Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Зависимость свойств материалов от времени

Зависимость свойств материалов от времени  [c.223]

ЗАВИСИМОСТЬ свойств МАТЕРИАЛОВ ОТ ВРЕМЕНИ  [c.225]

Как упоминалось в главе И, напряжения и деформации, возникающие в теле под нагрузкой, зависят не только от величины нагрузки, но также и от характера изменения нагрузок во времени. Связано это с тем, что физическое состояние тела, достигаемое при сравнительно быстром приложении нагрузки, не является равновесным состоянием для микрообъемов, перегруппировка молекул и атомов из исходного состояния в окончательное, соответствующее равновесной конфигурации при данных внешних условиях, требует более или менее длительного времени, причем некоторые из этих переходных процессов протекают сравнительно медленно. Поэтому наиболее четко выраженной зависимости механических свойств материалов от времени можно ожидать в двух крайних случаях при очень быстром деформировании, когда возможно запаздывание даже наиболее быстро протекающих переходных процессов, и при длительном приложении нагрузки, когда проявляется действие разнообразных микроскопических и субмикроскопических механизмов. Поведение материалов при импульсивных нагрузках типа удара, взрыва, и т. п. будет рассмотрено в следующей главе. Здесь рассматриваются главным образом явления, протекающие в нагруженном теле в течение более или менее длительного времени.  [c.223]


Приведенные сведения о зависимости свойств материалов от температуры не отражают фактора времени, т. е. предполагается, что характеристики получены в результате обычных кратковременных испытаний. При высокой температуре фактор времени играет очень существенную роль — специальные эксперименты и опыт эксплуатации деталей, работающих при высоких температурах, показывают, что при постоянной нагрузке с течением времени пластическая деформация возрастает, происходит как бы медленная текучесть металла. При этом напряжения в образце (или детали) могут быть ниже не только предела текучести, но и предела пропорциональности, соответствующих температуре эксперимента или эксплуатации. Указанное явление носит название ползучести. Для стали ползучесть проявляется лишь при высокой температуре (ориентировочно выше 300°), а для некоторых цветных металлов и сплавов с этим явлением приходится считаться при слегка повышенной и даже при комнатной температуре.  [c.78]

Оптимальные режимы, резания определяют только в результате исследования режущих свойств инструментальных материалов. Существовавшие до последнего времени методы определения режимов резания требуют, как правило, длительного времени и большого расхода металла. Вследствие этого во многих случаях существующие методы исследования не используются, и режимы резания устанавливаются приближенно, без учета зависимости износа инструмента от времени работ, от скорости резания и других факторов (подача, объем снятой стружки и т. п.).  [c.91]

Анализ графических зависимостей износа вкладышей подшипников с рабочими слоями из различных антифрикционных материалов (рис. 2.8) позволяет отметить, что изнашиваемость сплава A M превышает изнашиваемость сплавов Св. Бр. и АО-20 в начале испытаний (/<5 ч) на 72 и 78%, после 50 ч испытаний на 13 и 31,5% соответственно. Зависимость износа вкладышей от времени работы в среде, содержащей абразив, выражается нелинейной функцией, параметры которой определяются свойствами материалов рабочей пары вал — вкладыш.  [c.71]

У литых металлических тормозных материалов резко выражена склонность к заеданию и свариванию при высоких температурах, что вызывает большой износ трущейся пары. На рис. 18 показана принципиальная зависимость момента трения от времени торможения (лучшим является материал, свойства которого характеризует Кривая 2).  [c.57]

Практические методы расчета тонких оболочек из вязкоупругих материалов на устойчивость [1] основаны иа полуэмпирических зависимостях, не учитывающих вязкоупругие свойства материалов, а следовательно, и зависимость критической нагрузки от времени t. Более обоснованным подходом к решению этой проблемы является применение линейной наследственной теории. Однако известные решения, построенные на этой теории, например [2], основаны на использовании экспоненциального представления функций времени, недостаточно полно характеризующего вязкоупругие свойства материала. Кроме того, эти решения довольно громоздки и трудно применимы на практике. В данной работе предлагается решение задачи устойчивости изгибаемой замкнутой круговой цилиндрической оболочки из вязкоупругого материала методом параметров [3] при аппроксимаций функций ползучести II(f) и коэффициента поперечной деформации v(f) линейным сплайном.  [c.43]


