Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы определения качества пара

МЕТОДЫ ОПРЕДЕЛЕНИЯ КАЧЕСТВА ПАРА  [c.36]

Рис. 2-10. Методы определения качества пара. Рис. 2-10. <a href="/info/335321">Методы определения</a> качества пара.

Химический метод определения качества пара основан на том, что наличие капелек котловой воды в паре обусловливает щелочную реакцию. Нейтрализуя определенное количество пробы пара деци- или санти-нормальной кислотой в присутствии индикаторов, определяют количество потребной для этого кислоты. По количеству и концентрации кислоты определяют щелочность пара, а зная щелочность котловой воды, определяют влажность пара.  [c.37]

Фотометрический метод определения качества пара основан на том, что в зависимости от изменения концентрации отдельных элементов изменяется интенсивность окраски соответствующих индикаторов, что и улавливается чувствительными фотоэлементами. Фотометрический метод нашел широкое применение для лабораторных анализов.  [c.37]

Методы определения основных пара-метров преобразователей. Методы измерения параметров преобразователей, наиболее полно характеризующие их свойства, изложены в ГОСТ 23702—79. Характерной особенностью этих методов- является то, что в качестве электрических импульсов возбуждения используются стандартные формы сигналов (радиоимпульс с прямоугольной огибающей, короткий видеоимпульс— импульс Дирака, непрерывный синусоидальный сигнал). Электрическую нагрузку преобразователя в режиме приема выбирают из условий обеспечения режима холостого хода или короткого замыкания. Выполнение этих измерений с помощью специальных средств осуществляется в основном на предприятиях, разрабатывающих преобразователи, и метрологических центрах.  [c.221]

Определение качества пара представляет большие трудности. Количество примесей в паре изменяется в очень больших пределах, что обусловило применение для этой цели нескольких принципиально различных методов контроля (рис. 2-10). В различные периоды  [c.36]

Термодинамический метод определения влажности пара заключается в том, что отбираемая проба дросселируется и поступает в сосуд, покрытый изоляцией. Температура пара в сосуде измеряется и регистрируется с большой точностью. Сухой насыщенный пар низкого и среднего давления после дросселирования становится слабо перегретым. Резкое ухудшение качества пара вызывает снижение темлературы перегретого пара, что и фиксируется как повышение влажности.  [c.37]

ПОКАЗАТЕЛИ КАЧЕСТВА ПАРА И МЕТОДЫ ИХ ОПРЕДЕЛЕНИЯ  [c.22]

Необходимость учета изменения конформации высокомолекулярных полимерных цепей при адсорбции затрудняет их использование в качестве зондов в методе адсорбции. В связи с этим особый интерес представляет возможность определения D по изотерме адсорбции одного вещества, но в широком диапазоне давлений, вплоть до давления насыщенного пара Р . Такой метод определения фрактальной размерности неупорядоченных дисперсных систем по экспериментальной изотерме адсорбции в области полимолекулярной адсорбции и капиллярной конденсации был предложен в [107]. Этот метод не требует привлечения каких-либо модельных представлений и основан на строгом термодинамическом интегральном соотношении между площадью поверхности адсорбционной пленки 8 Р) и изотермой адсорбции N P)  [c.66]


Методики определения всех этих показателей качества воды и пара описываются в гл. 13. Ряд других показателей — содержание натрия, меди, нефтепродуктов, кислорода, водорода, а также электропроводность — вменено в обязанность определять дневному персоналу химических лабораторий методы определения этих по-  [c.192]

Рассмотрение частотного состава тригонометрического ряда, выражающего функцию ошибки механизма в реальных условиях эксплуатации последнего, обнаруживает не только влияние отдельных звеньев и пар на точность механизма, но и ае конкретные обстоятельства технологического, конструктивного или эксплуатационного характера, которые непосредственно определяют точностные качества деталей в механизме. Поэтому разработка методов определения кинематической ошибки действующего реального механизма приобретает существенное значение в общей задаче повышения точности машиностроения.  [c.170]

