводить неразрушающий контроль качества сварного соединения, а также другие возможные исследования для установления корреляции между различными измеряемыми характеристиками. Основные методы определения механических свойств сварного соединения и его отдельных зон устанавливает ГОСТ 6996—66. Имеются стандарты для испытаний на растяжение, ударную вязкость, коррозионную стойкость и т. д. [18]. В этих ГОСТах даны определения характеристик, оцениваемых в результате испытания, типовые формы и размеры образцов, основные требования к испытательному оборудованию, методика проведения испытания и подсчета результатов.  [c.249]

Работоспособность конструктивных элементов оборудования представляет собой очень широкое и комплексное понятие, охватывающее возможность выполнять свои рабочие функции без разрушений и аварий в течение длительного, но определенного и ограниченного времени. При этом должна быть обеспечена безопасность и надежность эксплуатации, соответствующая объектам такого ответственного назначения, как сосуды и аппараты, работающие под внутренним давлением. При оценке работоспособности конструктивных элементов аппаратов необходимо опираться на данные о реальной их дефектности и данные о реальных механических характеристиках металла с учетом эффектов старения. Диагностическое оборудование должно давать возможность производить измерения всех основных параметров повреждаемости, определяющих работоспособность элементов. Необходимо иметь методы, позволяющие оценивать работоспособность по данным о дефектах, свойствах металла в процессе эксплуатации, параметрах нагруженности с учетом перепадов давления, состояния коррозионной защиты и др.  [c.277]

Испытание качества покрытий также включает в себя и определение их антикоррозионных свойств. Основные методы коррозионных испытаний были рассмотрены в гл. III. Другие методы (механические испытания, снятие электрических и оптических характеристик, электрохимические измерения, испытания с применением радиоактивных изотопов, определение состава коррозионных слоев при помощи электронной дифракции или электронного микрозонда) применяются в особых случаях. Оценка качества покрытий в значительной мере зависит от правильности метода исследования, а также от продолжительности испытаний.  [c.233]

Благодаря большой чувствительности УЗ-волн к изменению свойств среды с их помощью регистрируют дефекты, не выявляемые другими методами. Возможны различные варианты УЗ-методов, осуществляемые в режиме бегущих и стоячих волн, свободных и резонансных колебаний, а также в режиме пассивной регистрации упругих колебаний, возникающих при механических, тепловых, химических, радиационных и других воздействиях на объект контроля. При обработке информации могут быть определены различные характеристики УЗ-сигналов - частота, время, амплитуда, фаза, спектральный состав, плотности вероятностей распределения указанных характеристик. Наконец, простота схемной реализации основных функциональных узлов позволяет соз -дать простые и легко переносимые приборы для УЗ-контроля, имеющие автономные источники питания, рассчитанные на многие месяцы работы в полевых условиях. Отмеченные достоинства УЗ-метода в полной мере реализуются при проектировании и эксплуатации УЗ-приборов и систем НК только при правильном и достаточно глубоком понимании физических основ УЗ-контроля. Даже при автоматизированном УЗ-контроле остается значительной роль человеческого фактора в определении оптимальных условий контроля, интерпретации его результатов и обратном влиянии контроля на технологический процесс. Не менее важным является и дальнейшее развитие УЗ-метода с целью улучшения основных показателей его качества - чувствительности и достоверности - применительно к конкретным задачам технологического и эксплуатационного контроля.  [c.138]


Исходя из практических потребностей промышленности, государственными стандартами (ГОСТ) установлены для разных видов материалов определение их сорта, а для каждого сорта предусмотрены его разновидности, характеризуемые марками. Так, для чугуна предусмотрены сорта серый чугун, ковкий чугун, высокопрочный чугун, антифрикционный чугун и некоторые другие а для такого сорта, как серый чугун, установлены марки СЧОО, СЧ12—28 и др., всего 10 марок. Марки материалов обозначаются цифрами, буквами или их сочетанием, которые условно и характеризуют качество материала. Сама же характеристика материала содержится в стандарте, устанавливающем требования к данному материалу. Например, марка Ст.З указывает только порядковый номер углеродистой стали обыкновенного качества, а полная качественная характеристика этой стали (способ получения, механические свойства, методы испытаний и др.) изложена в ГОСТе 380—60. В ряде случаев марка содержит основную характеристику материала, например, м ка 20 углеродистой качественной конструкционной стали по ГОСТу 1050 60 указывает, что эта сталь содержит в среднем 0,20% углерода.  [c.57]

