Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Катодная защита подземного трубопровода

Рис. п.7. Схема катодной защиты подземного трубопровода с помощью анодов, расположенных на расстоянии а друг от друга V  [c.410]

Применять методы электрохимической защиты от коррозии начали в первую очередь в химической промышленности около 15 лет назад вначале нерешительно, как это было и с применением катодной защиты подземных трубопроводов около 30 лет назад. Препятствие к более широкому применению заключалось главным образом в том, что внутренняя защита должна в большей мере выполняться по индивидуальным проектам, чем простая наружная защита подземных сооружений. В связи с возросшей важностью обеспечения повышенной надежности производственных установок, с ужесточением требований к коррозионной стойкости и укрупнением деталей и узлов установок начал проявляться интерес к электрохимической внутренней защите. Хотя на вопрос об экономичности защиты нельзя дать общего ответа (см. раздел 22.4), все же очевидно, что расходы на электрохимическую защиту будут меньше расходов на высококачественную и надежную футеровку (на покрытия) или на коррозионностойкие материалы. При этом анализе нельзя не отметить, что наде кная эксплуатация очень крупных выпарных аппаратов для щелочных растворов вообще стала возможной только благодаря применению внутренней анодной защиты, поскольку достаточно эффективный отжиг для снятия внутренних напряжений крупных резервуаров практически неосуществим, а конструктивные и эксплуатационные напряжения вообще не могут быть устранены.  [c.400]


ЗАТРАТЫ НА КАТОДНУЮ ЗАЩИТУ ПОДЗЕМНЫХ ТРУБОПРОВОДОВ  [c.414]

В отличие от ранее принятых в практике проектирования расчетов системы катодной защиты подземных трубопроводов, в книге впервые описано последовательное проектирование со стадиями Проект и Рабочая документация . Другое отличие книги - нами предлагаются методики расчета, в которых учитывается значительно большее количество факторов, влияющих на эффективность катодных установок. В результате, как показывает опыт, расчетные и реальные параметры катодных установок практически не отличаются.  [c.5]

МЕТОДИКА РАСЧЕТА КАТОДНОЙ ЗАЩИТЫ ПОДЗЕМНОГО ТРУБОПРОВОДА  [c.277]

При расчете катодной защиты подземных трубопроводов необходимо учитывать электрохимическую поляризацию.  [c.291]

Предлагается осуществить катодную защиту подземного трубопровода. Имеются три варианта  [c.400]

Катодная защита подземных трубопроводов отличается значительно меньшей стоимостью по сравнению с любым из других способов, обеспечивающим такую же эффективность их защиты от коррозии. Например, уверенность в том, что в катодно защищаемых подземных трубопроводах не возникнет сквозных разрушений, делает экономически целесообразной транспортировку по ним нефти и природного газа под высоким давлением на большие расстояния.  [c.183]

Для подземных трубопроводов стоимость катодной защиты намного ниже, чем при использовании любых других способов, обеспечивающих аналогичную степень защиты. Гарантия того, что в катодно защищенных подземных трубопроводах не происходит сквозных разрушений вследствие коррозии со стороны грунта, сделала экономически оправданным и применение высокого давления для транспортировки нефти и газа на большие расстояния, например через американский континент.  [c.228]

В связи с этим важной задачей повышения эффективности и надежности работы катодной защиты подземных заземленных сооружений (кабели, трубопроводы, резервуары и др.) является разработка устройств, позволяющих значительно увеличить входное сопротивление защищаемых объектов. Такими устройствами могут служить балластные сопротивления, изолирующие прокладки, вставки, фланцы, различные схемы с использованием полупроводниковых приборов и т. д.  [c.20]

Обычно катодная защита используется вместе с изоляционными покрытиями, нанесёнными на наружную поверхность защищаемого сооружения. Поверхностное покрытие уменьшает необходимую плотность катодного тока на несколько порядков. Но по мере разрушения покрытия и оголения металла плотность катодного тока необходимо увеличивать. Качество наружного покрытия на защищаемой поверхности определяет интегральную площадь неизолированного металла, контактирующего с электролитом, и ток, который будет протекать через покрытие. Плотность тока, необходимого для катодной защиты подземных металлических трубопроводов, почти полностью зависит от качества покрытия все прочие факторы имеют меньшее влияние.  [c.34]


