Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Хрома сплавы

Е Сплав никель — хром/сплав медь — никель  [c.274]

К Сплав никель — хром/сплав никель—алюминий  [c.274]

Легирование титаном или ниобием. Легирование аустенит-ных сплавов небольшими количествами элементов, обладающих большим сродством к углероду, чем хром, предотвращает диффузию углерода к границам зерен. Уже имеющийся здесь углерод взаимодействует с титаном или ниобием, а не с хромом. Сплавы такого рода называют стабилизированными (например, марки 321, 347, 348). Они не проявляют заметной склонности к межкристаллитной коррозии после сварки или нагрева до температур сенсибилизации. Наилучшей стойкости к межкристаллитной коррозии при нагреве сплава до температур, близких к 675 °С, достигают в результате предварительной стабилизирующей термической обработки в течение нескольких часов при 900 °С [14, 19]. Эта обработка эффективно способствует переходу имеющегося углерода в стабильные карбиды при температурах, при которых растворимость углерода в сплаве ниже, чем при обычно более высокой температуре закалки.  [c.307]


Химический состав 419, 422 Хрома сплавы высоколегированные 422,  [c.442]

В эту группу входят наплавки с широким диапазоном износостойкости, которая колеблется от 0,6 до 4,3. Необходимо отметить, что в этой группе трудно проследить влияние бора, так как здесь кроме изменения количества бора в сплавах одновременно изменяется количество углерода и хрома. Однако их можно сравнить со сплавами I группы, которые частично соответствуют по содержанию углерода и хрома сплавам с добавкой бора.  [c.55]

Материалы, применяемые для наплавочных работ, можно разделить на следующие основные группы стали (углеродистые, легированные) сплавы на основе железа (высокохромистые чугуны, сплавы с бором и хромом, сплавы с кобальтом, молибденом или вольфрамовые) сплавы на основе никеля и кобальта сплавы на основе меди карбидные сплавы (с карбидом вольфрама или хрома) порошковые материалы для наплавки и напыления.  [c.270]

Особенно высокой жаростойкостью отличаются карбиды кремния и титана. Почти все карбиды характеризуются высокой теплопроводностью и электропроводностью, а карбиды кремния, титана и вольфрама, обладая особо высокой твердостью, широко применяются при изготовлении режущих и шлифовальных инструментов, а также при напылении с целью повышения износостойкости. Для напыления в основном служат карбиды вольфрама, хрома, титана, циркония и тантала. Наибольшее распространение получил карбид вольфрама. Как напыляемые материалы карбиды нередко используют в смеси со связующим, в качестве которого для карбида вольфрама применяют кобальт (12... 17 %), а для карбида хрома -сплавы никеля (15...25 %).  [c.209]

Жаростойкие сплавы (табл. 44), как правило, имеют двух компонентную основу Ni— r. При содержании в сплаве 15—20% (мае. доля) хрома сплав  [c.212]

Поверхность изделий покрывать другими, более окалино-стойкими материалами, защищающими металл от газовой коррозии. Сюда относятся электролитическое никелирование, плакирование жаростойкими сплавами или эмалями, плазменное напыление окалиностойкими металлами (хромом), сплавами и стойкими окислами.  [c.664]

Установить определенную связь между составом, физико-химическими, механическими свойствами и эрозионной стойкостью в газовых потоках не удается [8, 9, 51—53]. В результате испытаний в манометрической бомбе показано, что стойкость железа снижается при легировании никелем и хромом. Сплавы на основе никеля имеют низкую стойкость, более стойки сплавы кобальта и молибдена,  [c.268]


С увеличением в стали количества хрома критическая точка А снижается точка Ag снижается только при содержании хрома до 8%. При более высоком его содержании эта критическая точка смещается в сторону повышения, и при 12—15% хрома точки А и Лз сливаются. При дальнейшем увеличении количества хрома сплавы не претерпевают превращений. Как показало исследование, указанное количество хрома совпадает с его оптимальным содержанием в сталях с высоким сопротивлением гидроэрозии (рис. 98).  [c.155]

Титан образует сплавы со многими элементами с алюминием, марганцем, оловом, медью, ванадием, молибденом, хромом. Сплавы титана с алюминием имеют  [c.71]

