Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

КИНЕМАТИКА точки И ТВЕРДОГО ТЕЛА КИНЕМАТИКА ТОЧКИ Движение. Скорость. Ускорение

Итак, укажем еще раз, относительное движение есть движение по отношению к подвижной системе отсчета, а абсолютным движением мы будем называть движение относительно неподвижной системы отсчета. Основная задача кинематики в случае сложного движения точки состоит в том, чтобы, зная относительное движен 1е точки и переносное движение, т. е. движение подвижной системы отсчета, найти абсолютное движение точки и, следовательно, определить ее траекторию, скорость и ускорение в этом движении. Обратно, всякое движение точки или тела относительно данной условно неподвижной системы отсчета можно рассматривать как сложное и разложить на составляющие движения (относительное и переносное) для этой цели необходимо выбрать систему подвижных осей, движение которой известно, и найти движение точки или тела относительно этой подвижной системы. Этот прием разложения движения точки и.пи тела на составляющие движения является полезным в тех случаях, когда при соответствующем выборе подвижной системы отсчета относительное и переносное движения оказываются более простыми, чем изучаемое движение точки или тела относительно неподвижной системы отсчета. Мы воспользуемся этим приемом в следующих главах, где будем изучать случаи движения твердого тела более сложные, чем те, которые были рассмотрены в предыдущей главе.  [c.291]


Поступательным движением твердого тела называется такое движение, при котором любая прямая, проведенная в теле, остается во все время движения параллельной своему первоначальному направлению. Траектории точек при этом движении представляют собой одинаковые кривые, которые могут быть получены одна из другой путем параллельного смещения. При поступательном движении скорости и ускорения всех точек твердого тела в данный момент геометрически равны. Следовательно, при исследовании поступательного движения твердого тела достаточно определить движение одной какой-либо точки тела. Таким образом, задача о поступательном движении твердого тела сводится к задаче кинематики точки.  [c.271]

Таким образом, все точки поступательно движущегося тела движутся одинаково. Следовательно, движение любой точки характеризует движение тела в целом, и скорость и ускорение любой точки могут быть названы скоростью и ускорением твердого тела. На этом основании изучение поступательного движения тела часто заменяется рассмотрением движения любой его точки, что позволяет применить к телу, движущемуся поступательно, все положения и формулы, изложенные в кинематике точки.  [c.156]

При движении твердого тела отдельные его точки движутся в общем случае по различным траекториям и имеют в каждый момент времени различные скорости и ускорения. Вместе с тем имеются кинематические характеристики, одинаковые для всех точек твердого тела. Основными задачами кинематики твердого тела являются установление способа задания его движения и изучение кинематических характеристик, присущих телу, а также определение траекторий, скоростей и ускорений всех точек тела.  [c.183]

Последняя, восьмая лекция по кинематике содержит теорию плоскопараллельного движения твердого тела. Закон распределения скоростей и ускорений в теле при плоскопараллельном движении может быть определен либо как следствие кинематики свободного твердого тела, либо из рассмотрения сложного движения точки. В случае необходимости эта тема может быть опущена.  [c.69]

Выше при описании кинематики движения твердого тела или относительного движения мы рассматривали два репера неподвижный (абсолютный) Е и подвижный Е и вводили соответствующие понятия абсолютной скорости (ускорения), относительной скорости (ускорения) и т.д. Однако суть всего рассмотрения состояла в том, что было два репера и один из них двигался относительно другого. То, что Е мы называли абсолютным репером, было, вообще говоря, дополнительной конкретизацией, не влияющей на основные соотношения.  [c.97]


