Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Отражение и преломление на поверхности раздела

Отражение и преломление на поверхности раздела.  [c.32]

Рис. 14.1. Отражение и преломление на поверхности раздела воздух/покрытие Рис. 14.1. Отражение и преломление на <a href="/info/26134">поверхности раздела</a> воздух/покрытие

Поляризация света при отражении и преломлении на границе раздела диэлектрик — металл. Так как для металлов п является комплексной величиной, то, согласно формулам Френеля, амплитуды как преломленной, так и отраженной волны окажутся комплексными. Это означает, что между компонентами отраженной (а также и преломленной) волны и падающей возникает разность фаз. Эта разность фаз для s- и р-компонент не является одинаковой, поэтому между S- и р-компонентами отраженной (а также преломленной) волны возникает определенная разность фаз, приведшая к эллиптической поляризации отраженной от поверхности металла волны. Как известно из раздела механики курса общей физики , сложение двух взаимно перпендикулярных колебаний с отличной от нуля разностью фаз между ними в общем случае приводит к так называемой эллиптической поляризации , В эллиптически поляризован-  [c.63]

Если длина волны в первой среде соизмерима с шагом неровностей, то коэффициенты отражения и преломления на границе раздела первой среды с твердым телом коррелируют с величиной неровностей. Это позволяет свести измерение шероховатости поверхности к измерению амплитуды отраженных импульсов. На рис. 91 приведена зависимость между коэффициентом отражения по амплитуде R и шероховатостью поверхности по ГОСТ 2789—73 . Подобные зависимости наблюдаются и для длительности и спектральной плотности отраженных импульсов.  [c.286]

Действие большинства ослабителей, применяемых в импульсной фотометрии, основано на делении падающего светового потока, например, при отражении и преломлении на границе раздела двух диэлектриков, при полном внутреннем отражении света, за счет регулирования величины промежутка между поверхностями слоев диэлектрика.  [c.27]

Сейсмология нуждается в изучении законов распространения волн от очага землетрясения до земной поверхности и тех изменений, которые претерпевают эти волны при отражении и преломлении на границах раздела. По наблюдениям движений земной поверхности надо получить наибольшую информацию о механизме очага и, в частности, оценить энергию, освобождающуюся при землетрясении. Большое значение имеет изучение структуры земной коры (или ее верхнего слоя) на основании наблюдений за распространением волновых возмущений. Эти задачи чаще всего решаются на основе представления о грунте как упругом теле.  [c.291]

Рассмотрим плоскую волну, падающую на поверхность анизотропного кристалла. В общем случае преломленная волна представляет собой смесь двух независимых волн. В одноосном кристалле преломленная волна, вообще говоря, является смесью обыкновенной и необыкновенной волн. При отражении и преломлении на плоской границе раздела граничные условия требуют, чтобы все волновые векторы лежали в плоскости падения и чтобы их тангенциальные составляющие вдоль границы раздела была равны друг другу. Это кинематическое условие остается справедливым и при преломлении на границе анизотропного кристалла.  [c.98]


Соотношения (34) — (37) представляют условия непрерывности напряжений и скоростей на поверхности раздела в тех случаях, когда падающие, отраженные и преломленные волны характеризуются скачками первых производных от указанных переменных. Так, в рассмотренном в разд. 5 примере амплитуды относятся к значениям скачков именно этих производных первого порядка. Если, однако, производные первого порядка  [c.181]

Поверхностные волны обусловлены колебанием частиц со значительной амплитудой на поверхности тела и постепенным ее уменьшением при удалении частиц от поверхности. Если продольная волна падает перпендикулярно на плоскую границу раздела двух сред, обладающих различным акустическим сопротивлением, то одна часть ее энергии переходит во вторую среду, а другая отражается в первую. Доля отраженной энергии тем больше, чем больше разность акустических сопротивлений сред. Если продольная волна попадает на границу раздела двух твердых сред под углом, то отраженная и прошедшая волны преломляются и трансформируются в продольные и сдвиговые, распространяющиеся в первой и второй средах под различными углами. Законы отражения и преломления волн аналогичны законам геометрической оптики.  [c.194]

