Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Природа и структура поверхностного слоя

В реальных трибосистемах интенсивность процессов накопления дефектов и увеличения плотностей внутренней энергии и энтропии всегда вьш е, и с течением времени названные термодинамические параметры достигают критических значений, при которых наступает разрушение структуры поверхностного слоя. Эта закономерность является общей для всех нагруженных деформируемых твердых тел независимо от их природы.  [c.268]


Большое влияние на шероховатость поверхности отливок оказывают природа материала покрытия, дисперсность наполнителя, наличие посторонних включений и способ нанесения покрытий на форму. Плотность укладки зерен наполнителя в поверхностном слое формы в большой мере зависит от класса шероховатости и свойств материала модели или стержневого ящика. Изучением структуры поверхности образцов, изготовленных из песков, порошков и металлической дроби с различной зернистостью, а также математическими расчетами установлено, что координационное число укладки зерен из поверхности равно 12, а в объеме — 6—8 средний диаметр пор соответственно составляет 0,15 и 0,4 диаметра зерен. Плотность структуры поверхностного слоя формы определяется степенью свободы перемещения зерен смеси под действием сил внешнего трения скольжения между моделью и поверхностным слоем формы.  [c.134]

Структура образца, обработанного с применением тока (рис. 12, б), на глубину около 0,1 мм имеет светлую зону. Светлая зона и основной металл имеют четкую границу, что указывает на существенное различие природы этих структур. Рентгенографическое исследование показало, что светлая зона поверхностного слоя представляет собой мартенсит и имеет значительна более высокую микротвердость ( Я 5360 МПа). Исследование структуры поверхностного слоя на электронном микроскопе ЭМ-3 с применением лаковых препаратов, оттененных хромом,  [c.22]

Одним из дискуссионных вопросов в области структурных изменений в поверхностном слое материала является вопрос о природе и структуре образующегося при трении белого нетравящегося слоя.  [c.119]

I разом, на интенсивность образования вторичных структур. Во-вторых,— путем изменения химической природы вторичных структур, возникающих в результате адсорбции, диффузии и химических реакций на поверхности и в поверхностных слоях трущихся металлов.  [c.322]

В последние годы уделяется значительное внимание выявлению природы превращений в поверхностном слое трущихся тел. Обнаружено, что в поверхностном слое изношенных деталей самых разнообразных. машин паровозов, тракторов, двигателей внутреннего сгорания, горных машин, имеется светлая структура, резко отличающаяся от структуры основного металла высокой твердостью, плохой травимостью и в одних случаях большой, а в других — малой хрупкостью.  [c.34]


Склеивание может происходить практически без введения энергии в место соединения благодаря силам адгезии (прилипания) между жидким клеем и молекулами поверхностных слоев твердого теЛа и химическим реакциям. Способность клея соединять изделия объясняется также силами остаточного химического сродства между находящимися на поверхности молекулами клея и склеиваемого материала. Эти силы примерно в 10—100 раз меньше основных сил химической связи в простых молекулах. Они, например, порождают у жидкостей явление поверхностного натяжения, способность смачивать или не смачивать поверхности различных материалов. В случае высокомолекулярных соединений, где мономерная молекула, повторяясь в полимере тысячи раз, образует макромолекулу, силы адгезии возрастают пропорционально росту молекулярного веса. Эти силы, имея электрическую природу, в значительной степени зависят от химической структуры клея и склеиваемого материала[27].  [c.15]

Коррозийный процесс значительно ослабляет структуру поверхностного слоя сплава, что, в свою очередь, приводит к повышению производительности шлифования. Характер коррозийных разрушений зависит от природы воздействующего электролита. Наиболее эффективными ускорителями являются соли электроположительных металлов (серебра, ртути и меди). В этих электролитах металлический кобальт, входящий в состав твердого сплава, вытесняет из раствора электроположительный металл, который покрывает всю поверхность твердого сплава тонким слоем. Одновременно с выделением электроположительного металла в раствор переходит эквивалентное количество кобальта.  [c.29]

Появление адсорбированного слоя в зависимости от свойств жидкости может иметь различную физическую природу молекулярное или электрическое поле твердого материала, электрически заряженный двойной слой. Независимо от причины их образования в поверхностных слоях наблюдается изменение структуры жидкости (упорядочение слоев молекул) и, следовательно, изменение структурно чувствительных физических свойств (в частности, вязкости и теплопроводности). Отсюда следует, что первая из упомянутых ранее причин облитерации есть следствие образования адсорбированных слоев.  [c.25]