Другой, более точный метод определения показателя политропы заключается в построении диаграммы в логарифмическом масштабе. Для этого на имеющейся кривой в диаграмме ри выбирают ряд точек, определяют для каждой из них по масштабу пару значений р и V, находят величины 1 У и 1 г/ и откладывают их в качестве прямоугольных координат в новой диаграмме (фиг. 1-22).  [c.40]

В настоящее время в качестве газа-адсорбата используют криптон, аргон и некоторые другие. Среди адсорбционных методов определения удельной поверхности порошков выделяют статические (манометрические, весовые или с использованием калиброванного капилляра) и динамические, часто называемые хроматографическими. Среди статических более распространены манометрические методы, сущность которых заключается в том, что навеску исследуемого порошка (10—20 г) помещают в герметизируемую емкость, дегазируют в вакууме и затем впускают в емкость соответственно азот или пары метанола. Давление газа, зафиксированное ртутным манометром, через некоторое время падает в результате адсорбции паров на поверхности частиц порошка. По разности равновесных давлений азота или метанола до и после адсорбции рассчитывают согласно газовым законам по известному объему прибора и температуре ве личину адсорбции (мг/г). Зная, что одна молекула в плотном адсорбированном монослое в случае азота при —195° С независимо от природы поверхности занимает площадку 0,162 нм , а в случае метанола при комнатной температуре для многих металлов занимает площадку порядка 0,2 нм2, можно определить удельную поверхность порошка (м /г). Существенная зависимость размера площадки, занимаемой молекулой метанола, от природы адсорбирующей поверхности значительно снижает точность оценки удельной поверхности. Длительность оценки поверхности одной навески порошка по адсорбции азота занимает порядка 5—6 ч, а по адсорбции метанола 1—1,5 ч.  [c.193]

ОПРЕДЕЛЕНИЕ КАЧЕСТВА ВОДЫ И ПАРА 7-1. МЕТОДЫ КОНТРОЛЯ КАЧЕСТВА ВОДЫ И ПАРА  [c.402]

Обработка поверхности стали в парах металла производится в вакууме с целью получения на обрабатываемой поверхности слоя испаряемого металла. В зависимости от метода нанесения (технологии) получают конденсатные покрытия или термодиффузионные, обеспечивающие поверхностное легирование изделия. на определенную глубину. Нами исследована последняя технология с применением паров хрома и никеля. Для термохимического взаимодействия между стальной подложкой и парами указанных металлов температуру подложки поддерживали в диапазоне 1000—1250 °С. В качестве подложки использовали низкоуглеродистые стали 08 пс, 08ю и др. При обработке в парах металлов стальная полоса перемещалась с постоянной скоростью в течение 2—3 мин.  [c.202]

В зависимости от марки резины или эбонита и принятого метода крепления резиновых обкладок к металлу вулканизацию осуществляют следующими способами в вулканизационных котлах под давлением — острым паром или горячим воздухом в гуммируемом аппарате под давлением — горячим воздухом или острым паром в гуммируемом аппарате без давления — паром,, горячей водой И/1И горячим раствором хлористого кальция. Продолжительность процесса вулканизации для каждого способа зависит от состава и толщины резиновых обкладок, формы и толщины стенок аппаратов, вида теплоносителя. В качестве теплоносителя наибольшее применение находит насыщенный пар, имеющий строго определенную температуру конденсации при данном давлении, выдерживаемую в течение всего процесса однако образующийся конденсат частично вымывает отдельные составляющие резиновой смеси, что ухудшает физико-механические показатели и химическую стойкость покрытия. При вулканизации горячим воздухом коррозионная стойкость и срок службы гуммированного покрытия повышаются на 20—25 % по сравнению с вулканизацией насыщенным паром, что весьма важно при эксплуатации в агрессивных средах при повышенных температурах.  [c.205]