Не так давно значительное внимание обращалось на оборудование и системы, обеспечивающие катодную коррозионную защиту для металлических конструкций. Такие системы и оборудование применяются для защиты подземных трубопроводов, емкостей и т.п., а также металлических поверхностей, контактирующих с водой, например корпусов судов, бурового оборудования, доков и т.п.  [c.85]

Электрохимическая защита подземных трубопроводов может быть осуществлена в двух вариантах применением внешних источников постоянного тока (установки катодной защиты с выпрямителями, генераторами постоянного тока, химическими элементами МОЭ-1000 и т. п.) и внутренних источников — протекторов. При присоединении к трубопроводу протектора, изготовленного из металла с более отрицательным электродным потенциалом по отношению к стали, образуется гальванический элемент.  [c.166]

В книге приведены современные методы противокоррозионной защиты подземных трубопроводов заводской сети изло жены способы определения коррозион ных условий работы трубопроводов описано влияние на металл коррозионной среды, блуждающих токов и биологических факторов рекомендуются различные методы защиты трубопроводов применение коррозионно стойких материа лов, обработка коррозионной среды, нанесение покрытий, установка катодной зашиты и применение электрического дренажа.  [c.2]

Катодная защита. В общем, все современные подземные трубопроводы и резервуары, удаленные от густонаселенных мест, снабжены катодной защитой в сочетании с органическими покрытиями. Такое сочетание эффективно действует в любых грунтах до тех пор, пока соответствующая катодная защита существует.  [c.188]

Источниками блуждающих постоянных токов обычно являются пути электропоездов, заземления линий постоянного тока, установки для электросварки, системы катодной защиты и установки для нанесения гальванических покрытий. Источники блуждающих переменных токов — это обычно заземления линий переменного тока или токи, индуцированные в трубопроводах проложенными рядом электрическими кабелями. Пример возникновения блуждающего постоянного тока от трамвайной линии, где стальные рельсы используются для возвращения тока к генераторной станции, показан на рис. 11.1. Вследствие плохого контакта рельсов на стыках и недостаточной изоляции их от земли часть тока выходит в почву и находит пути с низким сопротивлением, например подземные газо- и водопроводы. В точке А труба попадает под воздействие катодной защиты и не подвергается коррозии, а в точке В, напротив, сильно корродирует, так как по отношению к рельсам является анодом. Если в точке В труба защищена неметаллическим покрытием, это усугубляет коррозионные разрушения, так как в этом случае все блуждающие токи выходят через дефекты в покрытии трубы, что вызывает увеличение плот-, ности тока на ограниченных участках поверхности и ускоряет разрушение трубы.  [c.210]

На практике эффективность катодной защиты можно установить несколькими способами, и в прошлом для доказательства полноты защиты использовали ряд критериев. Можно, например, для действующего подземного трубопровода построить зависимость числа наблюдаемых сквозных разрушений от времени эксплуатации, на которой будет видно, что после начала использования катодной защиты число сквозных разрушений резко уменьшается или падает до нуля. При защите кораблей можно через определенные интервалы времени обследовать корпус для определения глубины образующихся язв.  [c.225]

Колориметрические измерения. Открывают часть подземного трубопровода и очищают поверхность металла. К ней прикладывают кусок фильтровальной бумаги, смоченной в растворе железосинеродистого калия. Затем трубу вновь засыпают грунтом. Через сравнительно короткое время осматривают бумагу голубое окрашивание вследствие образования железосинеродистого железа указывает на неполную катодную защиту, отсутствие голубого окрашивания свидетельствует об удовлетворительной защите.  [c.225]


В пассивном состоянии потенциал стальной арматуры в бетоне положителен по отношению к потенциалу стали, расположенной на поверхности бетона и соединенной с арматурой измеряемая разность потенциалов составляет около 0,5 В [10]. Большая площадь катодных участков и малая площадь анодных — вот причина преждевременного выхода из строя стальных подземных трубопроводов, подводимых к бетонным сооружениям [И]. В этой ситуации целесообразно применять эпоксидные покрытия для защиты арматуры и соединительных элементов.  [c.245]