Когда звуковая волна падает на границу раздела между двумя различными средами, она отражается и преломляется. Движение в первой среде является тогда наложением двух волн (падающей и отраженной), а во второй среде имеется одна (преломленная) волна. Связь между всеми тремя волнами определяется граничными условиями на поверхности раздела.  [c.362]

Это равенство представляет собой содержание так называемого принципа взаимности давление, создаваемое в точке В источником, находящимся в точке А, равно давлению, создаваемому в А таким же источником, находящимся в В. Подчеркнем, что этот результат относится, в частности, и к тому случаю, когда среда представляет собой совокупность нескольких различных областей, каждая из которых однородна. При распространении звука в такой среде на поверхностях раздела различных областей происходит отражение и преломление. Таким образом, принцип взаимности применим и в тех случаях, когда на пути своего распространения от точки Л к В и обратно волна испытывает отражения и преломления.  [c.412]

При падении на поверхность раздела сред сферической волны отражение и преломление происходят так, как будто каждый из падающих лучей является ограниченной плоской волной. Например, в случае границы раздела двух жидкостей (рис. 17) лучи ОА и ОВ, углы падения которых меньше критического, отражаются и преломляются по обычным законам. Лучи 0D и ОЕ, угол падения которых превышает критический, испытывают незеркальное отражение. Чем ближе значения угла р к критическому, тем больше смещение DD и ЕЕ. Для луча, угол падения которого равен критическому, смещение стремится к бесконечности.  [c.198]

При попадании луча на поверхность раздела, двух сред он может отразиться и преломиться (рис. 6.8). Углами падения, отражения и преломления г называются углы между нормалью к поверхности в точке падения луча и соответственно падающим, отраженным и преломленным лучами.  [c.244]

Распространение гармонических волн в упругих телах при наличии границы. Существование двух типов волн в неограниченной упругой среде вызвало большой интерес к проблеме влияния граничных поверхностей на процесс распространения гармонических волн. По существу, задача об отражении и преломлении упругих волн на границе раздела двух полупространств — одна из основных задач в упругой теории света — раскрыла интересные проявления факта наличия двух типов волн в упругом теле. Так, оказалось, что при наклонном падении на свободную поверхность упругого полупространства продольной волны кроме отраженной под тем же углом продольной возникает и поперечная волна. Более того, при определенном угле падения продольной волны всю энергию уносит только отраженная поперечная волна.  [c.11]


Некоторые новые данные о роли границы в волновых процессах в упругих телах раскрываются при анализе отражения и преломления плоских волн на поверхности раздела двух полупространств из разных материалов. Анализ таких процессов естественно начать с простейшего случая SH-волн.  [c.58]

Предположим, что электромагнитная плоская волна, распространяющаяся в среде 1 в направлении fii, падает на поверхность раздела между средами-1 и 2 под. углом падения 0i (острый угол между направлением распространения Qi и нормалью к поверхности раздела). Часть излучения будет отражаться, а остальная часть будет распространяться в среде 2 в направлении Q2 под углом преломления 62 (острый угол между направлением Q2 и нормалью к поверхности раздела). На фиг. 2.1 показаны углы падения 0] и преломления 02. Если поверхность раздела является идеальной,- то законы отражения и преломления могут быть выведены из уравнений Максвелла.  [c.67]

Фиг. 2.1. Отражение и преломление падающей плоской волны на поверхности раздела между двумя средами в случае, когда эта поверхность является Фиг. 2.1. Отражение и преломление падающей <a href="/info/10059">плоской волны</a> на <a href="/info/26134">поверхности раздела</a> между двумя средами в случае, когда эта поверхность является
Приведенные значения р показывают, что величина отраженного светового потока быстро возрастает при росте показателя преломления вместе с тем на поверхности раздела сред с близкими показателями преломления — на поверхности склейки — потери на отражение убывают очень быстро, становясь почти на два порядка ниже, нежели на поверхностях, разделяющих среды стекло и воздух. Так, при п = 1,5 и п = 1,6 р = 0,1%. Поэтому совершенно естественно возникает вопрос о снижении потерь света на отражение.  [c.98]