При изучении курса физики установлены основные понятия кинематики точки и твердых тел. При движении точки по траектории скорость и ускорение точки рассматриваются как векторные величины. При этом вектор скорости V направлен по касательной к траектории, и его модуль (числовое значение) равен первой производной от пути по времени v = ds вектора скорости по времени а = с1 и/с1/. Он может быть разложен на две составляющие вектор касательного ускорения а , направленный по касательной к траектории и равный по модулю а = dv di и вектор нормального ускорения направленный по главной нормали к траектории в данной точке в сторону вогнутости кривой и имеющий модуль а, == у-/р, где р — радиус кривизны траектории. Модуль вектора ускорения а = ] а + я-  [c.28]

В кинематике твердого тела рассмотрены векторные уравнения, связывающие скорости и ускорения точек плоской фигуры, и уравнения, связывающие скорости и ускорения в относительном движении. Эти векторные уравнения можно решать графическим способом путем построения планов скоростей и ускорений.  [c.38]

Кинематика — это раздел механики, в котором с геометрической точки зрения изучаются пространственно-временные свойства движения различных объектов. С целью практических при.тожений значительное внимание уделяется рациональным методам расчета скоростей и ускорений отдельных точек, как изолированных, так и входящих в состав абсолютно твердых тел. Владение такими методами полезно при разработке реальных механических систем, выявлении структуры их виртуальных перемещений, составлении уравнений динамики.  [c.76]

В кинематике рассматривают такие характеристики движения, как скорость и ускорение точки, угловые скорость и ускорение твердого тела и др.  [c.97]

Кинематика — это раздел механики, где изучаются способы описания движений независимо от причин, обусловливающих эти движения. В этой главе будут рассмотрены три вопроса кинематика точки, кинематика твердого тела, преобразование скорости и ускорения при переходе от одной системы отсчета к другой.  [c.10]

При поступательном движении все точки твердого тела совершают за один и тот же промежуток времени равные перемещения. Поэтому скорости и ускорения всех точек тела в данный момент времени одинаковы. Это обстоятельство позволяет свести изучение поступательного движения твердого тела к изучению движения отдельной точки тела, т. е. к задаче кинематики точки.  [c.17]

Основное уравнение динамики поступательного движения твердого тела. Как известно из кинематики, поступательное движение твердого тела характеризуется тем, что в каждый момент времени векторы скоростей всех точек тела равны между собой и векторы ускорений этих точек также равны друг другу. При этом все точки тела движутся по одинаковым траекториям. Следовательно, при поступательном движении положение твердого тела определяется положением какой-  [c.583]

При произвольном движении твердого тела отдельные его точки движутся, вообще говоря, по различным траекториям и имеют в каждый момент времени различные скорости и ускорения. Однако существуют кинематические характеристики, являющиеся одинаковыми для всех точек тела, по крайней мере, в данный момент времени. Основными задачами кинематики твердого тела являются а) установление способа задания движения тела, б) изучение кинематических характеристик движения, в) определение траекторий, скоростей и ускорений всех точек движущегося тела.  [c.109]

Выдающимся произведением по теоретической механике является курс Николая Егоровича для студентов МВТУ. Курс начинается с раздела Статика , изложенного элементарно геометрическим методом. В курсе представлено большое число конкретных технических задач. Разбору механической сути дела уделяется главное внимание. Особенно детально изложена глава о центрах тяжести и Графостатика — на эти разделы отведено более четырех печатных листов. Из кинематических вопросов наибольшее внимание уделено определению скоростей и ускорений точки, определению скоростей и ускорений точек тела при вращательном и плоскопараллельном движениях и добавочному (или кориолисову) ускорению. Очень интересен методически раздел, посвященный сложению движений твердого тела, иллюстрированный ясными, убедительными примерами. Механические модели заполняют страницы этой главы кинематики. Любителям общности и строгости следует рекомендовать эту главу курса для тщательного анализа, ибо опыт преподавания показывает, что от приведения пространственной системы скользящих векторов к простейшему виду и разбора правил сложения моторов (кинематических винтов) у студентов технической высшей школы почти не остается познаний закономерностей механического движения. Усложненная математическая форма съедает здесь физическое содержание понятий и теорем.  [c.129]