Определение формы продольного сечения сводится к измерению непрямолинейности контролируемой детали, установленной в центрах. Причем это измерение следует производить по обеим образующим продольного сечения. Для данной цели рекомендуется воспользоваться индуктивными преобразователями с самописцами моделей 254 или 260, позволяющими записать профилограмму непрямолинейности. Если на записанных профилограммах провести прилегающий профиль (пару параллельных прямых), от сторон которого в перпендикулярном направлении определить наибольшее отклонение записанных профилограмм, то полученная величина с учетом масштаба увеличения, при котором была произведена запись профилограммы, может быть принята за отклонение профиля продольного сечения. Точность измерения при данном методе будет зависеть от качества центровых отверстий детали.  [c.181]

При существующих методах сепарации пара можно получать дистиллят практически любой степени чистоты. Однако применение этих методов в определенной мере усложняет и удорожает испаритель, и поэтому требования к солесодержанию дистиллята должны быть разумно обоснованы. Наиболее жесткие требования к чистоте дистиллята предъявляются в случаях, когда он предназначается для питания парогенераторов атомных энергетических установок, где содержание хлор-ионов (С1 ) не должно превышать 0,05 мгЦ. Но так как количество установок этого типа относительно невелико (в начале 1968 г. во всем мире насчитывалось лишь 128 действующих судовых атомных энергетических установок), то эти требования не могут быть определяющими для наиболее массовых типов испарителей. При необходимости высокое качество дистиллята может быть обеспечено путем промывки пара (см. 14).  [c.173]

В применении к металлам метод создания и анализа тепловых волн с целью определения величины а сформулирован сто лет тому назад Ангстремом. Металлический узкий и весьма длинный (теоретически предполагается бесконечно длинный) стержень с одного конца поочередно подогревается паром и охлаждается потоком воды, чем создается тепловая волна с периодом Т. По истечении достаточного промежутка времени в любой точке стержня х, расположенной примерно в центральной его части, устанавливается распределение температуры, выражающееся периодической функцией времени /(- ). Регистрация хода температуры го времени в двух соседних точках стержня и позволяет найти коэффициент температуропроводности материала стержня а. Полученное выражение для а содержит в качестве неизвестных величин коэффициент теплопроводности материала /. и коэффициент теплообмена от боковой поверхности стержня в окружающую среду а. Только знание последней величины может привести к раздельному нахождению значений X и а, а в силу известной связи последних с объемной теплоемкостью в виде I = с ,а-- к конечному определению и а, т. е. всех трех теплофизических характеристик  [c.11]

В настоящее время известен ряд подходов к решению контактной задачи методом конечных элементов. Наиболее прост с алгоритмической точки зрения прием, основанный на вычислении коэффициентов взаимного влияния точек контактирующих тел в нормальном и касательном направлениях. С помощью метода сил для составления равновесия каждого тела в отдельности находится распределение контактных напряжений. Полученные значения напряжений используются в качестве граничных условий для повторного вычисления по определению напряженного состояния контактирующей пары. Границы контактных площадок и участки проскальзывания находятся итерационным путем в процессе решения задачи. Такой подход использовался в работах [54, 66, 260, 270]. Отметим, что наряду с относительной простотой такой метод не лишен недостатков, основным из которых является необходимость решения задачи на этапе определения коэффициентов податливости 2п раз, где п — число точек контакта.  [c.11]

Метод Ф. М. Диментберга представляет собой разновидность геометрических методов. Как и большинство аналогичных методов, этот метод отличается раздельным составлением уравнений замкнутости продольных осей симметрии звеньев, соединенных в кинематические пары, и уравнений, определяющих структуру геометрических связей звеньев. В этом методе в качестве параметров, определяющих кинематическую цепь, приняты параметры относительных движений звеньев. С этой точки зрения методы Диментберга и Веккерта—Вёрле аналогичны. Однако существенным отличием метода Ф. М. Диментберга является использование для определения движений механизмов теории конечных поворотов. При этом отсутствует необходимость введения координатных систем, однако это не приводит к упрощению вычислений, а наоборот, влечет за собой возникновение весьма сложных и громоздких уравнений, которые распадаются всего лишь на две части — действительную и моментную. Другой особенностью метода является то, что комплексные уравнения, выводимые при анализе механизмов, определяют не действительные, а некоторые фиктивные движения звеньев, что усложняет использование этих уравнений при исследовании геометрических и динамических явлений, происходящих в механизмах.  [c.127]