Рис. 2. Фронты падающей, отраженных и преломленных волн на поверхности раздела S. Рис. 2. Фронты падающей, отраженных и <a href="/info/18512">преломленных волн</a> на поверхности раздела S.
Волны растяжения возникают в объектах типа стержня. Тогда частицы колеблются вдоль направления распространения волн и перпендикулярно к нему. Поверхностные волны обусловлены колебанием частиц со значительной амплитудой на поверхности тела и постепенным ее уменьшением при удалении частиц от поверхности. Если продольная волна падает перпендикулярно на плоскую границу раздела двух сред, обладающих различным акустическим сопротивлением, то одна часть ее энергии переходит во вторую среду, а другая отражается в первую. Доля отраженной энергии тем больше, чем больше разность акустических сопротивлений сред. Если продольная волна попадает на границу раздела двух твердых сред под углом, го отраженная и прошедшая волны преломляются и трансформируются в продольные и сдвиговые, распространяющиеся в первой и второй средах под различными углами. Законы отражения и преломления волн аналогичны законам геометрической оптики. Свойства упругих волн учитываются при разработке технологии и средств контроля изделий.  [c.58]

Закон отражения и преломления. Если лучи, распространяясь в определенной среде, встречают среду, отличную по показателю преломления от первоначальной, то они на поверхности раздела этих сред частично отражаются и преломляются или полностью отражаются в определенном направлении [100]. При этом соблюдаются следующие закономерности  [c.64]

Световоды — жгуты, скрученные из волокон, имеюш,их сердцевину и оболочку из стекол разного состава, с различными показателями преломления причем показатель преломления сердцевины больше показателя преломления оболочки п, (рис. 20.11). Световой луч, падая из среды, оптически более плотной (сердцевина), на поверхность раздела со средой, оптически менее плотной, под углом, большим предельного, испытывает полное внутреннее отражение и, многократно отражаясь,  [c.199]

Геометрическая оптика, отвлекаясь от волновой природы света, описывает его распространение с помощью лучей. При этом оказывается, что поведение лучей при Я. 0 определяется теми же законами, что и для плоских волн законы преломления и отражения, установленные для плоской волны, падающей на плоскую границу раздела, справедливы в приближении геометрической оптики при более общих условиях. Например, при падении луча на поверхность линзы направление, интенсивность и состояние поляризации отраженного и преломленного лучей можно найти из соответствующих формул для плоских волн.  [c.329]

Переходим теперь к отражению и преломлению волн искажения, падающих на плоскость раздела. Предположим, что падающая волна с амплитудой распространяется параллельно плоскости ху и встречает под углом плоскость раздела, совпадающую с плоскостью Как и в случае отражения от свободной поверхности, надо уточнить направление колебаний в падающей волне искажения, причем следует рассмотреть два различных случая, именно, когда колебания параллельны оси Z и когда они перпендикулярны ей, т. е. происходят в плоскости лг .  [c.41]


Характерными особенностями в р<.ссеянии падающего света обладает часто используемое в фотометрических й оптических приборах молочное стекло. Молочное стекло отличается от прозрачного тем, что в процессе его выработки в остывающей прозрачной массе стекла появляется очень большое число мелких (порядка 1 мкм) частиц иного показателя преломления, которые делают стекло непрозрачным и напоминающим по внешнему виду твердое молоко (откуда и его название). Если из такого стекла приготовить пластинку с полированными поверхностями, то и в отношении светорассеяния эта пластинка будет иметь много общего с чистой поверхностью молока. От окиси магния, сернокислого бария и других белых порошков молочное стекло (и молоко) отличается тем, что в первом случае светорассеивающие частицы находятся в воздухе, а во втором — в веществе с показателем преломления, большем единицы (стекло, вода). Гладкая поверхность раздела воздуха и стекла (или воздуха и воды) отражает зеркально часть падающего света в соответствии с формулами Френеля (см. дальше 3-3). Основная часть светового потока входит внутрь стекла и рассеивается в массе мелких неоднородностей. В результате некоторая доля потока выходит обратно (или проходит через слой), претерпевая новое отражение и преломление на поверхности раздела. Часть потока поглощается в толще стекла.  [c.71]