Уже проведение кратковременных испытаний на растяжение при высоких температурах в вакууме показало, что предварительная обработка и способ получения молибдена и его сплавов оказывают существенное влияние на характеристики механических свойств. Так, рекристаллизационный отжиг заметно снижает предел прочности при ко.мнатной и повышенных те.мпературах и повышает пластичность в интервале температур 815—I ЮО С (фиг. 175). Даже разница в условиях спекания порошкообразного молибдена (в вакууме или в водороде) оказывает определенное влияние на механические свойства. Сравнение кривых деформации образцов молибдена, изготовленных методом порошковой металлургии и путем плавки в вакуумной печи, показано на фиг. 176. При понижении температуры испытания влияние способа изготовления молибдена на ход кривых деформации проявляется особенно резко. Это послужило основанием к проведению серийных испытаний молибдена на растяжение при различных температурах (фиг. 177) оказалось, что критическая температура перехода молибдена из вязкого в хрупкое состояние (определялась в основном по значениям относительного сужения) достаточно высока, и это следует учитывать при конструктивных расчетах. Дальнейшие испытания показали также, что критическая температура зависит от скорости деформации, условий нагружения, величины зерна и наличия загрязнений, в первую очередь углерода, кислорода и азота, образующих с молибденом твердый раствор.  [c.764]

Для оценки демпфирующих свойств покрытий применяют методы динамической петли гистерезиса, свободных затухающих и вынуладенных колебаний в зоне резонанса [10, с. 7]. Покрытию, нанесенному на подложку, сообщают вибрации определенной амплитуды и частоты и находят логарифмический декремент амплитуды и частоты или коэффициент диссипации — основные характеристики механических потерь.  [c.80]

Расчет энергии связи в кристаллах — безусловно, квантово-механическая задача. Тем не менее установлено, что для некоторых типов твердых тел в достаточно хорошем приближении энергия связи может быть определена и на основе классического рассмотрения. К таким относятся кристаллы, распределение зарядов в которых может быть представлено в виде совокупности периодически расположенных точечных зарядов (ионов) или диполей. Возникающие в этих случаях типы связи называют соответственно ионной или ван-дер-ваальсовой (иногда — дипольной). В то же время сведение квантовомеханической задачи к классической оказалось невозможным в случае, когда плотность электронов в межионном пространстве достаточно велика, и электроны нельзя рассматривать как включенные в точечные (или почти точечные) ионы. Методы определения характеристик связи и физических свойств кристаллов с таким распределением электронов основываются непосредственно на квантовой теории (включая квантовую статистику). Анализ показал, что основными типами связи в этих случаях являются металлическая, характеризующаяся в первую очередь отсутствием направленности, и ковалентная, важным признаком которой является направленность. Помимо этого в последние годы выделяют в особый YHn водородную связь, имеющую важное значение при рассмотрении биологических соет динений.  [c.20]

Пластические массы (текстолит, гетинакс, стеклотекстолит, древесно-волокнистые пластики, волокнит, винипласт, оргстекло, полиэтилен, пенопласт, эпоксидная смола и многие другие) используются в качестве отделоч1Ных материалов и для различных изделий (трубы, краны, соединительные части, детали интерьеров, машин и конструкций и т. д.). Они получают все более широкое применение 1в машиностроении, строительстве, энергетике и многих других отраслях техники, что делает необходимым изучение основных механических свойств пластмасс и методов определения их главных механических характеристик. Следует иметь в виду, что некоторые механические свойства пластмасс весьм.з сильно изменяются (ухудшаются) под влиянием повышенной температуры, длительных нагрузок, влажности, циклических напряжений и времени. Эти изменения, как правило, необратимы. Для  [c.157]

Твердость оценивается сопротивлением, которое одно тело оказывает проникновению в него другого, более твердого тела. Эта характеристика отражает в себе целый комплекс механических свойств. Испытания на твердость материалов с покрытиями могут проводиться для контроля качества нанесенного слоя, выявления изменений в поверхностных участках основного металла, для оценки структурной неоднородности по сечению покрытия, с целью исследования закономерностей изнашивания покрытий, определения прочности соединения покрытия с основным металлом и т. д. Данные о твердости широко используются благодаря ряду достоинств этого метода возможность 100%-ного контроля деталей после нанесения покрытий испытания не являются разрушающими, замеры можно производить непосредственно на детали серийные приборы не сложны по устройству, производительны и удобны в эксплуатации.  [c.25]