В этой связи пока единственными остаются экспериментальные методы определения эффективности тех или иных влагоулавливающих устройств. Начатые в 1955 г. в БИТМ опыты проводились на моделях турбин при малых окружных скоростях. В качестве рабочего тела использовалась воздуховодяная смесь, полученная путем впрыска в поток воздуха перед турбиной мелко распыленной форсунками воды. Такая методика привлекает простотой, но не позволяет моделировать тепловые процессы, протекающие в реальном потоке влажного пара. Результаты этих опытов позволили подробно исследовать механическую сторону явления сепарации при малых окружных скоростях рабочего колеса.  [c.373]


Усовершенствованный метод определения скорости окисления под действием пара разработали Свес и Гиббс [540]. В действительности это маиометрический метод, предполагающий измерение повышения давления, обусловленного образованием водорода при (постоянном давлении пара. Тем не менее его удобно рассмотреть именно в настоящем подразделе, потому что его главные конструкционные особенности проистекают от использования водяного пара в качестве взаимодействующего газа. Установка, изображенная на рис. 94, состоит по сути дела из кварцевой трубки-реактора электрического нагрева, проходящей через основание водяной бани с регулируемой температурой, которая охватывает главную трубку, соединяющуюся с регулятором давления пара, ртутным манометром с самописцем и"вакуумными насосами. Регулятор давления с герметизированным кожухом снабжается водой из второй водяной бани с регулируемой температурой, которую поддерживают при несколько более низкой температуре, чтобы избежать конденсации где-нибудь в системе воды, испарившейся из внутренней трубки. 18  [c.275]

Существенным недостатком метода химического концентрирования ионов является непригодность его для оперативного контроля вследствие длительности и трудоемкости определения. Так как качество пара может изменяться в процессе работы парогенератора, анализ периодически отбираемых проб пара не может дать и тин ного представления о его качестве. В промежуток времени между очередными отборами проб качество пара может резко ухудшиться, что может пройти незамеченным. Поэтому на паротурбинных электростанциях наряду с периодическим контролированием применяется непрерывный контроль солесодержания с помощью регистрирующих солемеров.  [c.189]

Как известно, химически чистая вода характеризуется высоким сопротивлением для прохождения электрического тока. С повышением концентрации веществ, растворенных в воде, электрическое сопротивление ее уменьшается, а электрспроводность увеличивается. На этой зависимости и основан принцип работы электрических солемеров. Определение солесодержания с применением электрического солемера производится по показаниям гальванометра с помощью предварительно построенной градуировочной кривой. Метод электропроводности для контроля качества пара является быстрым, точным и пригодным для регистрации на приборе. Основным недостатком этого метода является увеличение электропроводности пробы конденсата пара за счет присутствующих в пробе газов СОг и ЫНз, которые при конденсации проб растворяются, образуя угольную кислоту и гидроокись аммония, продукты электролитической диссоциации которых увеличивают электропроводность конденсата пара, завышая значение солесодержания в нем. Для того чтобы устранить это искажение, при.меняются солемеры, в которых сочетается предварительная дегазация пробы с ее упариванием в солеконденсаторе. При упаривании пробы ее солесодержание повышается в несколько раз по сравнению с действительным солесодержанием, в результате чего резко уменьшается влияние аммиака и углекислоты на точность показаний солемера.  [c.190]