Рис. 3. Графический метод определения углов отражения и преломления на границе раздела кристаллических сред 1 ш 2. Ь, FT к ВТ поверхности волновых векторов для квазипродольных, быстрых и медленных нвазииоперечных волн соответственно. Рис. 3. <a href="/info/429204">Графический метод определения</a> углов отражения и преломления на <a href="/info/126816">границе раздела</a> кристаллических сред 1 ш 2. Ь, FT к ВТ <a href="/info/246794">поверхности волновых векторов</a> для квазипродольных, быстрых и медленных нвазииоперечных волн соответственно.
Эллипсометрия . Поскольку разность фаз между в- и р-ком-понентами отраженной (а также преломленной) волны определяется оптическими параметрами металла п и х, то очевидно, что характер поляризации отраженной (а также преломленной) волны будет определяться именно этими параметрами. Следовательно, изучая состояния поляризации света при его отражении или преломлении на границе раздела, можно высокочувствительным поляризацион-но-оптическим методом исследовать поверхность металлов, в частности границ раздела различных сред (твердых, жидких, газообразных). Этот метод исследования поверхностей и границ раздела различных сред, нашедший широкое применение за последнее десятилетие, называется эллипсометриеи.  [c.64]

Высокоэнергетические динамические и импульсные воздействия на элементы конструкций пз однородных н композиционных материалов приводят к сложным волновым явлениям. Они характеризуются диссипативными, дисперсионными процессами, взаимодействием упругоп.ластических и ударных волн в результате многократных отражении и преломлений на границах и поверхностях раздела сред, а также возможными процессами разрушения материала, компонентов композита или конструкции в целом. Исто-рпчески исследовательский интерес к этим вопросам связан с проблемой пробивания [38, 55] и моделированием реакций кон-струкцт на взрывные нагрузки [143]. Для решения этих задач разработаны как простые феноменологические модели [102, 115, 143], так и общие упругопластические и гидродинамические модели, физические представления об ударных волнах [62], теории динамических волновых процессов и удара, представленных в монографиях [29, 38, 48, 55, 68, 73, 108, 126, 144, 158] и ряде обзоров [76, 97, 98, 106, 175].  [c.26]

Исследуем отражение и преломление плоской квазимонохро-матической волны, падающей на поверхность пл 1стины толщиной I (рис. 5.26). Рассмотрение будет простым, так как надо лишь установить зависимость разности хода А от геометрических параметров (угол падения волны и толщина пластинки). Более подробное изложение (установление фазовых и амплитудных соотношений, а также поляризация волны) не требуется, хотя, используя формулы Френеля, задачу можно решить сколь угодно полно. Правда, следует помнить, что формулы (2.9)—(2,11) были получены для одной границы раздела между двумя беско-  [c.210]

Из формул (135.9) и (135.11) следует, что при любом значении углов ф и ф знаки И Ец н знакн й1 и Eix совпадают между собой. Это означает, что на поверхности раздела и фазы их совпадают, т. е. преломленная волна во всех случаях сохраняет без изменения фазу падающей. Для компонент отраженной волны (Ег] и ,-х) дело обстоит сложнее. Как показывают формулы (135.8) и (135.10), в зависимости от утла падения и значения показателя преломления граничных сред будут иметь место различные соотношения, сведенные в таблицу.  [c.475]

