Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Закон упругости для стержня

Линейный закон упругости для стержня, связанного с краем оболочки. Пусть край оболочки, ограниченный на срединной поверхности замкнутым контуром 5Q, подкреплен тонким стержнем ( =), т. е. таким, что  [c.492]

Закон упругости для стержня  [c.285]

Пусть край оболочки подкреплен тонким стержнем, причем ось последнего, до деформации параллельная граничному контуру, остается таковой (в рамках принятых допущений) и после деформации. Считаем, что эффектами, связанными с несовпадением оси стержня и граничного контура ЗП, можно пренебречь. Тем самым названные линии впредь будем отождествлять. Закон упругости для стержня в соответствии с формулами (4.14) и (4.16) можно записать так  [c.289]


В редких случаях, как, например, для стержня, поперечное сечение которого имеет форму круга или очень вытянутого прямоугольника, прп некоторых законах упрочнения достаточно просто можно получить аналитическое решение поставленной задачи. Во всех других случаях может быть найдено только приближенное решение, что, в частности, можно сделать с помощью метода упругих решений.  [c.320]

Если исходить из переменности модуля упругости и сохранения гипотезы плоских сечений при условии малости деформаций, то для стержней, выполненных из такого материала, дифференциальное уравнение изогнутой оси стержня оказывается таким же, как и в случае соблюдения закона Гука, а следовательно, сохраняют свой вид и формулы для критической силы и критического напряжения, с той лишь разницей, что вместо постоянного ) (Eq) вводится переменный модуль упругости Е = Е а)  [c.367]

Кручение круглых анизотропных стержней исследовано в [76, 77, 79, 169, 235]. С. Г. Лехницким [79] получено решение для стержня с цилиндрической анизотропией при упругих характеристиках, зависящих от радиуса по степенному закону. Им же в [76, 77], а также в [235] рассмотрен более сложный случай, когда в цилиндрически анизотропном стержне модули сдвига зависят не только от радиуса, но и изменяются по длине стержня. Эта задача сводится к определению функции напряжений из уравнения  [c.79]

Очевидно, соотношение (1.15) является обобщением закона Гука для вязкоупругого стержня, материал которого проявляет мгновенную упругость при динамическом деформировании.  [c.8]

При термодинамическом рассмотрении упруго деформируемого стержня изменение объема стержня при его растяжении (сжатии) может быть учтено следующим образом. Объединенное уравнение первого и второго законов термодинамики для упруго деформируемого твердого тела (10-1)  [c.218]

В общем случае прямолинейный стержень может испытывать продольные, поперечные (в двух плоскостях) и крутильные колебания. Учитывая, что перемещения малы и справедлив закон упругости Гука, будет выполняться принцип суперпозиции (принцип независимости действия сил). В соответствии с этим можно объединить в одно матричное уравнение решения задач Коши для продольных, поперечных и крутильных колебаний по аналогии со статикой. Практически это означает, что в уравнении (2.23) нужно поменять фундаментальные функции матриц А и В. Тогда будем иметь решение задачи Коши уравнений динамики стержня  [c.129]


Общие соотношения. Рассмотрим растяжение стержня (фиг. 15, а). Вдоль участка ОАВ происходит нагружение, разгрузке соответствует линия ВС. Площадь ОАВС представляет собой потерянную работу деформации. Большая часть этой работы, как показывают экспериментальные исследования, переходит в тепло и вызывает очень незначительное (для деформации е = 4Уо — около 2° С) нагревание испытываемого образца. Поэтому при монотонном возрастании внешней нагрузки безразлично, куда перешла работа деформации — в тепло или в упругую потенциальную энергию стержня -— вид кривой ОАВ останется неизменным. Наоборот, при разгрузке, когда деформация среды происходит вследствие накопившейся в ней упругой энергии, происшедшая диссипация энергии приобретает решающее значение и чем она больше, тем сильнее линия разгрузки ВС отклоняется от линии нагружения ОАВ. Таким образом, уравнение о =/( х) ветви нагружения может представлять как пластическую, так и нелинейно-упругую деформацию стержня. Аналогично этому простому случаю рассмотрим общие уравнения пластической деформации как некоторое обобщение закона Гука. Примем следующие исходные положения  [c.40]