Основным методом, оценивающим фрикционную пару трения, является определение ее фрикционной теплостойкости. Оценка эта осуществляется на машине И-47 или усовершенствованном образце ее И-47-К-54 (конструкции И. С. Богатырева, И. В. Колпа-кова, И. В. Крагельского, А. В. Чичинадзе). Описание методики испытаний кратко приведено в гл. IX. Некоторые сведения об этой машине можно найти в работах [91 и [8]. В настоящее время эта машина получила широкое распространение. Большим удобством ее является возможность анализа (по кривым износа и коэффициента трения) изменений, протекающих в материалах. Эта машина пригодна для оценки схватывания пар трения. В настоящее время эта методика утверждена в качестве руководящих технических материалов. Кроме того, применяется методика оценки коэффициента трения и износа на пальчиковой машине трения. Указанная машина представляет собой диск, вращающийся в горизонтальной плоскости, к торцу которого прикладываются два образца, расположенных на одном диаметре. Размер каждого из образцов 22 X 27 мм. Давление на них 2,7 кг см , скорость скольжения 7,5 м1сек. Диск, по которому скользят образцы, изготовлен из чугуна и не меняется. Обычно температура образца при испытании составляет 100—120°.  [c.347]

Эмиссионный С. а. — совокупность методов определения элементарного состава вещества по его спектру испускания. Качественный С. а. состоит в обнаружении и отождествлении в спектре анализируемого вещества спектральных линий, принадлежащих искомому злементу. Обычно для этого ноль- зуются наиболее чувствительными линиями, т. е линиями, наблюдаемыми в спектре при минимальной концентрации определяемого элемента. Во избежание ошибок при качеств, анализе необходимо устанавливать наличие элемента в образце по неск. линиям для этих целей существуют многочисленные таблицы и атласы спектральных линий элементов. Количест-венный С. а. основан на связи между интенсивность ) спектральной линии и концентрацией. Метод заключается в сравнении интенсивностей т. н. аналитич. пары линий — спектральной линии определяемого элемента п липни основного элемента пробы (или линии спецпально вводимого элемента — внутреннего стандарта ).  [c.16]

Нами проверен простой и быстрый метод определения меди с применением в качестве индикатора мононатриевой соли 4-(2-пиридил-азо) -резорцина, сокращенно ПАР. Индикатор ПАР образует с ионами меди в исследованном диапазойе значений рН=3- 11 комплексные соединения, окрашивающие растворы по мере увеличения  [c.150]

Существует два метода нанесения пленочных покрытий метод конденсации (изотермический метод) и метод молекулярного потока. В первом из них температуры эмиттера и подложки одинаковы пленка растет за счет конденсации на подложке насыщенных паров материала эмиттера. Во втором методе температура эмиттера выше, и мы по существу имеем дело с направленным потоком атомов на подлоншу. Поскольку процесс образования пленки происходит при довольно высоких температурах (порядка сотен градусов), то существенное влияние на скорость роста толщины покрытия и его качество оказывает взаимная диффузия атомов подложки и напыляемого вещества. Естественно возникает вопрос о концентрации атомов подложки внутри пленки и скорости роста толщины последней. В работе [1 ] авторы заранее предполагают определенный закон движения границы пленки, в то время как в действительности последний должен быть получен из физических условий задачи. Кроме того, приводимое ими решение в случае линейного роста границы не удовлетворяет граничным условиям, и следовательно непригодно.  [c.102]

Такой метод оценки загрязненности рабочей жидкости позволяет измерить концентрацию загрязнителя без отбора проб и оценить влияние данной концентрации загрязнителя на работу гидросистемы. В работе [11] приведена схема измерительного сервозолотника, разработанного американской фирмой Боинг. Измерительный сервозолотник следует изготовлять из тех же материалов, он должен иметь такую же термообработку и качество рабочих поверхностей, что и рабочие сервозолотники. Однако для увеличения чувствительности к загрязнениям определенного размера у золотника уменьшают диаметральный зазор и величину перекрытия золотниковой пары. Обычно измерительный сервоклапан присоединяют к трубопроводу на линии нагнетания, ближе к источнику загрязнения рабочей жидкости.  [c.276]