Более общий подход к изучению законов отражения и преломления электромагнитной волны может быть осуществлен на основе уравнений Максвелла (см. 2.1). Однако уравнения Максвелла были выведены для областей пространства, в которых физические свойства среды (характеризующиеся величинами е и р) непрерывны. В оптике же часто встречаются случаи, когда эти свойства резко меняются на одной или нескольких поверхностях, поэтому необходимо вводить граничные условия. Выше мы отмечали (см. 2.1), что при отсутствии поверхностных токов и свободных поверхностных зарядов на границе раздела уравнения Максвелла должны удовлетворять гранич[1ым условиям, т. е. равенству тангенциальных составляющих векторов Е и Н. Отношение нормальных составляющих обратно пропорционально соответствующим значениям е или р, т. е. г Ет = г2Е2п, р Ящ = ргГ/гп- Так как в оптике обычно Р1 = Ц2=Г то нор.мальные составляющие вектора Н равны Я]т =//2)2.  [c.11]

Угол Брюстера, при котором свет, линейно поляризованный в плоскости падения, имеет минимальное отражение от поверхности диэлектрика, равен а = ar tg (1/и) п — показатель преломления диэлектрика). При падении луча света из среды более плотной (с большим показателем преломления) на границу раздела с менее плотной средой при углах Р > ar sin (1/п), возникает явление полного внутреннего отражения (ПВО).  [c.50]

Трансформация УЗ-колебаний. При наклонном падении (под углом Р) продольной волны из одной твердой среды на границу с другой твердой средой на границе раздела происходят отражение, преломление и трансформация волны и в общем случае возникают еще четыре волны (рис. 1.10, а) две преломленные — продольная и поперечная (скорости i и j) и две отраженные — продольная и поперечная (скорости Сц и Сц). Направления распространения отраженных и преломленных волн отличаются от направления распространения падающей волны. Однако все эти направления лежат в одной плоскости —плоскости падения. Плоскостью падения называют плоскость, образованную падающим лучом и нормалью к отражающей поверхности, восстановленной в точке падения луча. Углы, образованные с этой нормалью, называют соответственно углами падения, отражения и преломления (рис. 1.10, б). Эти углы можно определить исходя из следующих рассуждений. При падении плоской волны под углом Р с фронтом AD на границу раздела двух сред она отражается под углом 0отр с фронтом BE и после преломлеппя под углом 0 p распространяется во второй среде с фронтом ВС. Времена распространения волны в первой среде от точки D до точки В и от точки А до точки Е в первой среде и от точек В А до точки С во второй среде равны между собой. Рассмотрев треугольники AB , ABD и АВЕ, найдем  [c.24]


При падении ультразвуковой волны на границе раздела двух сред с различными плотностями и скоростями ультразвука часть энергии проходит во вторую среду, а оставшаяся отражается обратно в первую. Как показывают работы [1], [3], [4], [5] и [6], энергетические соотношения при переходе волн через границы раздела в общем случае имеют довольно сложный бид. Характер отражения и преломления существеиным образом зависит от величины угла между направлением распространения волны и нормалью к поверхности раздела. Согласно уравнениям [1] Релея, выведенным им для определения интенсивности в отраженной и преломленной волнах, имеем  [c.293]

Приведенные зависимости для углов падающей, отраженной и преломленной волн, а также соотношения между их амплитудами и фазами можно получить путем теоретического рассмотрения процесса на границе раздела, исходя из уравнений Максвелла (1-37). Наиболее простой задача получается для двух диатермических (непоглощающих) сред. В этом случае соотношения между амплитудами падающей, отраженной и преломленной волн выражаются известными формулами Френеля. На основании этих формул для естественного (не-поляризованного) излучения отражательная способность (коэффициент отражения) оптически гладкой поверхности J (<р) зависит от угла падения следующим обра-  [c.43]

Используя приведенные законы преломления и отражения и составив баланс электромагнитной энергии для поверхности, можно получить соотношение между интенсивностями падающего, отраженного и преломленного излучения. На элементарную площадку dF границы раздела двух сред (рис. 1-5) падает под углом ф в элементарном телесном угле rf oi следующее количество энергии (в единицу времени и на единицу частотного интервала)  [c.44]