При других соотношениях никеля и хрома сплав становится двухфазным.  [c.119]

Высокими литейными свойствами обладают сплавы, содержащие в своей структуре эвтектику. Эвтектическая составляющая образуется во многих сплавах, содержащих легирующих элементов больше предельной растворимости их в алюминии. Поэтому содержание легирующих элементов в литейных сплавах выше, чем в деформируемых. Чаще применяются сплавы А1 — Si, А1—Си, А1—Mg. Эти сплавы дополнительно легируют небольшим количеством меди и магния (сплавы А1—Si), кремния (сплавы А1—Mg), марганца, никеля, хрома (сплавы А1—Си). Для измельчения зерна, а следовательно, улучшения механических свойств к сплавам добавляют модифицирующие элементы Ti, Zr, В, l, V и др. Состав и механические свойства некоторых литейных сплавов алюминия приведен в табл. 17.  [c.357]

Бронзы хромистые в последнее время получили широкое применение, так как упрочнение, вызываемое хромом, пе снижает существенно электропроводности сплава но сравнению с чистой медью. Растворимость хрома в твердой меди очень мала (0,55% Сг) и при увеличении содержания хрома сплав становится гетерофазным. Бр.Х0,5 и Бр.Х0,8 обладают хорошей свариваемостью.  [c.329]

Скорость разрушения конструкций в запыленных потоках в большой мере зависит от угла падения потока на испытуемую поверхность. Испытания при 400 °С показали, что при малых углах атаки (<20°), когда преобладает скользящий механизм изнашивания, выгодно применять в виде покрытий материалы высокой твердости (сплавы на основе никеля и карбида хрома, сплавы типа сормайт и т. п.). При больших углах атаки (45—75°), наоборот, износостойкость твердых наплавленных покрытий оказывается в 2—3 раза меньше износостойкости мягкой отожженной Ст. 45 387]. Эти различия необходимо учитывать при разработке покрытий.  [c.258]

Хрома сплавы (осаждение) с ванадием 239  [c.734]

Металлические нагреватели электрических печей сопротивления должны обладать высокой температурой плавления, достаточной прочностью при комнатной и высоких температурах, высоким электрическим сопротивлением. Лучше всего удовлетворяют перечисленным требованиям нихромы (сплавы никеля с хромом или никеля с хромом и железом) и хромали — сплавы железа с хромом и алюминием. Лучшие сорта нихрома выдерживают нагрев до 1100—1150° в течение б—8 месяцев.  [c.59]

В табл. 22.1 представлены составы некоторых промышленных сплавов на основе никеля, содержащих медь, молибден или хром Сплавы Ni—Си легко поддаются прокату и механической обра ботке для сплавов Ni—Сг эти операции более затруднены Сплавы Ni—Мо—Fe и Ni—Мо—Сг плохо поддаются обработке  [c.362]

На рис. 3 показаны наиболее типичные температурные завнеи-мости коррозионной стойкости в золе газотурбинного топлива (ГЗТ) для групп сплавов системы N1 —Сг—А1 — У, отличающихся содержанием хрома от 6 до. 30 мас.%. Для сплавов с еодернсаиием хрома до 30 мас.% наблюдаются две зоны коррозии — низко- и высокотемпературная. Критическая температура, при которой происходит переход к высокотемпературной, катастрофической коррозии, тем выше, чем более сплав легирован хромом. Сплав е 30 мас.% Сг не обнаружил перехода к катастрофической коррозии при маь -симальной температуре опытов 900 "С.  [c.177]

В Англии изучается не содержащий хрома сплав с добавками серебра и циркония [162]. Химический состав этих сплавов близок составу сплава МА-15 (фирма Al oa ), сплаву 2 (фирма Reynolds ) и сплаву 21 (фирма Boeing ), (табл. 14). За исключением высокого содержания меди в сплаве МА-15 и добавок серебра в английском сплаве, химический состав этих сплавов является очень схожим.  [c.275]


Для сред с окислительно-восстановительным потенциалом необходимо одновременное легирование никеля молибденом и хромом. Сплавы этой группы получили широкое распространение за )убежом и в отечественной практике, например, Хастеллой С, еманит НС, NAS-60-3, сплав Х15Н55М16В. Эти сплавы применяются для работы с влажным хлором, хлорным железом, медным купоросом, смесях азотной и серной кислот, фосфатной й органических кислотах.  [c.129]