Экспериментальные методы, применяемые для определения механических свойств материалов, должны удовлетворять некоторым основным требованиям (I) напряжения внутри образца должны определяться по экспериментально задаваемым их значениям на границе (2) напряжения в образце должны быть однородными. Если механические параметры, которые необходимо измерить, представляют собой средние характеристики поведения материала в целом, например деформации, то необходимо удовлетворять лишь первому пз двух сформулиро анных ограничений.  [c.461]

Наиболее широкое распространение получил импульсный акустический метод, основанный на определении скорости распространения упругих волн в различных структурных направлениях стеклопластика непосредственно в изделии. Многими исследователями получены эмпирические уравнения однопараме-тровой связи между механической и одной какой-либо физической характеристикой. В основном эти уравнения связывают прочность или упругость материала со скоростью распространения упругих волн. Оценка физико-механических свойств (прочность, упругость) стеклопластика в изделии только по скорости упругих волн, как правило, недостаточно надежна. Сравнительно низкое значение коэффициента корреляции и существенное отклонение фактических значений прочности от рассчитанных по корреляционному уравнению ограничивают широкое применение этого метода на практике.  [c.151]


Для определения характеристик твердости и показателей других механических свойств металла энергетического оборудования (барабанов котлов, корпусных деталей турбин, трубопроводов и др.) можно использовать переносные твердомеры. Отечественной промыи -ленностью разработаны и выпускаются переносные твердомеры для измерения твердости по методам Бринелля, Роквелла, Виккерса. Приборы закрепляют на испытуемых деталях с помощью струбцин, магнитных, ленточных или цепных захватов. Нагрузку на индентор создают с помощью руч[шй механической передачи. В табл. 8.87 приведены основные технические характеристики ujnpoKO используемых переносных твердомеров Ивановского ПО Точприборх.  [c.337]

Прибор автоматически молсет регистрировать диаграмму вдавливания в координатах Р, h, а также в координатах Pjh, h. При подсчете Н по методу Бриыелля через глубину невосстановленного отпечатка, т. е. Н = Р1(кОк), отношение P/h связано с Н постоянным для данного шара коэффициентом 1/(я 1), что позволяет просто оценить значение Н в любой точке диаграммы. Совершенствование приборов для автоматической записи диаграммы вдавливания, детальное исследование диаграмм и их связи с диаграммами растяисения представляют основную задачу при дальнейшей разработке безобразцовых методов определения механических свойств металлов по характеристикам твердости.  [c.348]

Верификаияя свойств конструкдаонных материалов (основных и сварочных) проводится на основании данных обобщенного анализа полной технической документации и с использованием неразрушающих методов определения фактических физико-механических характеристик материала.  [c.399]

Применение двух- и многослойных сталей и сплавов, обладающих взаимодополняющими физико-механическими свойствами, позволяет значительно снизить металлоемкость элементов конструкций. Проблема проектирования, создания и эксплуатации биметаллических конструкций повышенного ресурса, в частности высоконагру-женного оборудования АЭС, делает весьма актуальными экспериментальные исследования, направленные на разработку методов оценки несущей способности таких конструкций не только по интегральным характеристикам прочности, но и с учетом наличия трещиноподобных дефектов на стадиях инициации разрущения, а также распространения и остановки трещин. Развитие методов определения критериев сопротивления разрушению и их анализ необходимы для оптимизации свойств биметалла путем правильного выбора сочетания разнородных составляющих соединения, назначения технологического способа его изготовления и определения рационального соотношения толщин основного металла и плакирующего слоя. Кроме того, это необходимо при проведении расчетов на прочность и оценке ресурса биметаллических элементов конструкций, определении допускаемых размеров дефектов, выборе методов и средств дефектоскопии.  [c.107]