ОРБИТА электронная — траектория движения электрона вокруг ядра в атоме или молекуле ОРБИТАЛЬ —волновая функция одного электрона, входящего в состав электронной оболочки атома или молекулы и находящегося в электрическом иоле, создаваемом одним или несколькими атомными ядрами, и в усредненном электрическом поле, создаваемом остальными электронами ОСЦИЛЛЯТОР как физическая система, совершающая колебания ангармонический дает колебания, отличающиеся от гармонических гармонический осуществляет гармонические колебания квантовый имеет дискретный спектр энергии классический является механической системой, совершающей колебания около положения устойчивого равновесия) ОТРАЖЕНИЕ [волн происходит от поверхности раздела двух сред, и дальнейшее распространение их идет в той же среде, в которой она первоначально распросгра-нялась диффузное характеризуется наличием нерегулярно расположенных неровностей на поверхности раздела двух сред и возникновением огражен1 ых волн, идущих во всех возможных направлениях зеркальное происходит от поверхности раздела двух сред в том случае, когда эта поверхность имеет неровности, размеры которых малы по сравнению с длиной падающей волны, а направление отраженной волны определяется законом отражения наружное полное сопровождается частичным поглощением световой волны в отражающей среде вследствие проникновения волны в Э1у среду на глубину порядка длины волны полное внутреннее происходит от поверхности раздела двух прозрачных сред, при котором преломленная волна полностью отсутствует]  [c.257]

УГОЛ естественною откоса — угол трения для случая сьшучей среды зрения — угол, под которым в центре глаза сходятся лучи от крайних точек предмета или его изображения краевой — угол между поверхностью тела и касательной плоскостью к искривленной поверхности жидкости в точке ее контакта с телом Маха — угол между образующей конуса Маха и его осью падения (отражения или преломления)— угол между направлением распространения падающей (отраженной или преломленной) волны и перпендикуляром к поверхности раздела двух сред, на (от) которую (ой) падает (отражается) или преломляется волна предельный полного внутреннего отражения — угол падения, при котором угол преломления становится равным 90 прецессии — угол Эйлера между осью А неподвижной системы координат и осью нутации, являющейся линией пересечения плоскостей xOj и x Of (неподвижной и подвижной) систем координат сдвига—мера деформации скольжения — угол между нада ющнм рентгеновским лучом и сетчатой плоскостью кристалла телесный — часть пространства, ограниченная замкнутой кони ческой поверхностью, а мерой его служит отношение нлоща ди, вырезаемой конической поверхностью на сфере произволь ного радиуса с центром в вершине конической поверхности к квадрату радиуса этой сферы трения—угол, ташенс которого равен коэффициенту трения скольжения) УДАР [—совокупность явлений, возникающих при столкновении движущихся твердых тел с резким изменением их скоростей движения, а также при некоторых видах взаимодействия твердого тела с жидкостью или газом абсолютно центральный <неупругий прямой возникает, если после удара тела движутся как одно целое, т. е. с одной и той же скоростью упругий косой и прямой возникают, если после удара тела движутся с неизменной суммарной кинетической энергией) ]  [c.288]

Здесь штрихи относятся к отраженным волнам. Подставив выражения (21) и (31) для скачков на каждом из фронтов, получим два векторных уравнения (соответствующих четырем скалярным уравнениям в плоскости Q относительно восьми неизвестных четырех амплитуд Л (или — А) отраженных и преломленных быстрых и медленных волн и четырех углов наклона 6 фронтов этих волн (см. рис. 2). Необходимые дополнительные соотношения получаются из условий синхронизации проекций скоростей волновых фронтов S на поверхность раздела 5 (закон Снелла)  [c.174]


Смотреть страницы где упоминается термин Отражение и преломление на поверхности раздела : [c.496]    [c.26]    [c.127]    [c.166]    [c.42]    [c.346]    [c.43]    [c.264]    [c.222]   
Смотреть главы в:

Оптический метод исследования напряжений  -> Отражение и преломление на поверхности раздела



ПОИСК



Отражение

Отражение и преломление плоских волн па поверхности раздела

Отражение от поверхности

Отражение. Преломление

Поверхность раздела

Преломление



© 2025 Mash-xxl.info Реклама на сайте