Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура, свойства и составы сплавов

Структура, свойства и составы сплавов  [c.262]

Сплавы системы Fe—Сг—А1 являются самыми жаростойкими среди всех известных деформируемых сплавов. В СССР фундаментальные исследования системы Fe—Сг—А1 проведены под руководством И.И.Корнилова. В широких пределах подробно исследовано влияние состава на структуру, физические, механические свойства и жаростойкость сплавов. Исследования показали, что при содержании алюминия порядка 5 % сплавы по жаростойкости значительно превосходят нихромы.  [c.88]


Мартенсит деформации отличается от мартенсита охлаждения . После пластической деформации мартенсит получается более дисперсным, что ведет к улучшению механических свойств. В зависимости от условий деформирования (температуры, степени, схемы напряженного состояния) и состава сплава образуются различные формы мартенсита и в некоторых случаях — весьма мелкие частицы. Упрочнение при пластической деформации аустенита является результатом суммарного действия наклепа исходной фазы (и передачи по наследству дефектов структуры продуктам превращения) и фазового превращения аусте-нит- мартенсит.  [c.258]

Влияние структуры и состава сплавов на их жаропрочность часто не подчиняется закономерностям, известным для прочности при комнатной температуре. В частности, стабильность структуры и свойств в этом случае имеет гораздо большее значение [10]. Методы упрочнения, основанные на получении неустойчивых в физико-химическом отношении структур (закалка и отпуск, холодный наклеп), при высоких температурах, как правило, оказываются непригодными [11]. Хотя температура отдыха и рекристаллизации некоторых жаропрочных сплавов столь высока, что они могут применяться при 600—700° С в наклепанном состоянии некоторое время, не теряя упрочнения. С меньшей стабильностью структуры наклепанных сталей, вероятно, связана и большая их ползучесть. Поэт му упрочнение наклепом пока не получило распространения для материалов, работающих при высоких температурах. Также процесс релаксации в сталях с менее стабильной структурой происходит значительно быстрее, чем в сталях, находящихся в более равновесном состоянии. Влияние начальной структуры на снижение напряжений путем релаксации особенно велико после низкого отпуска, т. е. у неравновесных структур [5].  [c.147]

Часть вторая пособия своеобразна тем, что в ней приведены описания методов, используемых преимущественно при выполнении работ по металловедению (исследование закалки, отпуска, старения, анизотропии и др.). Выполнение этих работ студентом поможет ему понять общие зависимости свойств от структуры и состава сплавов.  [c.5]

Для определения свойств сплавов изучаются наивыгоднейшие структуры и условия их образования путем построения диаграмм состояния сплавов, изображающих зависимость состояния сплавов той или иной систе- [ Д мы от температуры и состава сплава. Между кривыми охлаждения сплавов и чистых ме- 7// таллов (рис. 1-3 и 1-4), как это видно из рис. 1-5, имеется разница, заключающаяся в г наличии на кривой двух точек а и б, соот- ветствующих температурам начала и конца кристаллизации. Выше точки а сплав находится в жидком состоянии, затем при охлаждении от а до б в нем увеличивается твердая фаза и при б сплав окончательно кристаллизуется.  [c.13]


Металлография, или металловедение,— наука, занимающаяся изучением свойств, состава и структуры металлов и их сплавов. Металловедение как наука создана русскими учеными-металлур-гами. Выдающийся русский ученый-металлург Павел Петрович Аносов первый заложил основы металловедения. Работая на Златоустовском оружейном заводе на Урале, он впервые в мире в 1831 г. применил микроскоп для исследования строения стали на полированных травленых шлифах. П. П. Аносов положил начало современному процессу производства стали, называемому мартеновским он осуществил метод передела чугуна в сталь (в 1873 г.) без добавки железа, опередив этим более чем на 30 лет братьев Мартен.  [c.28]

Приведен анализ тонкой структуры стареющих деформируемых алюминиевых сплавов показана связь между структурой, механическими свойствами и склонностью к коррозионному растрескиванию. С применением методов дифракционной электронной микроскопии установлена зависимость дислокационной структуры от фазового состава сплава, уровня растягивающих напряжений, состава коррозионной среды и величины электродного потенциала. Описаны структурные особенности, сопутствующие коррозионному растрескиванию промышленных алюминиевых сплавов. Обобщенные данные могут использоваться при разработке новых сплавов и режимов их термической обработки, а также при анализе эксплуатационных разрушений.  [c.632]