Механические свойства Д., характеризующие ее способность сопротивляться механич. воздействиям, м б. под[1азделены на 1) крепость, или способность сопротивляться разрушению от действия механических усилий -) упругость, или способность принимать первоначальную форму и размеры после прекращения действия сил 3) ж е с т к о с т ь, или способность сопротивляться деформированию 4) твердость, или способность сопротивляться внедрению другого твердог о тела (для большинства методов ее определения). Свойства, определяющие низкую степень перечисленных основны.х свойств, или иначе обратные и.м, м. б. соответственно названы слабость, пластичность, податлив о с т ь и мягкость. Первые три свойства могут проявляться при разных видах напряжений, из которых простыми видами являются растяжение, сжатие и сдвиг (скалывание) изгиб и кручение заключают в себе у ке нек-рый комплекс простых видов напрягкений. По характеру действия сил различают нагрузки статические при плавном медленном действии сил и дина м и ч е с к и е при действии сил со значительной ско])остью в момент соприкосновения с тч лом (удар) или со значительным ускорением. Динамич. нагрузки прп испытании материалов м. б. однократные ударные, при к-рых тело разрушается от одного удара, и вибрационные, вызывающие разрушение при многократном возде11ствии динамич. нагрузок, с ударом или без него, но с большим ускорением. Крепость ири ударной нагрузке иногда называется в п з к о с т ь ю, а крепость при вибрационной нагрузке получила название вынос л и в о с т и. Кроме перечисленных видов действия внешних сил нужно отличать еще случай весьма длительного действия статич. нагрузки, а также силы трения, вызывающие медленное разрушение (истирание) и характеризуемые величиной изнашивания. Так как Д. является материалом анизотропным, то при характеристике действия сил на нее необходимо указывать еще их направление по отношению к направлению волокон (вдоль и поперек волокон) и годовых слоев (радиальное и тангентальное направление). Механич. свойства Д. определяются путем механич. испытаний ее в большинстве случаев на малых чистых (без пороков) образцах. Получаемые в результатах таких испытаний цифры характеризуют Д. с точки зрения ее доброкачественности, но не всегда могут  [c.102]

При расчете с использованием механических характеристик металла отдельньи зон сварного соединения значение о , входящее в (14.2.3), определяют расчетным путем, зная механические свойства металла отдельных зон и размеры этих зон. Основные положения расчетного метода по определению значений о разработаны О.А.Бакши и его сотрудниками [50, 233, 335, 336]. Они состоят в следующем  [c.501]

Другие методы механических испытаний предусматривают нагрев образцов по термическим циклам сварного шва или око-лошозной зоны. Следует отметить, однако, что деформации при механических испытаниях, как правило, не соответствуют внутренним деформациям при сварке реальных соединений, что отражается на достоверности результатов испытаний [15, с. 190—198]. Помимо этого, получаемые при испытаниях характеристики являются не абсолютными, а скорее интегральными из-за неравномерности распределения деформаций при испытании деформации воспринимаются не только участками образца, находящимися в заданных условиях испытания, а распределяются на некоторой ширине или длине образца в соответствии с прочностными и пластическими свойствами кристаллизующегося или нагретого металла. Определенная таким образом пластичность сплава не характеризует относительную деформационную способность какого-то отдельного участка сварного шва, а определяет возможную деформацию всего соединения в целом. По этим причинам результаты испытаний могут быть с уверенностью распространены только на те случаи сварки реальных конструкций, когда форма сварного шва и температурное поле одинаковы с теми, что были получены на образцах, а температурные границы межкристаллического разрушения и запас пластичности в ТИХ существенно не зависят от скорости деформации. Заметное влияние на результаты испытаний оказывает вид образцов пластичность образцов из основного металла, нагретых до температуры оплавления зерен, ниже пластичности кристаллизующихся образцов.  [c.114]


Смотреть страницы где упоминается термин Основные характеристики механических свойств и методы их определения : [c.115]    [c.254]    [c.303]    [c.139]   
Смотреть главы в:

Диагностика металлов  -> Основные характеристики механических свойств и методы их определения



ПОИСК



141 —149 — Определение характеристика

228 — Характеристики механических свойств

299 — Основные характеристики

299 — Основные характеристики характеристики

434, 436 — Характеристики свойств

434, 436 — Характеристики свойств свойств

Мер основные свойства

Метод механический

Метод характеристик

Методы определения механических свойств

Механическая характеристика

Механические свойства и методы определения механических свойств

Определение характеристик механических

Основные Основные определения

Основные механические характеристики

Основные определения

Основные характеристики - Определение



© 2025 Mash-xxl.info Реклама на сайте