В табл. 9.2—9.4 представлены результаты испытаний на вибрационной установке Мичиганского университета [19—21] с вибратором, имеющим экспоненциальный профиль. Испытания проводились при низких и повышенных температурах, причем образцы погружались в воду, жидкий сплав свинца с висмутом и ртуть. В табл. 9.5—9.7 приведены механические свойства материалов при температурах 21, 260 и 815 °С. Разрушение оценивалось по средней глубине проникновения, а также по потерям веса образца. Эта средняя глубина проникновения определялась как отношение потерь объема образца к площади его поверхности, подвергавшейся действию кавитации. По существу она представляет собой удельную потерю объема. В таблицах приведена средняя скорость глубины проникновения, представляющая собой наклон кривой зависимости средней глубины проникновения от времени для материалов, имеющих линейную зависимость потерь объема от времени (обычно за исключением самого начального периода испытаний), или средняя глубина проникновения, деленная на время испытания после продолжительного испытания материалов, не имеющих такой линейной зависимости. На фиг. 9.13, 9.24 и 9.25 представлены кривые разрушения в зависимости от времени для некоторых материалов, перечисленных в табл. 9.5. Все эти результаты получены при испытаниях в воде при 21 °С. На фиг. 9.13 приведены данные для холоднокатаных и отожженных образцов медноцинковых и медноникелевых сплавов. По оси ординат отложены потери веса. На фиг. 9.24 приведены данные для углеродистой стали и ряда тугоплавких сплавов, а на фиг. 9.25 — для чистой меди и никеля в холоднообработанном и отожженном состояниях. По ординатам на фиг. 9.24 и 9.25 отложена средняя глубина проникновения.  [c.479]

При проведении прочностных расчётов пластмассовых деталей необходимо принимать во внимание Особенности их механического поведения, отличающегося от поведения таких традиционных конструкционных материалов, как металлы при нормальных температурах. Здесь в первую очередь следует отметить зависимость свойств полимерных материалов от времени и температуры. В этом смысле полимеры сходны по своему поведению с металлами при высоких температурах, также обнаруживающими при этих условиях зависимость свойств от температуры и времени. Но природа деформаций и прочности у полимеров и металлов существенно разная.  [c.104]

Зависимость свойств материалов из слюд от времени воздействия высокой температуры в вакууме  [c.86]

Твердые тела разделяются, как известно, на аморфные и кристаллические. Что касается первых, то диаграмма растяжения таких тел не носит стабильного характера она существенно зависит от времени действия сил, а сами материалы в своем поведении обнаруживают качественное сходство с вязкой жидкостью. Мы остановимся только на механизме деформирования металлов. Все металлы в том виде, в каком они применяются в машиностроении, имеют поли кристаллическую структуру, т. е. состоят из множества мелких кристалликов, хаотически расположенных в объеме. Внутри кристаллов атомы металла располагаются в определен- ном порядке, образуя правильную пространственную решетку. Система расположения атомов зависит от свойств атомов. Она меняется также в зависимости от физических условий кристаллизации.  [c.62]

Устойчивость нестационарного (зависящего от времени) поведения материала может быть рассмотрена так же, если заменить деформации и перемещения соответствующими скоростями [6, 7, 9, 10, 11]. Все практически важные материалы проявляют некоторую зависимость от времени в неупругой области. Однако для большинства композитов в типичных случаях их применения при низких и умеренных температурах удобной является гипотеза о стационарности (независимости от времени). Исключением являются композиционные материалы с металлической матрицей, предназначенные для работы при высоких температурах. В этом случае свойства ползучести принимаются во внимание в первую очередь.  [c.21]

Для определения свойств низкомодульных материалов при различных скоростях нагружения очень удобен метод, применявшийся авторами работы [10], но в несколько измененном виде. Он состоит в том, что небольшой образец нагружается динамически сжимающей нагрузкой между двумя маятниками и во время удара измеряется ускорение одного из маятников. Если сжатие образца одноосное и если трение на торцах мало, то по измеренной величине ускорения можно определить как напряжение, так и деформацию в образце в зависимости от времени. Метод применим, если жесткость маятников достаточно велика но сравнению с жесткостью исследуемых материалов.  [c.147]


Зависимость динамических характеристик от частоты. Свойства материалов можно охарактеризовать и посредством динамических модулей, зависяш,их от частоты. Эти модули определяют путем испытаний материала при напряжениях и деформациях, изменяюш,ихся во времени по синусоидальному закону. При синусоидальном изменении напряжения в линейно-вязкоупругом материале деформация изменяется тоже синусоидально, но со сме-ш,ением по фазе. Таким образом, если  [c.163]