Связь между свойствами и диаграммой состояния. Между составом и структурой сплава, определяемой типом диаграммы состояния и свойствами силава, как показал Н. С. Курнаков, существует определенная зависимость (см. рис. 57, б).  [c.94]

Использование в качестве легирующих добавок карбидных фаз позволяет получить структуру по типу "твердые включения-вязкая матрица", подобную твердым сплавам и обладающую повышенной твердостью. Степень упрочнения материала и изменение механических свойств зависят от режимов электронно-лучевой обработки и состава легирующих добавок. Оптимальное сочетание указанных факторов приводит к существенному повышению износостойкости модифицированных сталей (рис. 8.11).  [c.254]

Создание технологии лазерной обработки основывается на последовательном анализе множества факторов. Исходным фактором является марка инструментальных сталей и сплавов. Затем оценивают влияние лазерного воздействия на изменение структуры, элементного и фазового состава модифицируемого материала. На следующем этапе устанавливается влияние лазерного облучения на изменение механических и триботехнических свойств. При разработке технологического процесса лазерной обработки, кроме того, учитывают изменение шероховатости обрабатываемой поверхности и теплостойкость инструментальных материалов.  [c.259]

Приведены данные о современных усовершенствованных методах контроля и исследования состава, структуры, механических и коррозионных свойств легких сплавов. Описаны методы оценки механических свойств, включая вязкость разрушения. Особое внимание уделено высокопроизводительным и неразрушающим методам контроля. -  [c.21]

Специальные ферромагнетики. В особую подгруппу можно выделить материалы, применение которых основано на наличии у них тех или иных особенностей магнитных свойств, которые определяются структурой и составом. К таким материалам можно отнести 1) сплавы, отличающиеся незначительным изменением магнитной проницаемости при изменении напряженности поля, 2) сплавы  [c.281]

Повышенные прочностные характеристики данных материалов заметно снижаются при нагреве и низкотемпературном старений. На реологические свойства аморфных сплавов существенное влияние оказывают малейшие изменения структуры, связанные с химическим составом и условиями получения аморфных композиций. В настоящее время многое еще не ясно в вопросах природы атомных связей, реологических свойств и механизма разрушения данных материалов.  [c.37]

В зависимости от условий испытания, химического состава, структуры и физико-механических свойств стали или сплава сопротивление усталости и усталостная долговечность возрастают  [c.239]


Как правило, это не зависит от микроструктуры. Однако обработка в р-области, при которой получают игольчатые структуры, например р-5ТА (высокотемпературная обработка на твердый раствор + старение), приводит к увеличению вязкости разрушения. В приведенном на рис. 74 примере увеличение вязкости разрушения составляет 33 МПа-м . При этом следует заметить, что улучшение таких свойств зависит и от состава сплава (см. рис. 73). В менее чувствительных к КР сплавах, например в сплаве — 4А1—ЗМо—IV положительное влияние технологической обработки в р-области более выражено для высоких уровней прочности [41]. В высокочувствительных к КР сплавах, например сплавах на основе Т1 — 8А1 или сплавах с высоким содержанием кислорода, структуры, полученные р-обработкой на твердый раствор с последующим быстрым о.хлаждением, относительно устойчивы к КР. В сплавах с такими структурами после старения нивелируется благоприятное влияние термической обработки в р-области за счет свойственной чувствительности к КР. Эти эффекты более детально описываются в разделе по практическим аспектам коррозионного растрескивания титановых сплавов.  [c.367]

Магнитный анализ применяется при исследовании структуры и состава стали и чугуна, а также для определения толщин немагнитных покрытий на ферромагнитных основах и некоторых других свойств ферромагнитных сплавов.  [c.177]

Диаграмма 1 (фиг. 111, I). Начало затвердевания (конец плавления) сплавов —линия АЕ и ЕВ (ликвидус), конец затвердевания (начало плавления) — линия d (солидус). Структура механическая смесь чистых металлов А и В левее точки Е — крупные кристаллы металла А, окружённые смесью мелких кристаллов А л В (эвтектикой) правее точки Е— крупные кристаллы металла В, окружённые эвтектикой. Структура сплава, отвечающего по составу точке Е, — чистая эвтектика. Фазовых превращений в твёрдом состоянии в сплавах не имеется. Термическая обработка сплавов невозможна. Структура и механические свойства сплавов могут быть изменены (улучшены) а) подбором соответствующих условий литья для получения мелкой кристаллизации б) ковкой при нагреве до температуры, лежащей ниже линии начала плавления d в) ковкой в холодном состоянии всех сплавов, если компоненты А п В не обладают хрупкостью, и некоторых сплавов, если один из компонентов обладает хрупкостью.  [c.193]