При изменении полярности выпрямителя влага будет поступать из окружающей среды к сооружению. Таким образом, при катодной защите под изоляционное покрытие трубопроводов и других защищаемых сооружений будет постоянно поступать влага, которая значительно ускоряет процесс старения изоляционных покрытий. Так, например, через два-три года эксплуатации вновь уложенного газопровода, имеющего катодную защиту, качество изоляционного покрытия снижается на 25—40 процентов. Это связано еще с тем, что в условиях Башкирии подземные нефтегазопроводы, емкости и резервуары промерзают на глубину до 1,5 м, а это в свою очередь приводит к деформации изоляционных покрытий замерзшей влагой,  [c.32]

Таким образом, повышение эффективности катодной защиты любого подземного трубопровода может быть достигнуто использованием изолирующих фланцев или изолирующих вставок. При этом наибольший техникоэкономический эффект дает применение изолирующих фланцев, изготовленных и испытанных в стационарных условиях.  [c.36]

Во всех промышленно развитых странах все большее значение приобретает проблема защиты металла от коррозии. Среди различных способов, используемых для ее решения, особое место занимают системы электрохимической (катодной) защиты, широко применяемые для предотвращения разрушения металлических сооружений, эксплуатируемых в условиях природных вод и грунтов. Область применения катодной защиты весьма широка она охватывает подземные водопроводы, газо-, нефте- и продуктопроводы и металлические трубопроводы других назначений, проложенные в земле, подземные кабели связи, силовые кабели с металлической оболочкой и броней, кабели, проложенные в трубах, заполненных сжатым газом или маслом, различные резервуары — хранилища и цистерны, речные и морские суда, портовое оборудование, установки питьевой воды и различные аппараты химической промышленности, нуждающиеся во внутренней защите.  [c.13]

В последующих главах подробно рассматриваются свойства и применение протекторов, катодных преобразователей, специального оборудования для защиты от блуждающих токов и анодов (анодных заземли-телей) с наложением внешнего тока. В числе областей применения рассматриваются подземные трубопроводы, резервуары-хранилища, цистерны, кабели систем связи, сильноточные кабели и кабели с оболочкой, заполненной сжатым газом, суда, портовое оборудование и внутренняя защита установок для питьевой воды и различных промышленных аппаратов. Отдельная глава посвящена проблемам защиты трубопровода и кабелей, подвергаемых действию высокого напряжения. В заключение рассматриваются затраты на защиту от коррозии и вопросы экономичности. В приложении даны справочные таблицы и дан вывод математических формул, представлявшихся необходимыми для практического применения способов защиты и для более полного понимания излагаемого материала.  [c.18]

Защитные мероприятия делятся на активные и пассивные. Электрохимическая защита представляет собой важную и обширную часть защитных мероприятий, характеризующихся активным вмешательством в процессы коррозии. Пассивные защитные мероприятия заключаются в разъединении защищаемой поверхности и агрессивной коррозионной среды при помощи покрытия. Любые возможные активные и пассивные защитные мероприятия могут проводиться и отдельно, однако сочетание обоих способов защиты дает ряд преимуществ и в некоторых случаях даже настоятельно необходимо. Катодная защита и нанесение покрытий почти идеально дополняют друг друга. Это обусловливается, во-первых, экономическими причинами в принципе можно активно защищать и сооружения без покрытий, но затраты на защитную установку и эксплуатационные расходы при этом будут бесспорно высокими, так как потребуется большой катодный защитный ток. Кроме того, в случае подземных трубопроводов имеются и технические соображения, по которым катодная защита поверхностей без покрытия нежелательна. В первую очередь имеется в виду влияние на близрасположенные металлические конструкции, вызывающее опасность их коррозии. Такая опасность может оказаться весьма значительной, и предотвратить ее техническими средствами либо вообще невозможно, либо очень трудно.  [c.145]

Станции катодной защиты для подземных резервуаров почти всегда можно подключить к электросети участка, на котором они расположены. Напротив, местоположение катодной станции для магистрального трубопровода большой протяженности определяется в первую очередь возможностью подключения к коммунальной сети электроснабжения, поскольку подключение к сети очень длинным кабелем низкого напряжения связано со значительными затратами. Лишь во вторую очередь и при очень большой величине требуемого защитного тока может оказаться важным размещение анодных заземлителей в районе с низким удельным электросопротивлением грунта. Таким образом, при выборе места для станции необходимо учитывать следующие соображения [1]  [c.216]