Скорость процессов механического разрушения нагруженного твердого тела и соответственно время до разрушения зависят от структуры и свойств тела, от напрял<ения, вызываемого нагрузкой, и температуры. Существует ряд эмпирических формул, описываюш,их зависимость времени до разрыва т (или скорости разрушения Ое)от этих факторов. Наибольшее применение получила установленная экспериментально для многих материалов (чистых металлов, сплавов, полимерных материалов, органического и неорганического стекла и др.) зависимость  [c.21]

Механические свойства конструкционных материалов определяют экспериментально специальными механическими испытаниями образцов, причем вид механического испытания назначают в зависимости от условий нагружения детали, подлежащей изготовлению из данного конструкционного материала. Механические свойства стали определяют при статических, динамических и циклических режимах приложения нагрузок, а также при пониженных, нормальных или повышенных температурах. Испытуемые образцы можно нагружать по различным схемам (одноосное растяжение — сжатие, чистый или поперечный изгиб, кручение). В за-виси.мости от времени воздействия нагрузки на испытуемый образец испытания могут быть кратковременными или длительными. Почти все методы механических испытаний стали (за исключением метода испытания твердости) являются разрушающими, что исключает возможность стопроцентного контроля механических свойств деталей машин или элементов конструкций и обусловливает весьма высокие требования к точности механических испытаний образцов (или контрольных деталей).  [c.454]

Эффективность пьезокерамических материалов определяется основными параметрами пьезомодулем ( к. диэлектрической проницаемостью е, тангенсом угла диэлектрических потерь tg б, скоростью звука модулем Юнга Ею- Помимо этого, пьезокерамика должна иметь стабильные физические параметры с малой зависимостью их от времени, температуры, давления и многих других факторов. Основными требованиями к пьезоматериалам являются также более высокий диапазон рабочих температур (точка Кюри) и способность материала работать в больших электрических полях с наименьшими диэлектрическими потерями. Керамический материал должен обладать высокими физико-механическими свойствами наибольшей плотностью и наибольшими пределами прочности при сжатии изгибе а э , растяжении о ,.  [c.311]

В классической теории теплопроводности широко используется понятие автомодельности прогрева, когда единственной переменной, определяющей процесс распространения тепла, становится безразмерное число Фурье Ро = йт/г/2 или приведенная координата =у1 V ах. Преимущество такого подхода не только в уменьшении числа независимых переменных, но и в том, что позволяет отказаться во время экспериментов от определения зависимости температуры от координаты и фиксировать только ее изменение во времени, что является более простой задачей. Указанное положение лежит в основе соответствующих методик измерений теплофизических свойств материалов.  [c.68]

В ряде случаев циклического упругопластического деформирования высоконагруженных конструкций кинетика местных деформаций оказывается существенной, и при этом необходим ее учет при последовательном от цикла к циклу расчете накопленного повреждения за счет внутренней нестационарности процессов деформирования, обусловленных циклическими свойствами материалов. Кроме того, в ряде случаев внешние нестационарные условия нагружения обусловливают дополнительное изменение местных деформаций и свойств материала. При этом оказывается необходимым в зависимости от формы цикла времени (длительности) нагружения или скорости деформирования вводить в рас-  [c.260]

Входящие в описывающие кинетику деформаций зависимости (2.10)—(2.18) параметры А, А — А , В а С, как показано на основе детального анализа экспериментальных данных [13], для широкого диапазона температур испытаний зависят от механических свойств материалов и их изменения во времени при выраженном проявлении температурно-временных процессов и могут быть  [c.80]

Термореологически простые материалы. Результаты экспериментов на разнообразных вязкоупругих материалах позволяют выделить важный подкласс материалов с памятью, обычно называемых термореологически простыми материалами ). А именно среди аморфных высокополимеров, которые при заданной постоянной (во времени и в пространстве) температуре приближенно подчиняются законам линейной и нелинейной вязкоупругости, есть группа материалов, свойства которых меняются особенно просто при изменении температуры кривые, характеризующие зависимость свойств материала от времени при разных постоянных температурах, построенные в логарифмической шкале времени (по оси абсцисс откладывается 1п I), получаются друг из друга сдвигом. Это явление представляет собой основную характеристику термореологически простых материалов она позволяет установить отношение эквивалентности между температурой и 1п 1.  [c.397]