Тепло- и электропроводность сплавов в твердом состоянии зависит от их состава и структуры. Для эвтектических систем эта зависимость графически изображается прямой линией, соединяющей точки на диаграмме состояния системы, отвечающие при выбранной температуре электро- или теплопроводности соответствующих фаз, составных частей механической смеси (чистых металлов, предельных твердых растворов, химических соединений). Образование твердого раствора сопровождается понижением тепло- и электропроводности, и изменение этих свойств в зависимости от состава представляет собой вогнутую кривую [19]. У жидких металлических сплавов эти свойства являются более сложной функцией состава.  [c.8]

Сплав Д1 иногда называют классическим дуралюмином. По химическому составу он обычно относится к системе А1 — Си — Mg. Однако в нем присутствуют довольно значительные количества Мп, 51 и Ре, которые оказывают влияние как на структуру, так и на свойства этого сплава. Отношение количества меди к количеству магния в нем значи-92  [c.92]

Улучшение лопаточных сплавов выражается в повышении допустимой рабочей температуры материала при сохранении его прочности. В среднем успехи металлургии приводят к ежегодному увеличению рабочей температуры сплавов на 7—8 К, что за время суш,ествования авиационных ГТД составило уже почти 250 К. Суш,ественно улучшилось также качество материалов для дисков, прочность которых за эти годы удвоилась. Улучшение свойств материалов произошло с введением вакуумной плавки и литья, обеспечивших возможность более точного управления составом и устранения вредных примесей. В последнее время для улучшения структуры кристаллов и их ориентации применяется направленная кристаллизация.  [c.52]

Характер и степень влияния примесей во многом определяются и химическим составом сплава. Добавление легирующего элемента может значительно сокра-ш,ать предел растворимости примесных элементов в а-фазе титана. Кроме того, легируюш,ие элементы, обладающие большей химической активностью, чем титан, могут образовывать с примесями прочное химическое соединение. И в том и в другом случае отмечается весьма существенное понижение пластичности и вязкости сплава. Примером различной чувствительности сплавов разной легированности к воздействию примесей может служить приведенное в табл. 19 изменение величины ударной вязкости сплавов Ti—6А1—1,5V и Ti—6А1—1,5V—5Zr в зависимости от содержания кремния. Влияние качества структуры полуфабриката, определяемой условиями его термопластической деформации и габаритами, было рассмотрено в предыдущих разделах. В соответствии с изложенным при выборе сплава по справочным данным необходимо учитывать, что приведенные значения механических свойств сплава относятся, как правило, лишь к определенному виду полуфабриката после вполне определенной термической обработки. При изготовлении полуфабриката другого типа и других размеров можно получить комплекс свойств, существенно отличающийся от справочных данных.  [c.65]

Структура сплавов, их фазовый состав, а следовательно, и свойства зависят от состава сплава и той обработки, которую он прошел. Ниже будут рассмотрены формирование различных структур сплавов и влияние структуры (фазового состава) на свойства сплавов.  [c.44]

Как и в случае вольфрамсодержащих твердых сплавов, свойства безвольфрамовых твердых сплавов в значительной степени зависят от технологии производства. Изменяя технологические параметры процесса производства твердых сплавов и методы получения карбида тит,ака, можно при одном и том же составе сплава изменять его структуру и свойства.  [c.60]


Наряду с высокоуглеродистыми и легированными сталями в качестве износостойких материалов применяют чугун различных марок. Решающее влияние на триботехнические свойства чугуна оказывают включения графита и фосфоридная эвтектика чугуна, которые определяются структурой, зависящей от состава сплава, условий охлаждения литья и термической обработки. Износостойкость чугуна зависит также от содержания перлита увеличение перлита в структуре до 30% повышает износостойкость чугуна.  [c.18]