При работе систем катодной защиты через землю течет постоянный ток, стекающий с анодных заземлителей и натекающий на объект с катодной защитой. Поэтому такие системы согласно D1N 57150 и VDE 0150 являются установками постоянного тока, представляющие собой источники блуждающих токов, которые могут вызвать коррозионные явления на других подземных металлических сооружениях например на трубопроводах и кабелях [12]. Защитный ток создает воронку напряжений в области анодных заземлителей. При этом потенциал грунта получается более высоким по отношению к потенциалу далекой земли. Над дефектами изоляции трубопровода защитный ток создает катодные воронки напряжений. Здесь потенциал грунта снижается по отнощению к потенциалу далекой земли. На другие металлические подземные сооружения, находящиеся в области анодных заземлителей, тоже натекают токи, уходящие в отрицательные участки катодных воронок напряжения таким образом, эти сооружения приобретают в первом случае катодную поляризацию, а во втором — анодную (см. рис. 10.1). В местах стекания (выхода) тока происходит анодная коррозия.  [c.237]

Для выяснения причин коррозии и мер ее предотвращения коррозионисты-исследователи изучают механизмы коррозионных процессов. Инженеры-коррозионисты используют накопленные наукой знания с учетом эксплуатационных данных и экономических факторов. Например, инженер-коррозионист осуществляет катодную защиту подземных трубопроводов или испытывает и разрабатывает новые краски, рекомендует добавки ингибиторов коррозии или металлическое покрытие. Ученый-коррозионист для этога разработал оптимальные варианты катодной защиты, определил молекулярную структуру химических составов с лучшими ингибирующими свойствами, создал коррозионностойкие сплавы и определил режим их термической обработки. Как науч-  [c.16]

Коррозионное растрескивание под напряжением (КРН) часто является причиной разрушения подземных газопроводов [12—18]. В катодно защищенных трубопроводах КНР начинается на внешней поверхности трубы, чаще всего в местах нарушения покрытий. Вблизи от участка разрушения под нарушенным покрытием обнаруживают раствор карбоната/бикарбоната натрия, а иногда и кристаллы NaH Og. Предполагают, что эта среда наиболее благоприятна для КРН. В большинстве конструкций, где применяется катодная защита стали от общей коррозии, сталь поляризуют до потенциала —0,85 В по отношению к Си/Си504-электроду, что соответствует значению —0,53 В по н. в. э. Катодная защита подземных трубопроводов может приводить к накоплению на поверхности трубы щелочных продуктов, например гидроксида натрия, а также растворов карбоната/бикарбоната натрия [19, 20]. Ионы водорода, катионы Na+ и вода, содержащая растворенный кислород, мигрируют к катодным участкам трубы через поры  [c.186]

Как уже отмечалось выше, наиболее надежным контролем действия катодной защиты подземного трубопровода являются контрольные пластинки, устанавливаемые у трубопровода. Схема установки таких пластинок приводится на рис. 122. Размеры пластинок Д0ЛЖ1НЫ быть такими, чтобы за ожидаемый срок их пребывания в почве можно -было получить достаточно ощутимые коррозионные разрушения незащищениой пластинии. Обычный срок испытания пластин 0,5—1 год. Рекомендуемые размеры пластины, а также способы присоединения ее к трубопроводу, позволяющие легко снимать пластинку без разрыва провода, приведены на рис. 122.  [c.306]

В. А. Притула. Катодная защита подземных трубопроводов. Гостоп-  [c.383]

Минерва - 3000 предназначена для катодной защиты подземных трубопроводов большого диаметра и других подземных металлических сооружений в любых климатических условиях.  [c.153]