Кинематика 1) уравнение движения точки 2) поступательное и вращательное движения твердого тела 3) скорости и ускорения шестизвенного механизма 4) кориолисово ускорение 5) сферическое движение.  [c.26]

В статике нами были рассмотрены условия равновесия систем сил, приложенных к абсолютно твердому телу, и условия, при которых твердое тело находится в покое. Задание движения твердого тела и определение скоростей и ускорений точек твердого тела было рассмотрено в кинематике. При изучении динамики твердого тела встают более с южные задачи. Эти задачи делятся на две основные группы. К одной группе относятся задачи, в которых по заданному движению твердого тела требуется определить систему сил, под действием которых происходит это движение. К другой группе относятся задачи, в которых по заданным силам, действующим на твердое тело, требуется при определенных начальных условиях найти закон движения тела, а для несвободного тела найти также реакции связей.  [c.293]

В статике — первом разделе механики — мы изучали условия равновесия сил, приложенных к точке или к абсолютно твердому телу если эти условия не выполнялись, то тело не могло оставаться в покое, а начинало двигаться при этом мы никогда не ставили вопроса о том, по какому закону оно начнет двигаться — он выходил за пределы статики. Во втором разделе — кинематике — мы рассматривали движения точек, или твердых тел нас интересовали траектории, скорости и ускорения точек, но мы изучали движение с чисто геометрической точки зрения — мы никогда не ставили вопроса о том, под действием каких сил оно происходит. В кинематике, как мы могли заметить, не было никаких аксиом — точка, движение которой мы изучали, могла быть и геометрической — например, световым зайчиком, движущимся по шкале измерительного прибора.  [c.11]

Основные разделы кинетики При кинематическом изучении движения мы следовали чисто геометрическому методу, не анализируя причинной связи между наблюдаемыми движениями. Если для данного движения твердого тела можно было определить положение, скорость и ускорение любой его точки, то задача кинематики считалась полностью решенной.  [c.153]

Говорят, что твердое тело имеет три поступательные степени свободы. Нетрудно видеть, что при поступательном движении перемещения всех точек одинаковы и совпадают с перемещениями полюса. Траектории всех точек тела при поступательном движении являются одинаковыми кривыми, параллельно смещенными относительно друг друга. Одинаковыми оказываются скорости и ускорения всех точек тела. Поэтому поступательное движение твердого тела полностью определяется движением одной его точки, например полюса. Все изложенное выше о кинематике движения одной точки полностью относится и к поступательному движению твердого тела. Так, скорость находится по формуле  [c.47]

В главе XI уже было рассмотрено составное движение точки и доказаны теоремы сложения скоростей и сложения ускорений для того частного случая, когда переносное движение, т. е. движение подвижной системы отсчета, является поступательным. Сохраняя обозначения и терминологию главы XI и пользуясь изложенной в главе XIII кинематикой твердого тела, докажем теперь теоремы сложения скоростей и сложения ускорения для случая, когда переносное движение является произвольным.  [c.403]

Краткие исторические сведения о развитии кинематики. Если механика как наука о движении и равновесии материальных тел существует десятки столетий, то кинематика как самостоятельный ее раздел возникла сравнительно недавно. Основные понятия кинематики — скорость и ускорение (при прямолинейном движении) — были введены Г. Галилеем (1564— 1642) в первой половине XVII в. Он же сформулировал закон сложения скоростей. Общее попятив ускорения было введено Ньютоном. Кинематика твердого тела была разработана академиком Российской Академии наук Л. Эйлером (1707—1783) в труде Теория движения твердых тел (1765).  [c.144]