Структура сплава АЛ 10В является более гетерогенной, чем у сплавов АЛЗ, АЛб. В основном он применяется для литья поршней, термически обрабатываемых по режиму Т2, т. е. нагрев при 200 10° С в течение 5—10 ч. Сплав изготавливается из вторичных отходов и поэтому он имеет очень широкие пределы по химическому составу, следовательно, и нестабильность физико-механических и литейных свойств, в связи с чем поршни из этого сплава на двигателях очень часто не выдерживают указанные в технических условиях ресурсы двигателя. Поршни часто выбывают из строя из-за трещин, особенно тогда, когда они термически обработаны по режиму Тб. В этом случае жаропрочность сплава АЛ10В значительно ниже, чем у поршней, обработанных по режиму Т2. По литейным свойствам и жаропрочности сплав АЛШВ значительно уступает другим поршневым сплавам (АЛ26, АЛЗО и др.). Поэтому сплав АЛ10В не рекомендуется применять для поршней.  [c.89]

Отливки, не продаедшие термическую обработку, имеют крупнозернистую структуру и низкие прочностные свойства. Кроме того, в связи с неравномерностью охлаждения различных зон и затрудненностью усадки в них сохраняются внутренние напряжения. Структура и свойства отливок могут быть существенно улучшены термической обработкой. Вид обработки (отжиг, нормализация, закалка, отпуск) определяется природой и составом сплава, размерами и конфигурацией отливки, а также техническими условиями.  [c.232]

Применяя термический и другие физико-химические методы исследования, Н- С. Курнаков установил общую закономерность изменения свойств в зависимости от структуры и состава сплавов и выразил ее в диаграммах. Эти диаграммы, носящие имя Н. С. Кур-накова, построены в координатах свойства — концентрация сплава.  [c.65]

Взаимосвязь переменных составляющих процесса коррозионного растрескивания, а именно структуры, электрохимических характеристик и чувствительности к напряжениям, подтверждает предположение об их взаимодействии самыми различными путями и поэтому растрескивание нельзя представить одним механизмом. Следует считать, что в процессе коррозионного растрескивания имеет место непрерывный переход от одного механизма к другому. Критическое равновесие между активным и пассивным состояниями изменяется в зависимости от изменення структуры и состава сплава. При этом влияние состава сплава на прикладываемые напряжения проявляется как изменение механических свойств и зависит от  [c.240]

Состояние с высокой остаточной намагниченностью может сохраняться тогда, когда перемагничивание материала очень затруднено. Материал должен иметь кривую размагничивания, желательно более близкую к прямоугольной, и большое значение коэрцитивной силы. Необходимая для этого состояния структура достигается в результате специфических фазовых превращений. Поэтому технология изготовления постоянных магнитов является высокоточной и основана на экстремальных зависимостях физико-химических свойств от состава сплава, кристаллического строения, температурно-временнь1Х режимов обработки.  [c.397]

Для выяснения причин коррозии и мер ее предотвращения коррозионисты-исследователи изучают механизмы коррозионных процессов. Инженеры-коррозионисты используют накопленные наукой знания с учетом эксплуатационных данных и экономических факторов. Например, инженер-коррозионист осуществляет катодную защиту подземных трубопроводов или испытывает и разрабатывает новые краски, рекомендует добавки ингибиторов коррозии или металлическое покрытие. Ученый-коррозионист для этога разработал оптимальные варианты катодной защиты, определил молекулярную структуру химических составов с лучшими ингибирующими свойствами, создал коррозионностойкие сплавы и определил режим их термической обработки. Как науч-  [c.16]

Структура пассивной пленки на сплавах, как и пассивной пленки вообще, была описана и теорией оксидной пленки и адсорбционной теорией. В соответствии с оксидно-пленочной теорией, защитные оксидные пленки формируются на сплавах с содержанием легирующего компонента выше критического, а незащитные — на сплавах ниже критического состава. В случае преимущественного окисления пассивной составляющей сплава, например хрома, защитные оксиды (такие как СГ2О3) формируются, только если содержание хрома в сплаве превышает определенный уровень. Эта точка зрения не позволяет делать никаких количественных прогнозов, а тот факт, что пассивная пленка на нержавеющих сталях может быть катодно восстановлена и не соответствовать стехиометрическому составу, остается необъясненным. Согласно адсорбционной теории, в водной среде кислород хемо-сорбируется на Сг—Fe-сплавах выше критического состава, обеспечивая пассивность, но на сплавах ниже критического состава он реагирует с образованием непассивирующей оксидной пленки. Насколько данный сплав благоприятствует образованию хемо-сорбционной пленки или пленки продуктов реакции, зависит от электронной конфигурации поверхности сплава, особенно от взаимодействия d-электронов. Так называемая теория электронной конфигурации ставит в связь критические составы с благоприятной конфигурацией d-электронов, обеспечивающей хемосорбцию и пассивность. Теория объясняет природу взаимодействия электронов, определяющую, какой из компонентов придает сплаву данные химические свойства, например, почему свойства никеля преобладают над свойствами меди в медно-никелевых сплавах, содержащих более 30—40 % Ni.  [c.91]