К числу методов, пригодных для косвенного определения правильности химического контроля, можно также отнести проверку степени совпадения процента добавки химически очищенной воды в питательную систему котлов по данным инструментального учета и рассчитанного по балансу отдельных химических ингредиентов (сухому остатку, хлоридам, щелочности и т. д.) степени совпадения расчетного размера продувки котлов по отдельным показателям качества питательной и котловой воды. Представительность средних данных за месяц может быть проверена анализом изменения какого-либо показателя качества воды по тракту водоподго-товки, например, солесодержание перегретого пара в среднемесячном разрезе не может быть выше, чем в насыщенном при отсутствии поверхностного пароохладителя, солесодержание осветленной или питательной воды не может быть выше солесодержания добавочной воды (при отсутствии рециркуляции котловой воды) и т. д.  [c.283]

Ввиду трудности подробного экспериментального исследования температур и напряжений в роторах для их определения был принят экспериментально-расчетный метод. В соответствии с этим методом экспериментальная часть работы включала в себя измерение с помо1цью специальных устройств температуры пара, омывающего ротор, на отдельных его участках при различных режимах работы турбины, а также измерения температуры металла ротора на внутренней расточке при вращении его на валоповороте в период остывания с целью уточнения исходных условий для режимов пуска. Отказ от измерения температур поверхностей роторов позволил применить упрощенную схему токосъема, не требующую переделки в системе регулирования. Для оценки как температуры пара, омывающего ротор, так и температуры ротора использовались термопары, установленные на датчиках радиальных зазоров в непосредственной близости от ротора перед 7-й ступенью ЦВД и в зоне паровпуска ЦСД. Кроме того, в качестве измерительных устройств для контроля температур пара в проточной части и в районе диафрагменных уплотнений использовались специальные гребенки термопар и термопары, установленные в различных полостях турбины.  [c.157]

Многоцикловая усталость. Справедливость мнения, что турбины подвержены действию многоцикловой усталости, впервые была признана в начале 20-х гг. Многоцикловая усталость рабочих лопаток и деталей камеры сгорания неизменно сопряжена с резонансными колебаниями. Поэтому первая задача конструкторов — определение собственной частоты колебания различных деталей, в первую очередь рабочих лопаток и камеры сгорания. Вторая задача— определить возбудители колебаний, подавить их и затем рассчитать результирующие напряжения. Поскольку форма деталей камеры сгорания и рабочих лопаток сложна, расчет частоты колебаний не так-то прост. Чтобы рассчитать частоту и моду колебаний, а затем и величину локальных напряжений, приходящихся на единичный подавитель и единичный возбудитель колебаний в лопатках, применяют компьютерную программу, в основу которой положена теория сложного пучка или метод анализа конечных элементов. Помимо сведений, необходимых для расчета температуры, конструктору нужны сведения о плотности, модуле Юнга и коэффициенте Пуассона материала. В некоторых конструкциях колебания настолько серьезны, что требуется расчет специальных подавляющих устройств. В качестве таковых используют механические приспособления в виде различного вида упоров распирающих комельные части соседних лопаток, установленных на диске данной ступени. Эффективность подобных устройств оценивают посредством испытаний. В паровых турбинах возбуждение колебаний на каждом обороте ротора может быть очень значительным при впуске пара не по всей окружности турбины. В крупных па-  [c.73]

Моделирование аморфных структур. Оптимизация неравновесных структур требует развития математических методов их моделирования [461]. Они объединены в группы [462] с учетом исходного структурного состояния, принятого при моделировании. Первая группа моделей связана с рассмотрением структуры аморфных сплавов с "микрокристалл и-ческим" ближним порядком, характерным для кристаллических решеток. Вторая группа — "кластерные" модели, рассматривающие упорядоченные или неупорядоченные микрокластеры атомов как основную структурную единицу. В качестве одной из возможных единиц рассматривается, например, так называемый аморфон, характеризующий наличие осей симметрии 5-го порядка (рис. 164). Третья группа объединяет модели, основанные на совокупности случайных плотных упаковок жестких и мягких сфер. Они различаются правилами упаковки и другими особенностями. Отмечена схожесть моделей так, первая и вторая группы моделей принимают за основу наличие определенных структурных единиц, различающихся, однако, топологией. Общим для всех трех типов моделей является присутствие в аморфной структуре тетраэдрической пары и осей 5-го порядка.  [c.286]