Но этого еще недостаточно для того, чтобы привести доступные нам эксперименты к той схематической простоте, которая позволила бы выяснить характеристические свойства, присущие понятию о силе. Все тела обладают известным протяжением) мы видели при изучении кинематики, что даже в частном случае движения твердой системы кинематические элементы (скорости, ускорения, траектории) отдельных точек, вообще говоря, отличаются друг от друга. Поскольку мы здесь предполагаем сделать общие индуктивные выводы о характере. сил путем анализа их динамического эффекта, совершенно ясно, что указанное многообразие одновременных кинематических особенностей неизбежно должно маскировать явления и даже отвлекать наше внимание от возможного схематического изображения всего процесса в целом. Чтобы элиминировать. это многообразие усложняющих обстоятельств, целесообразно ограничиться сначала телами настолько малыми (по сравнению с размерами области, в которой происходит движение), чтобы положение тела можно было определить без значительной погрешности геометрической точкой. 13сякое тело, рассматриваемое о этой точки зрения, принято называть материальной точкой. Это название не только не противоречит нашим наглядным представлепяям о конкретных явлениях, но, как было уже указано в кинематике (II, рубр. 1), соответствует уже установившимся взглядам так, например, положение судна на море обыкновенно определяют долготой и широтой места но в действительности эти координаты определяют только одну геометрическую точку на земной поверхности, которую мы отолсествляем с нашим судном в силу его незначительных размеров по сравнению с размерами земли точно так же, чтобы привести пример, еще лучше соответствующий приведенному выше определению, мы изображаем все звезды точками на небесной сфере, хорошо зная, как велики их размеры по сравнению с телами на земле.  [c.300]


В настоящее, девятое издание первого тома перенесены из третьего тома главы Тавновесие гибких нитей и Кинематика точки в криволинейных координатах , что позволило сосредоточить в этом томе весь материал по статике и кинематике. Кроме того, в первый том добавлены задачи на определение центра тяжести тел из неоднородного материала, смешанные задачи на сложное движение точки и твердого тела, на сложное движение точки, где следует последовательно применять дважды теорему сложения скоростей и теорему сложения ускорений, задачи из кинематики роботов.  [c.8]

Наиболее существенные отличительные особенности рецензируемого пособия 1) полнее, чем в имеющейся учебной литературе, освещены мировоззренческие вопросы в теоретической механике 2) введен ряд новых разделов в соответствии с тенденциями развития научно-техни-ческого прогресса, например, однородные координаты, применяемые при описании роботов-манипуляторов. что потребовало существенно перестроить раздел кинематики твердого тела основные теоремы динамики изложены не только в неподвижных, но и в подвижных (неинерциальных) системах координат в разделе Синтез движения рассмотрены вопросы сложения не только скоростей, но и ускорений. При этом получен ряд новых результатов сравнение механических измерителей углов поворота и угловых скоростей твердых тел основы виброзащиты и виброизоляции, динамические поглотители колебаний основы теории нелинейных колебаний, включающей изложение основ методов фазовой плоскости, метода малого параметра, асимптотических методов, метода ускорения 3) в методических находках, позволивших углубить содержание курса и уменьшить его объем впервые обращено внимание на то, что условия динамической уравновешенности ротора и условия отсутствия динамических реакций в опорах твердого тела при ударе — это условия осуществления свободного плоского движения твердого тела полнее и глубже развиты аналогии между статикой, кинематикой и динамикой полнее изложены электромеханические аналогии и показана эффективность применения уравнений Лагранжа-Максвелла, для составления уравнений контурных токов сложных электрических цепей получение теоремы об изменении кинетической энергии для твердого тела из соотношения между основными динамическими величинами и многие другие.  [c.121]

После вступления начинается изложение кинематики. Существенная особенность предлагаемой методики в том, что ее содержание не исчерпывается кинематикой точки и абсолютно твердого тела. Она трактуется как кинематика системы материальных точек. Материальная точка и абсолютно твердое тело являются простейшими примерами системы. Сначала, конечно, рассматривается свободная материальная точка. Указываются различные способы описания (ариф-метизации) ее движения. Наряду с обычными способами (векторный, координатный, естественный) отмечается и способ,, связанный с введением трех произвольных обобщенных координат. Вводятся понятия скорости и ускорения точки. Далее рассматривается точка, на которую наложены одна или две стационарные удерживающие голоном ные связи. Рассматриваются вопросы задания движения точки и определения ее скорости и ускорения.  [c.73]