Наилучшие магнитные свойства в сплавах типа алии получаются в результате охлаждения сплава из однофазной области с критической скоростью, равной примерно 10°/мин. При этом образуется гетерогенная структура, основу ее составляет слабомагнитная фаза, в которой имеются включения ферромагнитной Р-фазы. При критической скорости охлаждения образуются оптимальные по размеру и составу Р-частицы, что и определяет наивысшие значения коэрцитивной силы и магнитной энергии. Сплав ЮН , содержаший 25% Ni, 12% А1, остальное железо, после охлаждения с оптимальной скоростью имеет следующие магнитные свойства = 37 810 а/м (475 э), В, = 0,69тл (6900 ГС) и = 5,52 10 дж/м  [c.222]

В металлических материалах по структурному признаку различают Гомогенную и гетерогенную анизотропию [86, 87]. Гомогенная анизо-тррпия определяется типом кристаллической решетки и соответственно различием свойств кристаллов в разных направлениях. При появлении в результате деформации предпочтительной ориентировки кристаллов в поликристаллическом металле свойственное монокристаллам различие свойств проявляется во всем объеме текстурированного металла. Гетерогенная анизотропия связана с закономерно ориентированным распределением в структуре металлических и неметаллических включений, участков, отл1 чающихся по химическому или фазовому составу, а также дефектов, образовавшихся вследствие течения металла при деформации. Основное отличие титановых сплавов от других конструкционных металлов связано с гомогенной анизотропией, влияние которой на характеристики разрушения рассмотрено ниже.  [c.128]


Обнаружение сверхпластичности в ультрамелкозернистых материалах при относительно низких температурах и очень высоких скоростях деформации указывают на возможность значительного и эффективного повышения уровня использования сверхпласти-ческой формовки в различных промышленных сплавах за счет измельчения их структуры. Однако для достижения более высоких сверхпластических свойств в ультрамелкозернистых сплавах необходим тщательный контроль за их микроструктурой и фазовым составом.  [c.212]

В тех средах, которые рассматриваются в данной главе, сплавы на основе никеля исследовались не так интенсивно, как некоторые из уже рассмотренных выше систем сплавов. Поэтому обобщение имеющихся данных в этой области будет сравнительно кратким. Составы обсуждаемых ниже сплавов представлены в табл. 7. Среди никелевых сплавов можно выделить три больших основных класса (причем во всех трех случаях матрица имеет г. ц. к. структуру) 1) однофазные сплавы, такие как Ni—30 u, Ni—20 r и другие 2) сплавы, упрочненные выделениями, в основном представленные нсаропрочными суперсплавами, состаренными с целью выделения у -фазы 3) дисперсно-упрочненные сплавы, в которых упрочняющая фаза не выделяется из твердого раствора, а вводится в сплав каким-либо иным способом. Прежде чем обсуждать свойства каждой группы сплавов, важно рассмотреть поведение номинально чистого никеля.  [c.109]

Такие сплавы, как Т1 — 11,5Мо — 62г — 4,55п и т. д. (см. рис. 79), по-видимому, не соответствуют общей классификации, описанной выше. Наиболее чувствительная микроструктура в этих сплавах состоит из тонких видманштеттовых выделений а-фазы в матрице рекристаллизованной р-фазы. Хотя электрохимические параметры (например, концентрация, потенциал) имеют точно такое же влияние на свойства при КР, как и для сплавов, описанных выше, характер разрушения при этом межкристаллитный. Из имеющихся ограниченных данных можно заключить, что характер разрушения при КР зависит от структуры и не зависит от состава. Немного известно о факторах, контролирующих этот вид межкристаллит-ного разрушения. Высокочувствительные сплавы Н — А1 проявляют тенденцию к разрушению сколом как на воздухе, так и в водных растворах. Интересно, что сплав И — 11,5Мо — 62г — 4,55п проявляет тенденцию к межкристаллитному разрушению на воздухе, как показано на рис. 101 [103]. Из рис. 101, а также очевидно, что скольжение является турбулентным, что отличается от поведения сплавов, чувствительных к транскристаллитному разрушению при КР. Однако при более тщательном анализе морфологии разрушения обнаружено стремление к плоскостному скольжению в областях, примыкающих к границам зерен (рис. 101, б) [105].  [c.410]