Переходный поверхностный слой является объектом, обладающим совокупностью фрактальных размерностей в распределении геометрических, энергетических, химических и других свойств. При этом численные значения фрактальных размерностей структур переходного слоя характеризуют степень заполнения веществом слоя трехмерного пространства. Мы выясним, каким образом с помощью концепции переходного поверхностного слоя становится понятной природа поверхностной энергии твердых тел.  [c.292]

Отсюда видно, что влага перемещается внутри тела из влажных мест в места менее влажные. При сушке поверхностные слои тела всегда имеют меньшее влагосодержание и влага перемещается от центра тела к поверхности. Физическая природа самого процесса перемещения влаги определяется структурой тела. В коллоидном теле (тесто, пищевые продукты) это будет диффузия, а в капиллярнопористом теле (керамика) — движение влаги по капиллярам. В телах со структурой смешанного типа, к которым относятся древесина и все материалы на ее основе, имеют место оба вида перемещения влаги.  [c.300]

Изменение механических и теплофизических свойств стеклопластиков в условиях нарастающего одностороннего теплового воздействия неразрывно связано с состоянием структуры материала в процессе нагрева и обусловлено двумя различными по своей природе процессами. Подводимое в начальный момент к нагреваемой поверхности образца тепло поглощается материалом и отводится к нижележащим слоям. Вследствие низкой теплопроводности стеклопластиков оно распространяется с малой скоростью, так что нижние слои материала остаются холодными. Некоторое снижение механических свойств и изменение теплофизических характеристик материала при этом связаны с постоянным размягчением полимерного связующего в поверхностных слоях материала по мере повышения их температуры, от процесс изменения свойств является обратимым и определяется в основном только температурой материала по толщине образца. Как показало исследование, повыше-  [c.264]


Огнеупорная природа обугленного поверхностного слоя образца и внутреннее поглощение тепла в процессе фазовых превращений связующего защищают исходный материал нижележащих слоев от воздействия высокой температуры на поверхности образца. Структура нижних слоев материала в процессе кратковременного действия высоких температур остается практически неизменной, т. е. процесс термического разложения материала в какой-то мере способствует сохранению прочности и теплозащитных свойств стеклопластиков.  [c.267]

Исследования в области механики контактных взаимодействий, химических и диссипативных процессов в поверхностных и приповерхностных слоях трущихся материалов показывают, что материал в указанных зонах в процессе трения резко изменяет свое физическое состояние, меняя механизм контактного взаимодействия. Происходят существенные изменения в суб- и микроструктуре приповерхностных микрообъемов. Изучение кинетики структурных, фазовых и диффузионных превращений, прочностных и деформационных свойств активных микрообъемов поверхности, элементарных актов деформации и разрушения, поиск численных критериев оптимального структурного состояния, оценок качества поверхности должны быть фундаментальной основой в поисках материалов и сред износостойких сопряжений. В настоящее время исследованы закономерности распределения пластической деформации по глубине поверхностных слоев металлических материалов, кинетика формирования вторичной структуры, процессы упрочнения, разупрочнения, рекристаллизации, фазовые переходы, которые, в свою очередь, зависят от внешних механических воздействий, состава, свойств трущихся материалов и окружающей среды. Важное значение в физике поверхностной прочности имеет определение связи интенсивности поверхностного разрушения при трении и величины развивающейся пластической деформации. Сложность указанной проблемы заключается в двойственности природы носителей пластической деформации. Дислокации, дисклинации и другие дефекты структуры являются концентраторами напряжений, очагами микроразрушения. В то же время движение дефектов (релаксационная микропластичность) приводит к снижению уровня напряжений концентратора, следовательно, замедляет процесс разрушения. Условия деформации при трении поверхностных слоев будут определять преобладание одного из указанных механизмов, от которого будет зависеть интенсивность поверхностного разрушения. Межатомный масштаб связан с характерным сдвигом, производимым элементарными носителями пластической деформации (дислокациями). В легированных металлических системах величина межатомного расстоя-  [c.195]