На последней итерации шага файлы, содержащие температуру предыдущего шага и производные от температуры по времени, обновляются. При решении нестационарных задач в большинстве случаев свойства материалов могут быть вычислены с использоваршем температуры предыдущего шага, которая будет незначительно отличаться от температуры настоящего шага. Таким образом можно избежать дополнительных итераций. При решении стационарных задач практические расчеты иоказали, что достаточно обычно двух-трех итераций для того, чтобы погрешность, обусловленная зависимостью свойств материала от температуры, оказалась меньше 1 %.  [c.93]

Модели длительного статического разрушения. Основная особенность длительного статического разрушения — зависимость предела прочности от времени нагружения. С увеличением времени нагружения предел прочности падает в результате структурных и других изменений в материале при воздействии напряжений и температуры. Это свойство присуще всем консгрукционным материалам при работе в условиях достаточно высоких температур. Для некоторых материалов оно проявляется при нормальной температуре.  [c.186]

Соотношение (3) формально таково же, как и определяющее соотношение воображаемого упругого материала с зависящей от времени реакцией (конечно, настоящего такого материала быть не может, поскольку явная зависимость реакции материала от времени запрещается принципом материальной независимости от системы отсчета). Поэтому возникает искушение пройтись по всей динамической теории упругости и видоизменить каждую теорему, учитывая наряду с зависимостью от времени через посредство Р и явную зависимость от времени. Сделать это легко, но к истолкованию получаемых при этом результатов следует подходить с великой осто рожностью. Особенности проявляются, как это всегда бывает при рассмотрении материалов с затухающей памятью, в связи с вопросами гладкости. Чтобы эффективно использовать теорию упругого материала,, мы предполагаем, что его реакция б является непрерывно дифференцируемой функцией от Р при каждом данном значении аргумента Ро из ее области определения во всяком случае мы ограничиваем наше внимание только такими аргументами, чтобы иметь возможность подставлять выражения для ПОЛЯ напряжения в уравнения баланса энергии и т. д. Поскольку это допущение относится непосредственно и единственно к свойствам материала, его легко понять, и оно вряд ли может быть отвергнуто.  [c.460]

Стандартизация упругих элементов (пружин, мембран и др.) предусматривает обеспечение взаимозаменяемости как по присоединительным размерам, так и по характеристике, выражаюш,ей зависимость перемещения (деформации) торца пружины или рабочего центра другого элемента от приложенной силы. Оптимальное значение параметров и стабильность характеристики упругих элементов определяются точностью их размеров и формы, механическими свойствами материалов, а также конструктивными и технологическими факторами. Упругие элементы должны иметь мппимальное упругое последействие (т. е. минимальную остаточную обратимую деформацшо, исчезающую в течение некоторого времени после снятия нагрузки) и наименьшую петлю гистерезиса (несовпадение характеристик при нагружении и разгружении, определяемое максимальной разностью между деформациями при нагружении и разгружении упругого элемента). Для определения влияния геометрических, механических и других параметров на работу упругих 76  [c.76]

Важное значение для достоверности результатов статистическйх значений имеет адекватность детерминированной модели. В силу этого уточнение ее, учет наиболее влияющих на точность расчета факторов является актуальной задачей. С другой стороны, статистические исследования на основе сложной модели требуют достаточно больших затрат машинного времени даже при использовании современных высокопроизводительных ЭВМ. Поэтому важно упрощение сложной и нелинейной модели без заметной потери ее точности, что принципиально возможно в некоторой ограниченной области изменения входных параметров. Часто при этом важно установление непосредственной зависимости выходных показателей от первичных входных параметров (геометрические размеры, обмоточные данные, свойства материалов и пр.) ЭМУ взамен полученных опосредованных связей их, например, через параметры обобщенного преобразователя или его эквивалентных схем замещения. Примером такого преобразования могут служить, в частности, приведенные ранее модели в приращениях .  [c.136]

Черные металлы и сплавы. Металлы до (юследнего времени были основным материалом, используемым для деталей узлов трения. Это объясняется тем, что они, как правило, больше других материалов удовлетворяют разнообразным условиям эксплуатации узлов трения и техническим требованиям к свойствам материалов. Металлы обладают такими качествами, как прочность и пластичность, высокая твердость и теплопроводность, способность образовывать различные виды соединений с одним или несколькими элементами, приобретая новые важные свойства. В зависимости от химической природы элементов и условий, в которых находится система, металлы могут образовывать между собой, а также с неметаллами твердые растворы, эвтектические смеси и хи мические соединения.  [c.14]