При внезапном приложении растягивающей нагрузки к упругому = стержню, масса которого незначительна в сравнении с массой груза, динамическая деформация в два раза больше деформации е при статическом (медленном) нагружении (см. [ ], I, 64). Найти отношение для стержня, подчиняющегося закону деформации где В, — постоян-  [c.97]

Для вывода уравнений изгибных колебаний композитного стержня воспользуемся законом упругости, полученным в шестой главе,— формулой (4.3)  [c.254]

Прямой центрально сжатый стержень постоянного сечения (рис. 1,а) представляет собой простейшую реальную конструкцию, способную при определенных условиях потерять устойчивость, видимым проявлением чего является выпучивание, т. е. возникновение бокового. смещения, не требующего приложения поперечных сил. Долгое время этот объект служил иллюстратором основных сторон явления неустойчивости в деформируемых системах, пока не возникла необходимость разобраться в явлении выпучивания деформируемых систем, материал которых является сложной средой и не подчиняется закону упругости. Оказалось, что уже для упруго-пластического материала, если не навязывать стержню определенный тип поведения, математическое описание явления становится столь сложным, что иллюстративные качества этого объекта утрачиваются полностью и приходится искать более простой объект.  [c.7]

Таким образом, для выявления особых точек во многих случаях может быть использована зависимость (13.1), вполне аналогичная закону упругости. В этом смысле соотношение (13.1) служит упругим эквивалентом в проблеме определения особых точек процесса, сводящим последнюю к задаче Эйлера о бифуркации состояния (БО) для фиктивного упругого материала с модулем Е. В частности, для модели стержня, критическое условие в рамках любой из рассматриваемых сред получается автоматически из условия БО при линейной упругости  [c.34]

В предыдущей главе рассматривались стержни, материал которых подчинялся линейному закону упругости. Отметим, что за исключением реактивно нагруженного стержня получаемые в этих условиях результаты достаточно хорошо согласуются с данными большого числа и давно ведущихся экспериментов. Для нелинейно-упругого тела все уравнения, полученные во второй главе, остаются справедливыми, если модуль Е в них заменить на модуль Е и учесть, что при неоднородном докритическом состоянии этот модуль становится вдоль стержня переменным. Это усложняет задачу получения точного решения, в то время как трудности при использовании приближенных методов увеличиваются ненамного.  [c.71]

В результате этого исследования оказывается, что для изотропного упругого тела, т. е. для тела, физические свойства которого одинаковы во всех направлениях, зависимости (3.2) получают наиболее простую форму вывести их можно, основываясь на законе Гука для упругих стержней при растяжении и сжатии, известном из физики, а также на формулированном выше законе независимости действий.  [c.68]

Обратимся к операторам (9.24). Они получены из операторов уравнений равновесия для стержней и закона упругости в форме (9.17). На этом основании можно заключить, что отличие (9.24) от аналогичных операторов для обычных стержней состоит в следующем 1) изгибающий момент и поворот сечений относительно орта е отсутствуют 2) в плоскости вь вг имеет место Деформация сдвига, причем коэффициент формы сечения при сдвиге равен единице 3) кручение происходит с жест-  [c.222]


При использовании продольной моды, изменяющейся по синусоидальному закону сила прикладывается к одному концу тонкого цилиндрического стержня, а продольные колебания измеряются на противоположном конце стержня. Датчик другой конструкции применяется для генерирования крутильных колебаний на возбуждаемом конце стержня на противоположном конце в этом случае измеряется амплитуда угловой скорости вращения. На самой низкой частоте резонанса стержень имеет длину в несколько полуволн, а его диаметр мал по сравнению с длиной волны. В этом низкочастотном диапазоне продольные волны в отсутствии поглошения распространяются без дисперсии со скоростью, определяемой модулем Юнга Су—( /р) / -. Можно показать, что в почти упругом тонком стержне продольные волны распространяются практически с такой же скоростью, а поглощение проявляется в экспоненциальном уменьшении амплитуды с расстоянием [см. формулу (4.32)]. Если, например, сила действует на один конец стержня (рис. 4.16), то волна распространяется в положительном направлении оси х, вызывая силу, пропорциональную лух На свободном конце волна отражается отра-  [c.118]