Выбор покрытий основан на изучении кристаллической структуры, размерного соответствия параметров решетки, природы поверхности кристаллов, формы и размера зерна, влаго-емкости и других факторов, влияющих на кристаллизацию поверхностного слоя литого образца [И, 64—66].  [c.44]

Структура и геометрия поверхности деталей определяются природой металла, технологией изготовления и режимами обработки. Степень взаимосвязи этих факторов и их влияние на формирование свойств машиностроительных деталей в настоящее время изучены недостаточно. Сравнительное исследование состояния поверхностей (поверхностного слоя) деталей, полученных различными методами, позволяет оценить их эффективность в формировании качественной поверхности.  [c.115]

Таким образом, скорость разрушения силикатного стекла определяется скоростью гидролиза его поверхностного слоя и скоростью диффузии воды через образовавшуюся защитную коллоидную пленку силикагеля. Диффузия в свою очередь определяется природой пленки—плотностью ее структуры и толщиной. С наибольшей скоростью и наиболее полно происходит гидролитическое расщепление щелочных силикатов, причем образующаяся прл этом пленка представляет собой чистый кремнезем. Гидролиз силикатов двувалентных металлов и тем более алюмосиликатов, отличающихся большей химической устойчивостью, идет значительно медленнее, и защитная пленка представляет собой смесь силикагеля, водных силикатов и свободных плохо растворимых в воде гидроокисей.  [c.31]

Проблема упрочнения поверхности металлов и сплавов — комплексная, требующая учета термомеханики поверхностного слоя в рамках неравновесной термодинамики [528], а также мультифрактальной природы структуры сплавов [529, 530].  [c.328]

Обычно армированные пластики считаются электроизоляционными материалами благодаря непроводящей природе смол и большинства армирующих материалов, применяемых в композитах. Высокая или низкая проводимость любой конструкции может быть преимуществом или недостатком, когда она подвергается удару молнии. Проводящие структуры могут использоваться для уноса электрического заряда, вызванного ударом молнии, в то время как непроводящие структуры меньше подвержены ударам молний. Улучшенные композиционные материалы, состоящие из эпоксидной смолы и борного или углеродного волокна, обладают большей проводимостью, чем обычные стеклопластики, особенно в плоскости оси волокон. Если удар молнии приходится на композит, состоящий из эпоксидной смолы и углеродного волокна, он фактически пройдет вдоль конструкции в направлении оси волокон в поверхностных слоях.  [c.284]

Большое количество дефектов кристаллического строения в поверхностных слоях трущихся тел, а также повышенные температуры обусловливают интенсивное развитие диффузионных процессов, приводящих к изменению структуры, химического и фазового состава материалов. Физико-химическое взаимодействие поверхности металла с окружающей средой приводит к образованию пленок так называемых вторичных структур. Как показано в работах Б. И. Костецкого, в зависимости от природы материалов и условий трения (нагрузка, скорость, характер среды и др.) на поверхности трения могут возникать два типа вторичных структур [20].  [c.258]


В целом авторы полагают, что в характере воздействия среды на металлическую поверхность важен тот факт, что параметр р весьма чувствителен к природе смазки. С другой стороны, физический параметр Р, отражающий структурное состояние тонких поверхностных слоев, характеризует градиент механических свойств по глубине испытанного на трение металла и, следовательно, позволяет оценить влияние среды на процесс формирования вторичной структуры, определяющей механизм контактного взаимодействия.  [c.123]

Исследование большого числа медных сплавов с различными по природе и свойствам легирующими Элементами (см. гл. V) показало наличие резко выраженных диффузионных потоков атомов сплава к поверхности трения. Характер диффузии обусловливает кинетику формирования структуры и весь комплекс свойств поверхностных слоев.  [c.136]

Исследование диффузионных процессов в зоне контакта выявило третью важную особенность, положенную в основу критерия явления избирательного переноса, -г в условиях наличия резкого градиента плотности дислокаций и вакансий по глубине зоны деформации формирование определенной структуры и свойств защитного поверхностного слоя определяется кинетикой совокупности диффузионных потоков различных по природе и свойствам легирующих элементов медных сплавов.  [c.136]