Стали ферритного класса, например высокохромистые, имеют структуру, состоящую из феррита и первичных карбидов. При достаточно высоком содержании хрома сплав не претерпевает фазовых превращений, т.е. при всех температурах структура его остается в состоянии а-железа (ферритной) и не может быть изменена термической обработкой и различными скоростями охлаждения. К ним относятся стали 1X13 и 2X13 и др.  [c.6]

Данные по фазовому составу окалины (рис. 9) привели авторов к выводу, что самую высокую жаростойкость обеспечивает шпинель. Доказательством хорошего защитного действия шпинели, по их мнению, является то, что смена избыточной закиси никеля (сплав с 15 % Сг) на окисел хрома (сплавы, содержащие от 23,4 до 46,7 % Сг) практически не сказывается на жаростойкость сплавов, т.е. при наличии в окалине Ni rj04 присутствие другой окисной фазы не имеет значения. В рамках представленных данных такой вывод нельзя признать вполне убедительным, потому что относительное количество шпинели в окалине уменьшается по мере увеличения концентрации хрома в сплаве (кривая 2 на рисунке 9), тогда как показатель жаростойкости остается постоянным.  [c.35]

Исследование богатых хромом сплавов Сг — Si методами рентгеноструктурного и микроструктуриого анализов приведено с работе [39], в которой растворимость кремния в хроме определялась путем закалки литых сплавов от температур 1620, 1370 и 1070° К и изучения микроструктуры сплавов (рис. 6). Из рис. 6 следует, что растворимость кремния в хроме составляет при температурах ниже 1570° К примерно 1,5%.  [c.17]

Сортамент феррохрома очень разнообразен. Существует 17 марок феррохрома и 5 марок металлического хрома.. Сплавы отличаются в основном по содержанию углерода, которое изменяется от 0,01 % ДО 8,0%. Чем ниже содержание углерода, тем сложнее технология его получения и дороже сплав. Низко- и среднеуглеродистый феррохром применяют для производства коррозион- остойких сталей и разных сплавов.  [c.240]

Хром является одним из важнейших легирующих металлов. Присадка хрома повышает пределы прочности и текучести стали при медленном снижении относительного удлинения. В углеродистых сталях присутствие хрома величивает ее твердость и износостойкость. Окалиностойкие стали содержат 3—12% Сг, нержавеющие и кислотостойкие стали — >12% Сг. Хро.м широко применяют при производстве сложнолегированных сталей, что позволяет получить высокие эксплуатационные качества при необходимых свойствах стали. В последние годы все иире используют и легированные хромом чугуны. Черная металлургия потребляет 60 % добываемого хрома. Для легирования стали используют в основном феррохром — сплав хрома и железа и ферросилико-хром — сплав железа, хрома и кремния. Сортамент хромовых сплавов, основанный на содержании в сплаве углерода, приведен в табл. 57, 58. По принятой терминологии сорта, содержащие <2 % С, называют рафинированным феррохромом. В тех случаях, когда в получаемых хромистых сплавах ограничено содержание железа, применяют вместо феррохрома металлический хром (табл. 59) или специальные лигатуры  [c.188]

Для более ответственных работ окись алюминия не должна содержать кремнистых веш еств в настоящее время известно много типов спеченных и рекристаллизованных корундизовых тиглей. Они могут применяться до 1900° м пригодны для сплавов, которые не реагируют с окисью алюминия. После футеровки тонким слоем окиси тория они могут применяться также для более агрессивных металлов. Так, некоторые богатые хромом сплавы насыщаются кислюродом при выплавке в чистых корундизовых тиглях, но могут нормально выплавляться в таких же тиглях, футерованных окисью тория.  [c.84]

В работе Кишкина и Поляк [190] методом высокотемпературной металлографии показано, что в литых и деформированных сплавах задолго до полного разрушения наблюдается образование трещин по границам зерен, ориентированным перпендикулярно действию напряжения. Развитие трещин вначале идет медленно, а на последней стадии к моменту разрушения ускоряется, Поры при высокотемпературном разрушении наблюдались в меди, Y-латуни, хроме, сплавах алюминия и никеля [376, 377] и других. Рассмотрим зарождение пор, микротрещин и других микродефектов и их рост применительно к условиям высокотемпературного разрушения и главным образом к условиям разрушения при ползучести.  [c.400]