Энергия Т при ударе согласно закону сохранения энергии и будет трансформирована в потенциальную энергию деформации упругого стержня. Поэтому полученное выражение (22.30) и должно быть подставлено вместо То в формулу (22.15) для определения коэффициента динамичности, т. е.  [c.637]

Итак, решение, полученное в сопротивлении материалов для закручиваемого стержня круглого поперечного сечения, основанное на гипотезе плоских сечений, удовлетворяет всем уравнениям теории упругости при условии, что внешние моменты создаются силами, распределенными по поперечному сечению по тому же закону, что и касательные напряжения х х, (или, что то же самое, полные касательные напряжения Тг).  [c.137]

В гл. 5 рассматриваются некоторые общие свойства упругих и пластических стержневых систем. Существенно заметить, что вариационные принципы теории упругости, ассоциированный закон течения, свойство выпуклости поверхности нагружения для пластической системы доказываются здесь совершенно элементарно. Все эти теоремы будут сформулированы и доказаны впоследствии при более общих предположениях. Автору представляется по опыту его педагогической работы, что иллюстрация общих принципов на простейших примерах, где эти общие принципы совершенно очевидны, способствует лучшему их пониманию и усвоению. Гл. 6 посвящена теории колебаний, которая должна занять подобающее место как во втузовских, так и в университетских программах. Кроме собственно задач о колебаниях здесь излагается метод характеристик для решения задач о продольных волнах в стержнях. Этот метод настолько прост И ясен, что им можно пользоваться и его легко понять, не прослушав общего курса дифференциальных уравнений математи-  [c.12]

Здесь Р (а) — линейная функция от о и производных о до порядка п включительно с постоянными коэффициентами, Q e) — такая же функция от деформации е. К соотношению вида (17.5.9) можно прийти, если рассмотреть модель, составленную из большого числа пружин и вязких сопротивлений, соединенных в разных комбинациях последовательно и параллельно. Конечно, было бы достаточно наивно искать в структуре материала соответствующие упругие и вязкие элементы, однако способ, основанный на построении реологических моделей, обладает некоторым преимуществом. Мы убедились, что в уравнении (17.5.8) должно быть J. < , при этом не было необходимости в обращении к модели, условие < Е, из которого следует первое неравенство, означает только то, что приложенная сила совершает положительную работу, расходуемую на накопление энергии деформации, а частично рассеиваемую в виде тепла. В общем случае (17.5.9) тоже должны быть выполнены некоторые неравенства, которые могут быть не столь очевидны. Но если построена эквивалентная реологическая модель из стержней, накапливающих энергию, и вязких сопротивлений, рассеивающих ее, то у нас есть полная уверенность в том, что для соответствующего модельного тела законы термодинамики будут выполняться. Второе преимущество модельных представлений состоит в том, что для любой заданной конфигурации системы может быть вычислена внутренняя энергия, представляющая собою энергию упругих пружин, и скорость необратимой диссипации энергии вязкими элементами. Имея в распоряжении закон наследственной упругости (17.5.1), (17.5.2), мы можем подсчитать полную работу деформирования, но не можем отделить накопленную энергию от рассеянной. Поэтому, например. Блонд целиком строит изложение теории на модельных представлениях.  [c.590]

Наиболее эффективным из приближенных методов в теории пластичности следует считать метод последовательных приближений А. А. Ильюшина, именуемый методом упругих решений [3] в нем для первого приближения принимается решение аналогичной задачи теории упругости (со сходственными граничными и другими условиями), благодаря чему в первом приближении выясняются границы между упругими и пластическими зонами как по длине стержня (пластинки и др.), так и по высоте сечения. Это позволяет в первом приближении вычислить для каждой точки такого сечения значение числа ш, входящего в основной физический закон пластичности (4.13). Зная величину ш, можно в порядке первого уточнения исправить ранее вычисленные компоненты напряжения, внести поправки в первоначальные основные уравнения теории упругости, что определит новые границы между упругой и пластическими зонами,  [c.193]