Скорость растворения сплавов зависит главным образом от их состава, электрохимической активности и электрохимических эквивалентов компонентов, составляющих сплав, а также от физико-химических параметров электролита. При увеличении содержания в сплаве хрома затрудняется нарущение его пассивного состояния при воздействии галоидных анионов [193]. Вследствие различия электрохимических эквивалентов компонентов сплава, их потенциалов растворения и способности к пассивированию во многих случаях при ЭХО происходит увеличение в поверхностном слое содержания более электроположительных составляющих (например, никеля, меди, молибдена). При этом в анодной поляризационной характеристике сплава может наблюдаться несколько участков, соответствующих пассивации его различных компонентов [178]. Это обусловливает необходимость обеспечения приблизительно одинаковой скорости растворения всех основных компонентов сплава при подборе электролита. Определенное влияние на процесс анодного растворения кроме химического состава сплава оказывает и его структура. Связь производительности электрохимической обработки сталей с их микроструктурой показана в работе [127]. При анодном растворении жаропрочных сплавов на никелевой основе отмечалось преимущественное растворение (растравливание) границ зерен вследствие их относительно более высокой активности. В зависимости от природы фаз, составляющих данный сплав, существенно различаются параметры возникающих на них пленок [117].  [c.34]

Произведение aS равно поверхностной энергии G коллоидной системы, которая стремится уменьшить избыток этой энергии за счет снижения поверхностного натяжения путем избирательной адсорбции других веществ (ионов) из раствора. Этот процесс формирует структуру поверхностного слоя частицы и наделяет этот слой особыми свойствами, отличными от свойств агрегата основного вещества. Каждая коллоидная частица сорбирует из раствора ионы электролита одного знака, которые равномерно распределяются в поверхностном слое коллоида. Адсорбированные ионы называются потенциалообразующими, они входят в состав адсорбционного слоя. Адсорбционный слой может также формироваться, как отмечалось, при частичной диссоциации поверхностных молекул вещества коллоидной частицы. Состав такого слоя зависит от химической природы коллоидов и pH среды. Агрегат коллоидной частицы вместе с адсорбционным слоем называется гранулой.  [c.50]

Представления о физической природе поверхностной пленки меди. Совокупность полученных данных рентгенографического исследования изменений структуры поверхностных слоев меди при трении в паре со сталью 45 при возвратно-поступательном перемещении в среде глицерина позволяет выявить кинетику этих изменений и описать некоторые представления о природе поверх-ностной безызносной пленки меди и механизме поведения материала в контактной зоне.  [c.110]

Коррозионным, электрохимическим и физическим исследованиям сплавов Си — N1 посвящено много работ в связи с изучением природы пассивного состояния металлов [1] и границ химической стойкости твердых растворов [2, 3]. Установлено, что сплавы, содержащие более 60 ат. % меди, теряют свойственную никелю способность пассивироваться и в ряде коррозионных сред ведут себя подобно меди.. Область медноникелевых сплавов, в которых проявляется пассивность, приблизительно совпадает с областью существования свободных электронных вакансий в й-уровнях никеля, взаимодействие которыми, по мнению ряда авторов [1], обусловливает прочную хемосорбционную связь метал.ча с кислородом и тем самым его пассивность. При полном заполнении ( -уровней никеля электронами меди (что происходит при содержании в сплаве более 60 ат. % меди) способность сплава к образованию ковалентных (электронных) связей с кислородом исчезает, металл вступает в ионную связь с кислородом, образуя фазовые окислы, не обладающие защитными свойствами. Скорчеллетти с сотрудниками [3] считают заполнение -уровней никеля не единственной и не главной причиной изменения химической стойкости меднопикелевых сплавов с изменением их состава. Большое значение придается свойствам коррозионной среды, под воздействием которой может изменяться структура и состав поверхностного слоя сплава, определяющего его коррозионное поведение. Этот слой в зависимости от агрессивности среды может в большей или меньшей степени обогащаться более стойким компонентом сплава, с образованием одной или нескольких коррозионных структур, что приводит к смещению границы химической стойкости сплавов. Это предположение подтвердилось при исследовании зависимости работы выхода электрона от состава сплавов до и после воздействия на них коррозионных сред (например, растворов аммиака различной концентрации).  [c.114]