Фиг. VIII.52. Изменение ударной вязкости нормализованной стали 12ХН2 в зависимости от мощности режима упрочнения / — графит 2 — сплав ВК8 5 —хром сплав Т15К6. Фиг. VIII.52. Изменение <a href="/info/4821">ударной вязкости</a> нормализованной стали 12ХН2 в зависимости от мощности режима упрочнения / — графит 2 — сплав ВК8 5 —хром сплав Т15К6.
Сплавы никель-хром — основа большинства никелевых сплавов. Зависимость параболических констант окисления сплавов от их состава (рис. 14.16) отражает изм( ё-ния в фазовом составе окалин. При малых содержаййя хрома (сплавы группы I) основная фаза внешней зоны окалины — NiO. Ее легирование хромом приводит в соот-  [c.420]

В сплавах Ni—Сг—W, Ni—Сг—Мо вольфрам в количестве 10. .. 40 % снижает жаростойкость никеля примерно на порядок при 1000 С. Однако при введении в сплавы Ni—W хрома скорость окисления падает. Так, сплав Ni—40W—15Сг окисляется со скоростью, равной скорости окисления никеля. Так как W способствует селективному окислению хрома, сплав Ni—ЮСг—40W окисляется при 1000 ""С медленнее, чем сплав Ni—lO r. Введение малых добавок молибдена в сплавы Ni—Сг повышает их жаростойкость.  [c.425]


Вполне стойки к этому виду разрушения никелевые сплавы монель и инконель [47, 51, 52], а также [53] сплавы хастеллой В и хастеллой С (состоящие из никеля, молибдена и хрома), сплавы никеля с бором и кобальтохромовольфрамовые сплавы (стеллиты).  [c.51]

Применение стойких сплавов и защитных покрытий. Для особо ответственных элементов оборудования в качестве мероприятия по предотвращению сероводородного растрескивания можно предложить переход на некоторые полностью устойчивые к этому виду разрушения цветные сплавы. Полной стойкостью к этому виду разрушения практически обладают никелевые сплавы монель и инконель. Не подвергаются сероводородному растрескиванию также сплавы типа Хастеллой В и Хастеллой С (состоящие из никеля, молибдена и хрома), сплавы никеля с бором и кобальтхромволь-фрамовые сплавы (стеллиты). Недостатком этих материалов является высокая стоимость и дефицитность. Защита от растрескивания таким методом удешевляется при употреблении биметаллических листов с плакирующим слоем из указанных сплавов.  [c.103]

Покрытия сплавом марганец-хром. Сплав хорошо проти-. востоит растворам серной кислоты любой концентрации. Содержание марганца в осадке не превышает 20 / (обычно 17 / ). Покрытия получаются плотными, блестящими.  [c.71]

Влияние -стабилизирующих элементов на водородное охрупчивание титана было исследовано также в работе Джаффи и Вильямса [383]. В этой работе были изучены сплавы с -изоморфными стабилизаторами (молибден, ванадий, ниобий, тантал) и -эвтектоидными стабилизаторами (марганец, железо, хром). Сплавы были приготовлены на иодидном (0,03% Ог), магниетермическом (0,108% Ог) и магниетермическом титане с дополнительно введеины.м кислородом (0,27% Ог). В сплавы было введено 0,02 0,03 0,04 0,06 и 0,087о Нг. Сплавы испытывали на ударную вязкость, на растяжение с большой и малой скоростью растяжения и иа длительную прочность. Поскольку в работе ставилась цель не установить истинные допуски на содержание водорода, а оценить сравнительную склонность к водородному охрупчиванию, то испытания на растяжение проводили на гладких образцах. Применение гладких образцов позволило устранить эффекты, связанные с различным влиянием легирующих элементов на склонность титана к надрезу. Результаты обширных исследований по влиянию -ста-билизаторов на водородное охрупчивание титана, проведенных указанными авторами, представлены в табл. 36.  [c.403]