Изнашивание материала деталей и изменение их размеров в процессе трения определяются свойствами материалов, режимами трения (контактное давление, скорость скольжения или качения) и условиями работы узла трения (температура и свойства окружающей среды, вид смазочного материала или его отсутствие). В зависимости от названных факторов находятся и закономерности изнашивания трущихся поверхностей. Об1цая закономерность изнашивания характеризуется кинетическими закономерностями изнашивания, представляющими собой временные функции износа U =/(т). Они могут иметь различный вид (рис. 4.1) и дают представление о скорости изнашивания, которая определяется углом наклона касательной кривой изнашивания в любой момент времени.  [c.79]

Для решения указанных выше задач ранее были предложены различные оригинальные устройства и установки. Например, экспериментальная установка, созданная в Институте проблем прочности АН УССР [74], позволяет проводить исследование механических свойств стеклопластиков в условиях чистого изгиба, а также определять зависимость прочностных и деформационных свойств этих материалов от величины односторонних поверхностных тепловых потоков и от времени их воздействия.  [c.174]

Для объяснения полученных выше зависимостей изменения физических свойств углеграфитовых материалов от параметров кристаллической структуры, дозы и температуры облучения может быть использована теория радиационных нарушений, предложенная Балариным и др. [157]. Она основана на том, что относительная концентрация дефектов Френкеля N во времени зависит от интенсивности возникновения дефектов А и размера критической области дефекта а. Величина а определяется числом атомов, приходящихся на один дефект. Кинетика изменения концентрации дефектов описывается уравнением  [c.192]

Изучение процессов длительного повторного статического деформирования и разрушения включает исследование параметров диаграмм циклического деформирования, анализ зависимости механических свойств конструкционных материалов от параметров нагружёния, исследование кинетики полей деформаций элементов конструкций, формулировку условий прочности с учетом температурных и временных эффектов применительно к различным режимам нагружения изделий. ,  [c.123]


В предыдущей главе отмечалось, что кристаллическая среда проявляет постоянную оптическую анизотропию в виде двойного -лучепреломления. В 1816 г. Брюстером было установлено, что некоторые изотропные материалы, когда в них возникают напряжения или деформации, становятся оптически анизотропными, как кристаллы. Все рассматривавшиеся нами явления, связанные с прохождением света через двоякопреломляющие пластины, свойственны естественным и искусственным кристаллам с постоянным двойным лучепреломлением, а также и изотропным аморфным материалам с временным двойным лучепреломлением. Почти все прозрачные материалы становятся под действием нагрузки двояко-преломляюгцими. В зависимости от материала величина двойного лучепреломления определяется напряжениями или деформациями или же теми и другими одновременно. Однако в линейно упругих материалах, в которых напряжения и деформации связаны линейной зависимостью, оптические эффекты можно в равной мере относить и к напряжениям, и к деформациям. Это свойство временного двойного лучепреломления при действии нагрузки называют фотоупругостью.  [c.61]

Ионизирующие и электромагнитные излучения. Современные изделия, o oj бенио изделия космической и ядерной техники, подвергаются воздействию ионизирующих излучений, создающих при взаимодействии с веществом заряженные атомы и молекулы — ионы. Гамма-излучение, нейтронное, электронное, протонное излучения, а также альфа-частицы могут вызвать повреждения. Наибольшую опасность представляют поток нейтронов и гамма-излучение, влияние которых усиливается в зависимости от их интенсивности и времени воздействия. Непрерывная проникающая радиация вызывает постепенное необратимое изменение электрических, механических, химических и других свойств материалов. Импульсная радиация, действующая короткое время (10 —10 с), приводит к необратимым изменениям электрофизических свойств изделия, а также из-за большой плотности, создаваемой ионизации, может вызвать и обратимые изменения электрических характеристик изделий и материалов.  [c.17]

С таким же положением дел приходится сталкиваться при изготовлении и эксплуатации многих современных технических систем. Вот почему так важно особое внимание уделить изучению того, что сейчас принято называть физикой надежности . Эта обширная область как раз и изучает изменение свойств материалов, их внутреннего строения в зависимости от нагрузок и тех условий, в которых им приходится работать, а также в зависимости от времени. Известно, что изделие изменяет свои свойства не только тогда, когда оно выполняет полезную работу, но и тогда, когда оно находится в хранении. На него воздействует атмосфера и разного рода находящиеся в ней агрессивные примеси, собственный вес и такой мощный фактор, как время. Со временем происходит изменение молекулярной и субмолекулярной структуры, а вместе с этим, изменение прочности, способности противостоять внешним нагрузкам. Именно с этим связан процесс старения. Какое влияние на работу технических систем — электронных и механических — оказывают микроскопические трещины Можно ли их терпеть в ответственных узлах, подобных крылу самолета А  [c.64]