Надежность работы в значительной мере зависит от соответствия примененных материалов и их качества требованиям нормативнотехнологической документации. Действующие нормы и правила предусматривают механические испытания и металлографический анализ основного металла и сварных соединений котлов, трубопроводов пара и горячей воды и сосудов, работающих под давлением. Объемы и методы механических испытаний и металлографических исследований строго регламентированы [23, 24, 25]. Механические испытания ставят своей задачей определение механических свойств при комнатной и рабочей температуре, без знания которых нельзя правильно выбрать материал для изготовления детали и оценить состояние металла в процессе эксплуатации. Основными видами механических испытаний являются испытания на растяжение, твердость и на ударный изгиб (динамические испытания). Технологические испытания на загиб, раздачу и свариваемость служат для оценки возможности проведения технологических операций, необходимых для изготовления и монтажа оборудования (сварки, гибки, вальцовки и т. п.). Такие важнейшие для котельных материалов испытания, как испытания на ползучесть, длительную прочность, сопротивление усталости, релаксацию напряжений, не предусматриваются действующими правилами котлонадзора в качестве контрольных и служат в основном для выбора допускаемых напряжений и установления ресурса работы элементов, изготовленных из различных сталей.  [c.8]

Вулканизация. Для придания резиновому покрытию химиче ской стойкости, прочности и эластичности его вулканизуют. В зависимости от марки резины или эбонита, принятого метода крепления резиновых обкладок к металлу вулканизацию осуществляют одним из следующих способов в вулканизационных котлах или гуммируемых аппаратах под давлением в гуммируемых аппаратах без давления (открытый способ). В качестве теплоносителя наибольшее применение находит насыщенный водяной пар, ценным свойством которого является строго определенная температура конденсации при данном давлении, выдерживаемая в течение всего процесса. Однако образующийся конденсат частично вымывает отдельные составляющие резиновой смеси, вследствие чего ухудшаются физико-механические свойства и химическая стойкость покрытия. При вулканизации горячим воздухом коррозионная стойкость и срок службы гуммировочного покрытия повышается на 20—25% по сравнению с вулканизацией насыщенным паром. Особенно это важно при эксплуатации резин и эбонитов в агрессивных средах при повышенной температуре. Режим вулканизации выбирается в зависимости от марки применяемой резиновой смеси и клея, толщины резинового покрытия и габаритов защищаемого оборудования. Например, гуммировоч-ное покрытие на эбоните марки ГХ-1626 может вулканизоваться как под давлением, так и открытым способом. Применение эбонита марки ГХ-1627 возможно только при вулканизации под давлением (в котле или в аппарате). Его вулканизация открытым способом не позволяет достигнуть необходимой твердости и химической стойкости покрытия.  [c.207]

Тщательно проанализировав предлагаемые на основании тех или иных теорий способы выбора модификаторов, можно утверждать, что ни один из рассматриваемых теоретических критериев нельзя признать универсальным. Выбор модификаторов по донорно-акцептор-ной теории, по Периодической системе элементов Менделеева, по обобщенному моменту можно осуществить лишь в отдельных случаях. Размерный фактор, факторы изоморфности и электроотрицательности, коэффициент распределения позволяют оценить растворимость модифицирующей добавки. Поскольку активность модификатора связана с его растворимостью, эти факторы, особенно размерный, могут быть использованы для прогнозирования выбора модификатора. Все теоретические предпосылки должны быть подтверждены надежными экспериментальными критериями, в качестве которых следует рекомендовать методы измерения поверхностного натяжения на границе жидкость — пар, величины переохлаждения, методику определения дезактивации нерастворимых примесей и метод вакуум-кристаллизации. По концентрационной зависимости а -п и переохлаждения можно установить оптимальную добавку модификатора. Критический отбор теоретических и экспериментальных критериев и их сопоставление позволят правильно подойти к вопросу выбора модификаторов.  [c.155]