Приведение параметров упругости звеньев (связей). Приведение параметров упругости необходимо для составления упрощенных динамических моделей машин и приведения их к одной оси. Упругость связи характеризуют параметром жесткости (жесткостью). Пара.метром жесткости называют силу или момент силы, вызывающие перемещение, равное единице (длины или угла). Например, жесткость стержня при деформациях растяжения-сжатия с = /"/Лх, при кручении с = М/Дф и при изгибе звеньев с = Р// (рис. 5.6, а-в). Указанные параметры жесткости могут быть получены из известных формул, отображающих закон Гука при различных деформациях  [c.100]


В то же время прогиб консольного стержня постоянного сечения по формуле (5.29) был равен F/ /(3 / ). Следовательно, стержень равного сопротивления, ширина которого меняется по закону треугольника, не только вдвое легче стержня постоянного сечения, но и и.меет в полтора раза больший прогиб. Благодаря этим свойствам такие стержни используются в качестве упругих элементов — рессор. для защиты от толчков и вибрации.  [c.144]

В шестой главе рассмотрена проблема потери устойчивости эластомерных конструкций при осевом сжатии. Предполагалось, что армирующие слои являются абсолютно жесткими. Предложены две модели для анализа устойчивости дискретная и непрерывная с приведенными упругими параметрами. Путем предельного перехода при увеличении числа слоев в дискретной структуре получен закон упругости для композитных стержней и балок с криволинейными слодми. Построена теория изгиба композитных стержней, учитывающая влияние осевой сжимающей силы на сдвиговую и изгибную жесткости конструкции.  [c.28]

Прикладная теория упругости отличается от математической тем, что для решения задач помимо закона Гука применяются некоторые дополнительные гипотезы деформационного характера (гипотеза плоских сечений для стержней, прямых нормалей для тонких пластин и оболочек и т. и.). При решении задач прикладной теории упругости наряду с точными методами решения соответствующих уравнений могут применяться и приближенные методы. Между прикладной теорией упругости, тесно связанной с запросами практики, и сопротивлением материалов нет четкой границы. Некоторые, наиболее цростые задачи, относящиеся к этому разделу, рассматриваются также и в курсах сопротивления материалов.  [c.8]

Немецкий ученый Ф. Энгессер, работая над границами применения формулы Эйлера, пришел к выводу, что можно расширить эти границы, если заменить в ней постоянный модуль упругости переменной величиной, которую он назвал касательным модулем упругости. Эта величина, в свою очередь, выражала отношение напряжения материала к относительной его деформации, т. е. изменению длины стерншя по сравнению с его первоначальными размерами [40, с. 351, 352, 356—359]. Касательный модуль дал Энгессеру возможность вычислять критические напряжения для стержней из материалов, не подчиняющихся закону Гука, а также из строительной стали при напряжениях выше предела упругости. В связи с этим предложением у Энгессера возникла дискуссия с Ясинским, который утверждал, что сжимающие напряжения на выпуклой стороне стержня при его выпучивании уменьшаются и что испытания, проведенныеБаушингером, доказывают необходимость пользоваться в этой области поперечного сечения постоянным модулем упругости, а вовсе не касательным модулем [43, с. 214]. Этот спор закончился тем, что Энгессер признал правоту Ясинского, переработал свою теорию и ввел для двух областей поперечного сечения два различных модуля. Исследуя влияние поперечной силы на величину критической нагрузки в стойках, он нашел, что эта величина для сплошных и сквозных решений различна. В сплошных ее влияние мало и им можно пренебречь, а в сквозных оно может оказаться значительным. Энгессер вывел формулы для определения того отношения, при котором  [c.254]

Вообще говоря, зависимость I (tf) на изотерме имеет, конечно, более сложный характер. Однако с точностью, вполне достаточной для выполнения подавляющего большинства ответственных прочностных расчетов, оправдывается закон Гука — наиболее простое уравнение изотермы упруго деформируемого стержня. Иными словами, для подавляющего большинства материалов модуль Юнга Е при Т = onst сохраняется постоянным при любых значениях упругих деформаций е. (Понятно, что линейная зависимость может быть справедливой лишь для малых деформаций. Однако поскольку для большинства веществ лишь малые деформации являются упругими, уравнение (10-16) оказывается тем самым справедливым для любых упругих деформаций следовательно, отпадает необходимость в использовании более сложных степенных зависимостей.) Вместе с тем следует отметить, что для некоторых материалов, таких как камень, бетон, чугун и в особенности ряд пластмасс, Е заметно меняется с изменением е. В дальнейшем, однако, мы будем считать, ч чэ величина Е не зависит от е.  [c.205]