Большое влияние на структуру и свойства чугуна оказывает модифицирование. Модифицированным чугуном называют сплавы, соответствующие по химическому составу отбеленному чугуну, но затвердевающие серыми после обработки на желобе вагранки или в ковше графитизирующими добавками (графитом, ферросилицием, силикокальцием, а также комплексными модификаторами, содержащими кремний, алюминий, цирконий, лантан и другие элементы). Модифицированный чугун отличается от обычного серого повышенными механическими свойствами и, главное, более равномерной структурой в тонких и толстых сечениях отливок [3—5],  [c.10]

В большинстве встречающихся на практике случаев образующаяся при диффузионной пайке структура шва двухфазная твердый раствор a-Ti и ннтерметаллидные включения. Изменение механических свойств сплавов, имеющих в своем составе интер-металлиды, зависит от особенностей выделения второй фазы и характера дисперсионного механизма упрочнения. В результате дисперсных выделений может иметь место как упрочне-нение, так и разупрочнение сплава. Выделение небольшого количества второй фазы в мелкодисперсном состоянии сопровождается повышением прочности и уменьшением пластичности. Вторая фаза в этом случае вносит искажения в кристаллическую решетку металла. Увеличение количества выделяющейся избыточной фазы может послужить причиной резкого уменьшения пластических и прочностных свойств, если эта фаза выделяется в виде сетчатого каркаса. Менее опасны интерметаллиды в случае их выделения в виде сосредоточенных включений.  [c.41]

Если сплав после естественного старения кратковременно (несколько секунд или минут) нагреть до 240—280 °С и затем быстро охладить, то упрочнение полностью снимается и свойства сплава будут соответствовать свежезакаленному состоянию. Это явление получило название возврат. Разупрочнение при возврате связано 6 тем, что зоны ГП-1 при этих температурах оказываются нестабильными и поэтому растворяются в твердом растворе, а атомы меди вновь более или менее равномерно распределяются Б пределах объема каждого кристалла твердого раствора, как и после закалки. При последующем вылеживании сплава при нормальной температуре вновь происходит образование зон ГП-1 и упрочнение сплава. Однако после возврата и последующего старения ухудшаются коррозионные свойства сплава, что затрудняет использование возврата для практических целей. Длительная выдержка при 100 "С или несколько часов при 150 приводит к образованию зон ГП-2 большей величины с упорядоченной структурой, отличной от структуры а-твердого раствора. С повышением температуры старения процессы диффузии, а следовательно, и процессы структурных превращений, и самоупрочнение протекают быстрее. Выдержка в течение нескольких часов при 150—200 °С приводит к образованию в местах, где располагались зоны ГП-2, дисперсных (тон ко пластинчатых) частиц промежуточной 9 -фазы, не отличающейся по химическому составу от стабильной фазы 0 (СпА12), но имеющей отличную кристаллическую решетку 0 -фаза когерентно связана с твердым раствором. Повышение температуры до 200—250 °С приводит к коагуляции метаста-бильной фазы и к образованию стабильной 0-фазы.  [c.390]

Проблема получения тонкодисперсных порошков металлов, сплавов и соединений и сверхмелкозернистых материалов из них, предназначенных для различных областей техники, давно обсуждается в литературе. В последнее десятилетие интерес к этой теме существенно возрос, так как обнаружилось (в первую очередь на металлах), что уменьшение размера кристаллитов ниже некоторой пороговой величины может приводить к значительному изменению свойств [1—15]. Такие эффекты появляются, когда средний размер кристаллических зерен не превышает 100 нм, и наиболее отчетливо наблюдаются, когда размер зерен менее 10 нм. Изучение свойств сверхмелкозернистых материалов требует учета не только их состава и структуры, но и дисперсности. Поликристаллические сверхмелкозернистые материалы со средним размером зерен от 100—150 до 40 нм называют обычно субмикрокристаллическими, а со средним размером зерен менее 40 нм — нанокристаллическими.  [c.7]