При газофазном силицировании тугоплавких металлов скорость процесса по сравнению с парофазным методом возрастает, о процесс сохраняет диффузионный контроль [92, 93, 97, 98]. Роль переносчика кремния могут выполнять гало-гениды щелоч1ных металлов и аммония, НС1, галогены. Следует отметить более широкие возможности этого способа по сравнению с парофазным, так как с его помощью возможно осаждение на определенный металл широкого класса соединений — силицидов, карбидов, боридов и т. д. Практическое использование этого метода значительно определило его теоретическое исследование, поскольку химизм его чрезвычайно сложен, особенно в случае нанесения комплексных покрытий. В упоминавшейся выше работе [93] изучался процесс нанесения силицидных покрытий на молибденовый сплав с использованием в качестве переносчика кремния паров йода. Были обнаружены две температурные области, резко различающиеся но кинетике процесса и характеру образующихся покрытий. При температурах ниже 900° С скорость роста слоя MoSi2 подчиняется линейному закону, а при температурах выше 950° С — параболическому, причем по абсолютной величине скорость роста в низкотемпературной области превосходит таковую в высокотемпературной. До 900° С образующийся MoSi2 имеет гексагональную решетку, а образующийся выше 950° С — тетрагональную. Авторы [93] считают, что примеси, имеющиеся в сплаве (Ti, Zr, С), оказывают большое влияние на характеристики процесса формирования и структуру по-  [c.238]

Для лакокрасочных покрытий И. Д. Томашов, В. С. Киселев и М. М. Гольберг [23] предложили метод, заключающийся в испытании окрашенного железного электрода в паре с цинковым в 3%-ном растворе хлористого натрия. В этом случае окрашенный электрод подвергается катодной поляризации. Расстояние между электродами равно 3 см. Ток пары измеряется чувствительным микроамперметром, на который замкнута пара. Замеры производят через определенные промежутки времени и строят кривую плотность тока — время. О защитных свойствах покрытий судят по времени появления тока в системе. А. Я. Дрнпберг и Е. С. Гуревич [24] предложили измерять силу тока пары и с окрашенным катодом, и с окрашенным анодом. В этом случае при испытании покрытий на железных образцах в качестве второго электрода сначала применяют цинковый, а затем платиновый.  [c.201]

Ценные результаты при определении защитных свойств смазок можно получить методо.м определения паропроницаемости, а также проницаемости агрессивных газов, присутствующих в воздухе (ЗОг, НгЗ). В. В. Скорчеллетти и С. Д. Васильев [59] определяли паропроницаемость масла, помещая стакан с водой, на поверхности которой находился слой смазки, в эксикатор, в котором находился сосуд с определенным количеством поглотителя влаги. О паропроницаемости судили по привесу сосуда с поглотителем. В качестве поглотителя паров воды использовали безводный медный купорос. При определении проницаемости ЗОа или НгЗ через пленки масла в эксикатор вводили небольшое количество газа [0,4% (объемн.)], а в качестве поглотителя использовали 0,1-н. раствор едкого натра. Исследования [59] показали, что надежность защиты металла слоем смазки в значительной степени определяется степенью его проницаемости для парор воды и агрессивных в коррозионном отношении газов. Так как кислород в жидких углеводородах растворим и поэтому предотвратить его доступ к металлу невозможно, то процесс коррозии  [c.219]


Смотреть страницы где упоминается термин Методы определения качества пара : [c.219]    [c.120]    [c.417]    [c.60]    [c.258]    [c.578]    [c.62]    [c.99]    [c.217]   
Смотреть главы в:

Сепарационные устройства паровых котлов  -> Методы определения качества пара



ПОИСК



Качество пара

Показатели качества пара и методы их определения



© 2025 Mash-xxl.info Реклама на сайте