Использование вместо закона упругости (2.4) или (4.3) соотношений классической теории стержней или теории С. П. Тимошенко, учитывающей поперечный сдвиг, для решения задач устойчивости рассматриваемых слоистых эластомерных конструкций приводит к неверным результатам. Причин тому две для эластомерных конструкций нужна другая форма закона упругости и другие значения коэффициентов жесткости на.рдвиг И изгиб.  [c.237]

Результаты отчасти подобного описываемому здесь исследованию Филби, но при значительно более низких скоростях соударения были описаны в моей работе 1968 г. (Bell [1968, 2]). Жесткий алюминиевый стержень длиной La, в котором распространялась упругая волна известной амплитуды, вызванная ударом второго жесткого стержня длиной Li, имел смазанную поверхность контакта с полностью отожженным алюминиевым стержнем. Результаты измерений, выполненных при помощи электротензометрического датчика сопротивления при прохождении падающей волны (т и волны максимального напряжения Oj. после прохождения отраженной волны в жестком стержне длиной Ls, изображенные на рис. 4.220, сравнивались с результатами измерений с помощью дифракционных решеток в мягком стержне на основании одномерного решения с использованием закона Гука для жесткого стержня и параболического закона согласно формуле (4.54) для мягкого стержня. Сравнение экспериентальных и расчетных данных выявило, что и наибольшее  [c.326]

Работая в области теории продольного изгиба, Энгессер ) предложил расширить область применения формулы Эйлера, введя в нее вместо постоянного модуля упругости Е, переменную величину Et = dalds, которую он назвал касательным модулем упругости. Определяя касательный модуль из опытной кривой сжатия для какого-либо частного случая, он получил возможность вычислять критические напряжения для стержней из материалов, в своем поведении отклоняющихся от закона Гука, а также для стержней из строительной стали при напряжениях выше предела упругости. В связи с этим предложением возникла дискуссия между ним и Ясинским. Последний указал"), что сжимающие напряжения на выпуклой стороне стержня при выпучивании уменьшаются и что в соответствии с испытаниями Баушингера для этой области поперечного сечения следует пользоваться постоянным модулем упругости Е, а не касательным Впоследствии Энгессер переработал свою теорию, введя в нее два различных модуля для двух областей поперечного сечения ).  [c.357]

Ознакомившись с работой Ф. Энгессера, крупный русский инженер и ученый Ф.С. Ясинский (1895) обратил внимание на имеюш иеся в ней неточности. Он указал, что при возмугцении, так как сжимаюш,ая сила постоянна ( ), рост напряжений за счет изгиба в волокнах на вогнутой стороне стержня (волокна В на рис. 12.24) неизбежно должен сопровождаться их уменьшением на выпуклой стороне (волокна С). Таким образом, часть волокон будет испытывать догрузку и их поведение при этом подчиняется закону касательного модуля, а часть волокон — разгружается и подчиняется закону упругого модуля. Распределение напряжений по сечению в возмуш енном состоянии для этого случая показано на рис. 12.25 а. Энгессер, ознакомившись с этими замечаниями, учел их и пришел (1898) к формуле  [c.397]


Распределение напряжений по высоте для стержня прямо-моугольного сечения, испытывающего чистый изгиб в стадии установивщейся ползучести [15], показано на рис. 3.23. В основу решения положена теория течения и степенной закон зависимости скорости ползучести от напряжения Упругому распределению соответствует случай т = 1, с возрастанием т распределение напряжений стремится к идеально пластическому распределению (т = оо).  [c.147]

Прикладная теория упругости отличается от математической тем, что для решепия задач помимо закона Гука применяются некоторые дополнительные гипотезы деформационного характера (гипотеза плоских сечепий для стержней, прямых  [c.9]