Учебное пособие написано в рамках чтения лекций в МГТУ им. Н.Э. Баумана по курсу Конструкционная прочность машиностроительных материалов на факультете Машиностроительные технологии (кафедра Материаловедение ) и предназначено для студентов, обучающихся на материаловедов и машиностроителей. Среди механических свойств конструкционных металлических материалов усталостные характеристики занимают очень важное место. Известно, что долговечность и надежность машин во многом определяется их сопротивлением усталости, так как в подавляющем большинстве случаев для деталей машин основным видом нагружения являются динамические, повторные и знакопеременные на1 рузки, а основной вид разрушения - усталостный. В последние годы на стыке материаловедения, физики и механики разрушения сделаны большие успехи в области изучения физической природы и микромеханизмов зарождения усталостных трещин, а также закономерностей их распространения. Сложность оценки циклической прочности конструкционных материалов связана с тем, что на усталостное разрушение оказывают влияние различные факторы (структура, состояние поверхностного слоя, температура и среда испытания, частота нагружения, концентрация напряжений, асимметрия цикла, масштабный фактор и ряд других). Все это сильно затрудняет создание общей теории усталостного разрушения металлических материалов. Однако в общем случае процесс устаттости связан с постепенным накоплением и взаимодействием дефектов кри-сталтгической решетки (вакансий, междоузельных атомов, дислокаций и дискли-наций, двойников, 1 раниц блоков и зерен и т.п.) и, как следствие этого, с развитием усталостных повреждений в виде образования и распространения микро - и макроскопических трещин. Поэтому явлению усталостного разрушения присуща периодичность и стадийность процесса, характеризующаяся вполне определенными структурными и фазовыми изменениями. Такой анализ накопления струк-туршз1х повреждений позволяет отвлечься от перечисленных выше факторов. В учебном пособии кратко на современном уровне рассмотрены основные аспекты и характеристики усталостного разрушения металлических материалов.  [c.4]


После испытания на трение скольжения хромистой стали (157о Сг), легированной Мо, Mo+W и Mn-bNi-f u, в поверхностных слоях происходят превращения у- а и а у, измельчение блоков, увеличение плотности дислокаций и др. Степень и характер изменения структурных превращений по глубине слоя зависят от природы легирования аустенита. Для повышения износостойкости сталей такого типа целесообразно легирование аустенитообразующими элементами (особенно марганцем, понижающим энергию дефекта упаковки), а также сильными карбидообразующими элементами (W, Мо), измельчающими структуру и препятствующими развитию рекристаллизации в наклепанном аустените [10]. Можно считать установленным, что если в процессе работы не происходит превращения остаточного аустенита в высокопрочный мартенсит, то в условиях абразивного износа он значительно легче срезается и уносится абразивными частицами.  [c.24]

Исследованиями отмечено, что изменением литейной формы можно регулировать структурообразование поверхностного слоя металла отливки и получать заданные механические свойства. В зависимости от размерных параметров кристаллических решеток, электронной структуры и химической активности жидкого металла в условиях формирования отливки ее поверхностный слой насыщается кислородом, водородом, углеродом, азотом и другими элементами, содержащимися в облицовках и покрытиях форм. В результате протекания указанных процессов в поверхностном слое н на поверхности образуются новые структурные фазы, pesiio изменяющие природу и свойства отливок. Так, адсорбционные поверхностные плены могут играть роль пассив1[рующего элемента, когда отношение молекулярного  [c.11]

Микроскопические дефекты определяются только в отливках специального назначения и в случаях, оговоренных ТУ, при механических испытаниях, а также при химическом, микроскопическом и рентгеноструктурном анализах. Для более четкого и правильного представления о природе дефектов категорию субмикроскопических дефектов целесообразно выделить в самостоятельную группу. Контроль субмикроскопических дефектов поверхностного слоя отливок в настоящее время почти не производится. Они выявляются при глубоком изучении структуры электронномикроскопическим и рентгенографическим методами, при изучении напряженного состояния, испытаниях микрообраз-цов и т. п.  [c.93]

Аналогичные структуры были обнаружены исследователями в поверхностных слоях изношенных деталей тракторов и других машин. Однако до сих пор нет единого мнения о природе этой структуры. Одни связывают появление светлой нетравя-щейся зоны с насыщением трущейся поверхности азотом. Другие считают, что светлая зона является следствием диффузии кислорода в поверхностный слой металла, в результате чего в нем образуются твердые растворы и химические соединения [29]. Третьи пришли к выводу, что структура светлой зоны поверхностного слоя состоит из мартенсита, остаточного аустенита и легированного цемента [36]. Различие взглядов на природу образования светлой зоны объясняется, очевидно, неодинаковыми условиями трения.  [c.22]