Смотреть страницы где упоминается термин Хрома сплавы : [c.227]    [c.442]    [c.780]    [c.78]    [c.150]    [c.355]    [c.290]    [c.106]    [c.66]    [c.192]    [c.286]    [c.634]    [c.187]    [c.663]   
Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.419 , c.426 ]



ПОИСК



Влияние хрома на структуру и свойства железохромистых сплавов и сталей

Дисперсионное упрочнение сплавов на основе ванадия, тантала, хрома, молибдена и вольфрама

Железо — хром, сплавы

Железо-хром-алюминиевые сплавы высокого электросопротивления

Железохромистые сплавы — Свойства — Влияние легирующих элементов 220, 221 — Свойства и структура — Влияние хрома

Защитно-декоративные покрытия хромом деталей из легких сплавов

Кварцевые и оптические стекла. Технические стекла. Ситаллы. Чугуны. Стали, хром-никелевые, хром-кобальтовые и другие сплавы Цветные металлы и сплавы. Алюминиевые сплавы. Пластмассы. Строительные материалы

Кобальт сплавы с вольфрамом и хромо

Колотыркин, Г.М. Флорианович Взаимосвязь коррозионно-электрохимических свойств железа, хрома и никеля и их двойных и тройных сплавов

Коррозионностойкий сплав системы А1—Mg с повышенным содержанием хрома (АМг4Х)

МИКРОТРАВЛЕНИЕ ВОЛЬФРАМА, ХРОМА, МОЛИБДЕНА, КРЕМНИЯ, ВАНАДИЯ И ИХ СПЛАВОВ

Меди сплавы (осаждение) и хромом

Микротравлеиие вольфрама, хрома, молибдена, кремния, ванадия и их сплавов

Молибденирование титановых сплавов, Никелирование титановых сплавов, Хромирование хрома

Никелевые сплавы деформируемые жаропрочны никель-молибден-железо-хром, коррозион. стойкость

Никелевые сплавы деформируемые жаропрочны никель-хром, коррозия

Никель, кобальт, хром и их сплавы

Никеля сплавы (осаждение) никель-сил-хром

Свариваемость сплавов на основе хрома, молибдена и вольфрама

Сварка алюминиевых сплавов хрома

Свойства сплавов на основе хрома

Сплавы вольфрама и молибдена с хромом

Сплавы жаропрочные литые на кобальтовой хрома состав, термическая обработка, свойства

Сплавы жаропрочные на основе хрома

Сплавы железо—хром—марганец

Сплавы молибдена, вольфрама и хрома 156 Достоинства и недостатки 156, 157 Режимы сварки 157 — 159 - Способы

Сплавы на основе хрома

Сплавы никель-хром и никель-железо-хром, легированные алюминием

Сплавы никель—хром—железо

Сплавы системы железо - хром - алюминий

Сплавы системы никель - хром

Сплавы системы никель - хром - кремний

Сплавы хрома с металлами подгруппы железа

Сплавы хром—алюминий—железо

Сырые материалы для выплавки сплавов хрома

Технологический процесс изготовления износостойких конструкционных деталей и деталей инструментальной оснастки из твердых сплавов на основе карда хрома

Технология производства сплавов хрома

Технология сварки сплавов на основе молибдена, вольфрама и хрома (И.Н. Шиганов)

Томашов, Р. М. Альтовский, Г. П. Чернова, А. Д. Артеев. Коррозионная стойкость сплавов титана с молибденом, хромом и палладием

Химический никелевые — Диаграмма состояния сплавов системы никель—хром 79 Применение 79—82 — Свойства 79—82 — Химический состав

Хром и его сплавы Кимкин, И. О. Панасюк)

Хром и его сплавы Теплоемкость, коэффициенты теплопроводности и линейного расширения хрома

Хром и свойства его сплавов

Хром и сплавы хрома

Хром и сплавы хрома

Хрома

Хрома сплавы (осаждение)

Хрома сплавы (осаждение) с ванадием

Хрома сплавы высоколегированные

Хрома сплавы высоколегированные спеченные

Хрома сплавы стойкость

Хромали

Хромиты

Электроосаждение металлов на титан и его сплавы, а также на хром, молибден, вольфрам и нержавеющую сталь



© 2025 Mash-xxl.info Реклама на сайте