Если напряженное и деформированное состояния выражаются через главные напряжения и деформации, то в формулах, выведенных в этом параграфе, следует отбросить члены a j и eij, для которых i ф /. Представленные тут линейные соотношения между напряженным и деформированным состояниями являются обобщением давно известного экспериментального закона. Закон упругости, определяющий зависимость между напряжением и деформацией в одноосном напряженном состоянии, установил Роберт Гук в 1676 г. Многочисленные опыты с удлинением пружин, стержней и с изгибом балок привели его к формулировке закона упругости в форме лапидарного утверждения ut tensio si vis ). Это означает, что деформация пропорциональна нагрузке, которая ее вызвала.  [c.110]

Уравнение (153) имеет тот же вил что и уравнение для упругой кривой, когда материал следует закону Гука. Мы должны лишь заменить модуль Е величиной Е , определяемой уравнением (152) и назы-привранным модулем упругости. Пользуясь для 1/г его приближенным выражением сРу1йх и интегрируя уравнение (153), мы йрлучим для стержня с шарнирно закрепленными концами (рис. 116,  [c.153]

Из факта, устанавливаемого формулой (2.10.1), можно сделать и обратное заключение, а именно, если заставить конец стержня двигаться с постоянной скоростью, то позади фронта волны напряжения будут постоянными. Пусть, например, по концу стержня производится удар телом очень большой массы, движущейся со скоростью V. Тогда от конца пойдет фронт ударной волны со скоростью с, материальная скорость частиц за фронтом будет равна V по формуле (2.10.1) a — Evl . Нам осталось определить скорость распространения фронта волны с. Для этого выделим из рассматриваемого стержня участок длиной dx между сечениями i—1 и 2—2 (ряс. 2.10.2). Пусть в момент времени t фронт упругой волны проходит через сечение 1—1, в момент t + dt через сечение 2—2. Для этого нужно, чтобы dx = dt. Применим к выделенной части стержня второй закон Ньютона. В течение времени dt в сечении 1—1 действует сила oF, тогда как сечение 2—2 остается непапряженпым, следовательно, импульс силы равен oF dt. В начальный момент t вся выделенная часть была в покое, в момент t + dt вся она движется со скоростью V, следовательно, изменение количества движения есть  [c.71]

Это уравнение равновесия, полученное без использования форм связи между напряжениями и деформациями. Дальнейшее решение для линейно-упругих стержней сводится к тому, что N, и N2B уравнении (9.17) заменяются величинами Д 1 , А1 согласно закону Гука (3.381 и полученное уравнение вместе с условием совместности деф 5рмаций (3.39) дает возможность определить две неизвестные величины Ml и из системы двух уравнений. Решение этой системы приводит к результату, приведенному в 3.6.  [c.193]

Различие между этими разделами механики состоит, во-первых, в рассматриваемых объектах (так, например, в курсе сопротивления материалов рассматривается главным образом брус, в теории упругости помимо бруса изучаются нанряжеиное и деформированное состояния пластин, оболочек, массива, а в строительной механике объектами изучения являются системы, состоящие из стержней (фермы), балок (рамы), пластин и оболочек) во-вторых, в принимаемых допущениях (теории упругости, пластичности и ползучести отличаются друг от друга тем, что в них принимаются различные физические законы, устанавливающие связь между напряжениями и деформациями, но не вводится каких-либо деформационных гипотез, а в сопротивлении материалов физический закон тот же, что и в теории упругости (закон Гука), но, кроме того, принимается дополнительно ряд допущений — гипотеза плоских сечений, ненадавлпвания волокон и т. д.) в-третьих, в методах, используемых для решения задач (в теории упругости приходится решать существенно более слопшые уравнения, чем в сопротивлении материалов, и для их решения приходится прибегать к более сложным математическим методам).  [c.7]


Смотреть страницы где упоминается термин Закон упругости для стержня : [c.495]    [c.268]    [c.51]    [c.69]    [c.133]    [c.397]    [c.223]    [c.677]    [c.146]   
Смотреть главы в:

Общая нелинейная теория упругих оболочек  -> Закон упругости для стержня



ПОИСК



Закон упругости

Стержни упругие

Стержни упругие на упругих

Стержни — Стержни упругие



© 2025 Mash-xxl.info Реклама на сайте