На основе локальной катодной защиты (защиты опасных мест ) в последние 10 лет была разработана технология совместной катодной защиты подземного оборудования и коммуникаций всего комплекса электростанций и промышленных агрегатов [51]. Эта технология целесообразна в том случае, когда системы трубопроводов уже нельзя надежно или экономично изолировать от железобетонных фундаментов или заземляющих устройств [52]. При наложении защитных токов в несколько сот ампер и применении глубинных анодных заэемлителей в этом случае можно было предотвратить образование протяженных макроэлементов путем снижения потенциала катодно защищаемых поверхностей [53]. В ФРГ с 1974 г. катодная защита магистральных газопроводов с давлением свыше 0,4 или 1,6 МПа считается обязательной и регламентируется рабочими нормалями Западногерманского объединения специалистов газового и водопроводного дела (DVQW Q-462 и Q-463) это относится и к нефтепроводам, защита которых регламентируется нормалью па магистральные трубопроводы для транспортирования опасных (горючих) жидкостей (TRbF301). В настоящее время общая длина трубопроводов, имеющих катодную защиту, превыщает в ФРГ 40 тыс. км.  [c.39]

Катодная защита протяженных трубопроводов, распределительных сетей, трубопроводов на промышленных предприятиях и других подземных сооружений, для которых требуется большой защитный ток, обычно обеспечивается с применением анодных заземлителей, на которые на-кладывается ток от внешнего источника. Требуемое напряжение преобразователя (выпрямителя) и следовательно и мощность станции катодной защиты определяется сопротивлением растеканию тока с анодных заземлителей в грунт—наибольшим сопротивлением в цепи защитного тока. Чтобы снизить электрическую мощность и соответственно сократить текущие эксплуатационные издержки, нужно обеспечить возможно меньшее сопротивление растеканию тока в грунт (см. раздел 10.4.1). Согласно формуле (24.10), это сопротивление R прямо пропорционально удельному сопротивлению грунта р. Поэтому анодные заземлители располагают по возможности на участках с наименьшим удельным сопротивлением грунта [1]. В настоящее время анодные заземлители обычно размещают в общей протяженной коксовой обсыпке, устанавливая их горизонтально или вертикально [2].  [c.227]

Если для катодной защиты подземных резервуаров-хранилищ и трубопроводов поблизости от рельсовых путей требуется сравнительно большой защитный ток, то подводить его следует через несколько анодных заземлителей. Это необходимо для уменьшения вредного влияния на другие подземные сооружения, количество которых поблизости от полотна железной дороги весьма велико. При ограниченности места и небольшой токоотдаче каждого анодного заземлителя хорошо зарекомендовали себя забиваемые анодные заземлители, например в виде круглых стальных прутков.  [c.283]

Автоматическая сетевая катодная станция СКСП-1200п241Д предназначена для катодной защиты подземных металлических трубопроводов от почвенной коррозии на участках с большим сезонным колебанием переходного сопротивления труба — земля, при нестабильности напряжения питающей сети, а также в зоне действия блуждающих токов. Станция может быть использована в качестве автоматической усиленной дренажной установки.  [c.129]


При проектировании защиты подземных трубопроводов от электрохимической коррозии на стадии "Проект" разрещается проводить расчеты сметной стоимости по укрупненным показателям. В случае расчета лищь катодной защиты используется стоимость одной катодной установки, что позволяет значительно упростить расчеты. Методика упрощенного расчета, впервые предложенная нами, приводится ниже.  [c.22]

Широкое применение способа катодной поляризации для защиты подземных, трубопроводов обусловило постановку опытов по определению защитной плотности тока в различных грунтах. В. А. Притула [10] приводит данные по защите стали в песчаной почве (табл. 24 и фиг. 18). Результаты В. П. Сараева, Роджерса и Рауша даны в табл. 25—27.  [c.32]

Возможность применения в любое время катодной защиты, обеспечивающей дополнительную защиту подземных трубопроводов, делает ее незаменимой, особенно на линиях, где обнаружилось коррозионное разрушение. При выполнении катодной защиты возникают трудности в связи с необходимостью равномерного распределения тока по металлической поверхности в случае сложной сети подземных линий, параллельных трубопроводов, винтовых и раструбных соединений и т. п., которые не легко преодолеть. Катодной защитой нельзя пользоваться на трубопроводах, уложенных в коллекторе и подверженных в сущности атмосферной, а не почвенной коррозии. Постоянное наблюдение за катоцной защитой может вести и заводской персонал. Лишь периодически требуется проверка условий защиты, выполняемая специалистами.  [c.98]