При описании механических свойств материалов принято различать два основных вида деформации упругую и пластическую. Упругая деформация обратима, т. е. она исчезает либо одновременно со снятием напряжения, либо постепенно во время отдыха материала после paзгpyз и (это явление называют также возвратом или обратной ползучестью). Пластическая деформация необратима, т. е. она не исчезает после снятия напряжения. Если упругая или пластическая деформация связана с напряжением вне зависимости от временных характеристик процесса нагружения, то такую деформацию называют мгновенно-упругой или соответственно мгновенно-пластической. Простейшим примером закона мгновенноупругого деформирования является линейный закон Гука. В более сложном случае, когда соотношение, связывающее деформацию с напряжением, включает в качестве дополнительного параметра физическое время, эту деформацию называют вязкоупругой или, соответственно, вязкопластической. Обе мгновенные деформации часто называют склерономными (т. е. независимыми от времени), а обе вязкие деформации — реономными (зависимыми от времени).  [c.6]

Как известно, прибор МФ-31КЦ измеряет значения размагничивающего тока, пропорциональные коэрцитивной силе, которая коррелирует с механическими свойствами материалов. Прибор осуществляет сравнение размагничивающих токов эталонного образца и испытуемой детали, установленной на датчик, и подает соответствующий сигнал на устройство связи робота с прибором. В зависимости от значения сигнала прибора брак или годен схват робота переносит деталь в бункер годной или в бункер непрошедшей по параметрам качества продукции. В функции робота входит также точное позиционирование детали относительно датчика коэрцитиметра и обеспечение стабильного минимального времени намагничивания и размагничивания детали.  [c.115]

Система уравнений тепловой динамики трения и изнашивания (ТДТИ) отражает взаимообусловленность изменения всех параметров процесса трения при торможении (включении муфты) и связывает изменения скорости, коэффициента трения, нагрузки и температуры по времени торможения в зависимости от силовых и кинематических параметров процесса, конструктивных размеров фрикционных элементов, теплофизических, механических и фрикционно-износных свойств материалов пары.  [c.190]

Таким образом, анализируя рассмотренные выше экспериментальные данные по малоцикловому деформированию при мягком режиме нагружения с временными выдержками на экстремумах нагрузки (см. рис. 4.8—4.10), можно видеть, что как температура испытаний, так и форма цикла накладывают свои особенности на кинетику деформаций в этих условиях. В общем случае для комнатной и умеренных температур кинетика ширины петли пластического гистерезиса и односторонне накопленной в циклах деформации ё > описывается зависимостями (2.10) и (2.18). Причем для циклически упрочняющихся материалов в двойных логарифмических координатах, что соответствует степенному виду кинетической функции, они представляют собой прямые ниспадающие линии (рис. 2.3, в), а для циклически разупрочняющихся материалов в полулогарифмических координатах — прямые восходящие линии (рис. 2.3, а), отвечающие экспоненциальному виду этих зависимостей. Как показывают приведенные выше экспериментальные данные для высоких температур и сложной формы цикла нагружения, в этих условиях наблюдается более сложный характер поведения деформационных характеристик. Так, уже при 450 С сталь Х18Н10Т обнаруживает в исходных циклах некоторое упрочнение, переходящее затем на основной стадии процесса деформирования в циклическое разупрочнение, причем это характерно как для нагружения с треугольной, так и с трапецеидальной формами цикла. Если при t = 450° С степень разупрочнения еще невелика, то с повышением температуры до 650° С, когда начинается интенсивное проявление в материале температурно-временных эффектов, кинетика деформаций становится ярко выраженной и в существенной степени зависящей от времени, формы цикла и уровня нагружения. Указанные обстоятельства не учитываются зависимостями (2.10), (2.18) и для их описания было предложено [13] связать параметры этих уравнений с механическими свойствами материалов, а последние рассматривать зависящими от температуры и времени нагружения.  [c.79]


Смотреть страницы где упоминается термин Зависимость свойств материалов от времени : [c.340]    [c.160]    [c.176]    [c.305]    [c.100]    [c.18]    [c.191]   
Смотреть главы в:

Сопротивление материалов  -> Зависимость свойств материалов от времени



ПОИСК



Свойства материалов



© 2025 Mash-xxl.info Реклама на сайте