При изучении вращательного движения твердого тела полезно ввести в рассмотрение кинематические характеристики, общие для всего тела как целого. Отдельные материальные точки обладают этими кинематическими характеристиками, когда они лринадлежат твердому теЛу, но если рассматривать материальную точку как объект изучения (что мы и делали в кинематике точки), то она не обладает характеристиками, специфичными для механических систем (ансамблей) материальных точек. Для твердого тела, имеющего неподвижную ось, такими кинематическими характеристиками, общими для всех точек тела, являются угол поворота ф = ф( ), или закон вращения, угловая скорость o)(i) и угловое ускорение e t).  [c.103]

Дифференциальные уравнения поступательного движения твердого тела. Как было установлено в кинематике твердого тела, при поступательном движении твердого тела все точки тела имеют равные по численной величине и однаковые по направлению скорости и ускорения.  [c.403]

Как отмечалось ранее, урав1 ения Ньютона справедливы только в инерциальных системах отсчета. Однако на практике часто встречаются и неинерциальные системы. Поэтому необходимо найти уравнения движения относительно таких систем. При этом естественно исходить из уравнений Ньютона, которые, как известно, содержат массы и ускорения материальных точек, а также силы, действующие на них со стороны других тел. Массы точек и время инвариантны относительно перехода от одной системы отсчета к другой, а силы являются функциями положений и ско-ростей точек. Таким образом, чтобы вывести интересующ ие нас уравнения движения, прежде всего нужно выяснить, как преобразуются положения, скорости и ускорения при переходе от инерциальной системы к неинерциальной системе отсчета. В свою очередь для решения этого вопроса следует с кинематической точки зрения проанализировать движение одной произвольной системы отсчета относительнб другой произвольной системы отсчета. Кстати напомним, что в классической механике системы отсчета мыслятся связанными с твердыми телами, поэтому кинематика движения одной системы отсчета относительно другой эквивалентна кинематике твердого тела.  [c.150]

Отметим, что при вычислении переносной скорости и переносного ускорения не требуется учитывать относительное движение точки, поэтому у и определяют, по.пьзу-ясь методами кинематики твердого тела, как скорость и ускорение точки некоторого тела, неизменно связанного с подвижной системой отсчета и движущегося вместе с ней.  [c.121]


Смотреть страницы где упоминается термин КИНЕМАТИКА точки И ТВЕРДОГО ТЕЛА КИНЕМАТИКА ТОЧКИ Движение. Скорость. Ускорение : [c.417]    [c.407]    [c.286]    [c.429]   
Смотреть главы в:

Лекции по теоретической механике Том 1  -> КИНЕМАТИКА точки И ТВЕРДОГО ТЕЛА КИНЕМАТИКА ТОЧКИ Движение. Скорость. Ускорение



ПОИСК



407 — Точка — Скорости и ускорения

Движение твердого тела

Движение твердых тел

Движение ускоренное

КИНЕМАТИКА Движение точки

КИНЕМАТИКА Движение, скорость и ускорение точки

КИНЕМАТИКА Кинематика точки

КИНЕМАТИКА ТОЧКИ И ТВЕРДОГО ТЕЛА Кинематика точки

Кинематика

Кинематика движения твердого тела

Кинематика твердого тела

Кинематика твердого тела точки

Кинематика твердых тел

Кинематика точки

Скорости и ускорения точек тела

Скорость движения

Скорость движения точки

Скорость и ускорение

Скорость точек твёрдого тела

Скорость точки

Тела Кинематика

Точка — Движение

Ускорение движения точки

Ускорение точки

Ускорения точек твердого тела



© 2025 Mash-xxl.info Реклама на сайте