РЕБИНДЕРА ЭФФЕКТ — физико-хи-мич. влияние среды па механич. св-ва материалов, не связанное с коррозией, растворением и др. химич. процессами, Р. э. проявляется в понижении прочности и облегчении упругой и пластич. деформации под влиянием адсорбции (поглощения молекул из окружающей среды поверхностями, развивающимися в деформируемом теле). Р. э. проявляется у металлич. моно-и поликристаллов, полупроводников, ионных кристаллов, бетонов, стекол, горных пород и т. д. Величина Р. э. зависит от темп-ры, величины напряжения, способа нагружения, состава и структуры материала и резко зависит от времени нагружения. Наиболее сильно Р. э. проявляется в тех случаях, когда за время деформации, предшествующей разрушению, вновь возникающие поверхности успевают покрыться адсорбционными слоями. Это имеет место в процессах ползучести при длит, статич. нагружении, в процессах усталости. При переходе от моно- к поликристаллич. металлам Р. э. значительно ослабляется, т. к. облегчение деформации сосредоточивается в поверхностных слоях и не распространяется в глубь тела. Наибольшее понижение поверхностной энергии материалов (почти до нуля) вызывают расплавленные среды, близкие по мол. природе к деформируемому телу напр., если более тугоплавкие металлы и сплавы при нагружении находятся в среде жидких более легкоплавких металлов (в частности, наличие ртутной пленки на монокристаллах цинка уменьшает прочность и пластичность в десятки раз). Р. э. часто вреден для конструкционных материалов, т. к. понижает их прочность и пластичность. Для облегчения обрабатываемости резанием и для ускорения и улучшения ирирабатываемости при трении Р. э. полезен. Защита поверхности деталей от  [c.112]

Микроскопические исследования показывают, что характер разрушения зависит не только от природы металла, его структуры, но и от вида напряжений. Известно, что хрупкое разрушение возникает в результате приложения растягиваюш,их сил, а вязкое — под действием касательных напряжений. В условиях микроудар-ного воздействия в микрообъемах могут возникать как нормальные, так и касательные напряжения поэтому разрушение в поверхностном слое носит смешанный характер. Это подтверждают результаты многочисленных наблюдений разрушения металла при испытаниях. Различие в характере разрушения металлов определяется количеством сдвиговых процессов.  [c.92]

Таким образом, физическая природа интенсификации микропластичес-кого течения в поверхностных слоях материалов и последующего усталостного разрушения при циклических нагрузках должна рассматриваться именно с указанных позиций. При этом следует отметить, что необратимое действие вакансионного насоса при циклировании, создающего спектр приповерхностных источников дислокаций и вызывающего их переползание, обеспечивается не только созданием периодического пересыщения при цикле сжатия и существующим недосыщением на стоках [601, 602], но и различием потенциальных энергетических барьеров на источниках и стоках точечных дефектов, непосредственно на поверхности и в более удаленных от поверхности приповерхностных слоях. Поэтому полученные в главе 7 результаты представляют основу для дальнейшего развития как теоретических, так и экспериментальных исследований в области изучения основных закономерностей эволюции дислокационной структуры при испытаниях на длительную и циклическую прочность и физической природы усталости металлических и неметаллических материалов в различном диапазоне напряжений и температур. Наконец, учитывая результаты работы [586], следует также весьма осторожно относиться к интерпретации низкотемпературных пиков внутреннего трения и помнить, что они могут появиться в ряде случаев именно в силу проявления методических особенностей способа нагружения (использование циклических изгибных или крутильных колебаний с максимальной величиной напряжений вблизи свободной поверхности и присутствием градиента напряжений по сечению кристалла).  [c.258]

СМОЛ, асфальтенов - приводит к уменьшению а. При увеличении содержания ПАВ в масле поверхностное натяжение сначала резко уменьшается, затем стабилизируется, что свидетельствует о полном насыщении поверхностного слоя моле1дглами ПАВ (рис. 1.17). Наиболее низкое значение а из всех рабочих жидкостей имеет метилсилоксановая жидкость (табл. 1.5). Поверхностное натяжение уменьшается при увеличении давления р газа, контактирующего с жидкостью. Для ряда жидкостей и газов экспериментальные значения ст связаны с р линейным уравнением ст = Сто (1 — d"p), где <т"— коэ ициент, зависящий оТ температуры и природы газа, используемого для создания давления. Механизм влияния ПАВ на поверхностное натяжение можно объяснить изменением структуры граничного слоя жидкости, контактирующей с газом высокого давления, вследствие увеличения растворимости газа.  [c.30]