Особо ценными для эксплуатационных испытаний являются методы, позволяющие постоянно наблюдать за коррозионным состоянием работающих конструкций. Так, методика опытной катодной станции дает возможность определить среднее переходное сопротивление изоляции участка эксплуатируемого подземного трубопровода без выполнения земляных работ по его вскрытию. Эффективность методов защиты трубопроводов от коррозии проверяют с помощью контрольных образцов в определенных точках защищаемого трубопровода помещают пары контрольных образцов, из которых один присоединен к трубопроводу и, таким образом, также защищен от коррозии, а другой находится отдельно (рис. 366) по потерям массы защищенного и незащищен-  [c.472]

Примером катодной защиты может служить покрытие, получаемое погружением стального листа в расплав цинка горячее цинкование) (см. разд. 13.3.3). Этот метод впервые запатентован во Франции в 1836 г. и в Англии в 1837 г. [4]. Однако имеются упоминания, что во Франции цинковые покрытия наносили на сталь еще в, 1742 г. [5]. Наложение электрического тока впервые было применено для защиты подземных сооружений в Англии и США в 1910—19J2 гг. [4]. С тех пор использование катодной защиты в этой области быстро распространялось, и в настоящее время этим методом эффективно защишают от коррозии тысячи километров подземных трубопроводов и кабелей. Катодную за-  [c.216]

Для катодной защиты необходимы источник постоянного тока и вспомогательный электрод, обычно железный или графитовый, )ЗСположенный на некотором расстоянии от защищаемого объекта. Лоложительный полюс источника постоянного тока подключают к вспомогательному электроду а отрицательный — к защищаемому сооружению. Таким образом, ток протекает от электрода через электролит к объекту. Значение приложенного напряжения точно не определено, оно должно быть лишь достаточным для создания необходимой плотности тока на всех участках защищаемого сооружения. В грунтах или водах, обладающих высоким сопротивлением, приложенное напряжение должно быть выше, чем в средах с низким сопротивлением. Напряжение приходится также повышать, когда необходимо защитить как можно больший участок трубопровода с помощью одного анода. Схема подсоединения анода к защищаемому подземному трубопроводу представлена на рис. 12.1.  [c.217]

Металл, помещённый в электролит, всегда имеет естественный алектродный потенциал. На основании экспериментальных данных оыло установлено, что естественным потенциал г.шогих стальных подземных трубопроводов ле>.111т в пределах от минус 0,35 В до минус 0,65 Вм Поэтому при расчёте катодном защиты, если нет замеренных данных, естественный потенциал стали принимают равным минус 0,55 В по отношению к медносульфатному электроду сравнения (Ы.С.Э) Потенциал защищаемой конструкции, при котором ток коррозии практически равен нулю, называется защитным потенциалом. Практически стальные подземные сооружения становятся защищёнными на 80...90 если потенциал равен минус 0,85 В. Эта величина принята в нашей стране как критерий минимального защитного потенциала. Однако указанный минимальный потенциал достаточен только в случае, если отсутствует анаэробная биокоррозия. Цри наличии последней защитный потенциал должен быть более отрицательным, равным минус 0,95В.  [c.40]

Основным методом электрохимической защиты от подземной (почвенной) коррозии металлических сооружений из углеродистых сталей является катодная зашита магистральных и промысловых нефтегазопроВ уктопроводов, городских подземных трубопроводов и коммуникаций, нефтехранилищ и нефтебаз, компрессорных станций, обсадных колон и скважинного оборудования и т.п.  [c.4]


Смотреть страницы где упоминается термин Катодная защита подземного трубопровода : [c.16]    [c.303]    [c.37]    [c.196]    [c.84]    [c.84]    [c.85]   
Коррозия и борьба с ней (1989) -- [ c.221 , c.222 , c.409 , c.410 ]



ПОИСК



V катодная

Водородное разрушение при катодной защите подземных трубопроводов для транспортирования нефти и газа

Затраты на катодную защиту подземных трубопроводов

Катодная защита

Красноярский. Методика расчета катодной защиты подземного трубопровода

Трубопроводы катодная защита

Тугунов П. И., Кузнецов М. В., Бутырский А. П. Опыт эксплуатации и проектирования катодной защиты в условиях густоразветвленной сети подземных трубопроводов



© 2025 Mash-xxl.info Реклама на сайте