Повышение температуры, например до 1400 °С, приводит к некоторому дополнительному (против эвтектического состава) растворению W в жидкой фазе. При изотермическом спекании в порошковой заготовке присутствует некоторый объем жидкости (количество зависит от марки сплава) и большое количество нерастворившихся в ней частиц W . При перекристаллизации через жидкую фазу частицы W укрупняются и приобретают правильную огранку. При охлаждении заготовки они несколько увеличиваются в размерах, так как на них кристаллизуется W , выпадающий из жидкости или выделяющийся при ее затвердевании. Таким образом, спеченные сплавы ВК должны быть двухфазными и состоять из кристаллов W , между которыми располагается кобальтовая фаза с размером участков от нескольких десятков до 300-500 мкм. При изменении содержания углерода технические сплавы могут оказаться трехфазными W + f + графит при избытке углерода или W + f + т) 1 при его недостатке в исходной смеси из-за ее частичного обезуглероживания при спекании. Появление графита или фазы Hi в структуре изменяет свойства сплава фаза п i повышает твердость и хрупкость сплавов и понижает, иногда существенно, их прочность свободный графит несколько снижает твердость и прочность сплавов. На свойства сплавов (рис. 42 - 45) влияет также и содержание углерода в пределах двухфазной области W +1) (терминами низкоуглеродистые и высокоуглеродистые обозначены сплавы с содержанием углерода, близким соответственно к бедноуглеродистой или богатоуг-  [c.109]

Ряд исследований последних лет посвящен получению многокомпонентных пленочных материалов на основе нитрида алюминия. Так, структура, механические и химические свойства тонких пленок В—А1—N переменного состава, приготовленных ионнолучевым осаждением, изучались в [44]. Отношение N/(A1—В) для всех пленок составляло 1,0. Предполагается, что в пленках реализуется состояние твердого раствора BN—A1N вюртцитной структуры. Получено, что микротвердость пленки от содержания бора практически не зависит, однако рост его концентрации определяет повышение химической интертности системы скорость травления сплава, содержащего 9 % BN, фосфорной кислотой на порядок меньше, чем для чистого АЖ. В [45] отмечается, что при осаждении на нитрид алюминия углеродных пленок термическая диффузия для данной системы выше, чем для АЖ-керамики, и увеличивается с ростом толщины пленки углерода.  [c.9]

Важной стадией изготовления изделий и карбидостали, на которой форм1фуется окончательная структура материала и ему придаются требуемые свойства, является термическая обработка. Режимы смягчающего отжига, закалки и отпуска карбвдосталей, варьируемые в зависимости от состава связки и желательной структуры сплава, в целом мало отличаются от режимов термической обработки исходных сталей. Термическая обработка карбидосталей обычно проводится в нейтральной или восстановительной атмосфере. Линейные размеры образцов из карбидостали в процессе термообработки практически не изменяются (не более чем на 0,5 %), поэтому на готовые изделия следует задавать небольшие припуски.  [c.109]



Смотреть страницы где упоминается термин Структура, свойства и составы сплавов : [c.61]    [c.140]    [c.216]    [c.40]    [c.14]    [c.636]   
Смотреть главы в:

Нержавеющие стали  -> Структура, свойства и составы сплавов



ПОИСК



426 — Свойства и состав

Влияние химического состава на магнитные свойства и структуру сплавов

Свойства с а-структурой

Свойства сплавов в зависимости от их состава и структуры

Состав и структура ЭС

Состав и структура сплава

Состав, структура, свойства и применение основных титановых сплавов

Сплавы Состав

Сталь и сплавы устойчивые против абразивного износа (при трении скольжения) состав, структура, свойства

Сталь и сплавы устойчивые против абразивного износа (при трении скольжения) хромоазотистая состав, структура, свойства

Структура и свойства сплавов

Структура, магнитные свойства и химический состав я- к я-фаз при высококоэрцитивном состоянии сплавов ЮНДК И ЮНДКТ

Твердые металлокерамические вольфрамо-кобальтовые сплавы состав, структура, технология производства, свойства

Твердые металлокерамические вольфрамо-кобальтовые сплавы состав, структура, технология производства, свойства состав, структура, технология производства, свойства



© 2025 Mash-xxl.info Реклама на сайте