За последние 10—15 лет усилилось внимание к проблемам физики резко неоднородных по составу и структуре границ раздела в металлических системах. Научно-технический прогресс в таких важных областях, как коррозионные явления, вакуумная техника, процессы при трении и смазке и многих других, требует детальных сведений о микроскопической природе поверхности твердого тела и поверхностных явлений. Исследования структуры и свойств поверхностей твердых тел показывают, насколько сложны и разнообразны поверхностные явления. При трении эти поверхности взаимодействуют между собой непосредственно или через смазочную среду поэтому нетрудно представить, насколько многообразны физико-химические процессы в контактной зоне, протекающие на фоне механического взаимодействия поверхностей. Например, решение такой проблемы при трении, как деформируемость материала в тонком поверхностном слое, связанная с дислокационным, диффузионным и самодиффузионным механизмами пластичности в широком интервале температур, скоростей и деформаций, связано с большими экспериментальными и теоретическими трудностями.  [c.3]


Состав и структура металла. Установлено, что начальные очаги коррозии а отполированной поверхности возникают значительно позже, чем на грубо обработанной. Поверхности стальных листов и труб, подвергнутые воздействию, изменяющему строение поверхностного слоя (например, местное истирание -поверхности, удары молотком, действие напильников и т. п.), обнаруживают повышенную склонность к местной коррозии. Аналогичными по природе процесса являются разрушения, происходящие из-за структурной неоднородности материа-яа листа, трубы и других деталей котла. Наличие в металле шлаковых, графитовых, серных вкрап- аений и даже поверхностных отложений окислов металла создает местные токи, обусловленные образованием микро- и ма-крогальванических элементов.  [c.155]

Описанная выше эволюция структуры металла характерна для условий развитой пластической деформации и является предметом рассмотрения многих экспериментальных и теоретических работ. Фрагментация зерен и субзерен, формирование ячеистой структуры свидетельствуют о неоднородности пластической деформации, т. е. о невыполнимости модели Тейлора. В работах [5, 6 обоснована неустойчивость ламинарного течения, предполагаемого моделью Тейлора, и выдвинуто положение о том, что сдвиговая деформация должна протекать на нескольких структурных уровнях и носить вихревой характер. На ранних стадиях деформации, пока в зернах не исчерпана возможность трансляционного скольжения, зерна претерпевают развороты как целые. Далее вследствие накопления дислокаций и появления сдвиговой неустойчивости в скоплениях дислокаций формируется ячеистая структура, которая является результатом образования микровихрей в элементе объема, когда поворот элемента как целого затрудняется. В работе [7] показано, что на определенном этапе деформации средний размер ячеек, средняя толщина границ ячеек, плотность дислокаций в этих субграницах должны выходить на насыщение, т. е. развитие дислокационной структуры должно замедляться, поэтому интенсификацию пластической деформации на стадии локализованного течения нельзя объяснить простым количественным развитием ячеистой структуры. Для этого предлагается использовать модель ротационных мод пластичности, которая привлекалась в работе [4] для объяснения процессов деформации в поверхностных слоях металлов при трении. В данном случае вполне оправдано применение дислокационных представлений о природе пластической деформации, поскольку зарождение в дислокационном ансамбле частичных дисклинаций связано с усиливающейся микронеоднородностью пластического течения [7], а она неизбежно должна возникать из-за специфики нагружения в поверхностных слоях металлов при трении.  [c.144]


Смотреть страницы где упоминается термин Природа и структура поверхностного слоя : [c.188]    [c.258]    [c.200]    [c.74]    [c.559]    [c.169]    [c.91]    [c.171]    [c.4]    [c.152]   
Смотреть главы в:

Упрочнение и восстановление деталей машин электромеханической обработкой Изд.3  -> Природа и структура поверхностного слоя



ПОИСК



Поверхностная структура

Природа

Слой поверхностный



© 2025 Mash-xxl.info Реклама на сайте