Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общие теоремы и вариационные принципы

ОБЩИЕ ТЕОРЕМЫ И ВАРИАЦИОННЫЕ ПРИНЦИПЫ  [c.90]

В гл. 5 рассматриваются некоторые общие свойства упругих и пластических стержневых систем. Существенно заметить, что вариационные принципы теории упругости, ассоциированный закон течения, свойство выпуклости поверхности нагружения для пластической системы доказываются здесь совершенно элементарно. Все эти теоремы будут сформулированы и доказаны впоследствии при более общих предположениях. Автору представляется по опыту его педагогической работы, что иллюстрация общих принципов на простейших примерах, где эти общие принципы совершенно очевидны, способствует лучшему их пониманию и усвоению. Гл. 6 посвящена теории колебаний, которая должна занять подобающее место как во втузовских, так и в университетских программах. Кроме собственно задач о колебаниях здесь излагается метод характеристик для решения задач о продольных волнах в стержнях. Этот метод настолько прост И ясен, что им можно пользоваться и его легко понять, не прослушав общего курса дифференциальных уравнений математи-  [c.12]


Второй том курса, предлагаемый вниманию читателя, содержит два отдела. Первый из них (отдел четвертый) посвящен деформации стержней, второй (отдел пятый) — энергетическим основам статики систем —общим энергетическим законам и теоремам, вариационным принципам и методам расчета систем при статическом на них воздействии.  [c.7]

В первом разделе тома даются принципы и основные уравнения механики упругого деформируемого твердого тела теории деформаций и напряжений, дифференциальные уравнения равновесия, связь между компонентами напряжения и деформации, общие теоремы теории упругости и строительной механики, вариационные принципы и их использование для решения задач механики деформируемого твердого тела, методы конечных и граничных элементов.  [c.16]

ОБЩИЕ ТЕОРЕМЫ ТЕОРИИ УПРУГОСТИ И СТРОИТЕЛЬНОЙ МЕХАНИКИ, ВАРИАЦИОННЫЕ ПРИНЦИПЫ И ИХ ИСПОЛЬЗОВАНИЕ ДЛЯ РЕШЕНИЯ ЗАДАЧ МЕХАНИКИ ДЕФОРМИРУЕМОГО ТВЕРДОГО ТЕЛА  [c.41]

Эта теория создана уже около половины века тому назад, но в литературе известны лишь немногие примеры применения ее к задачам механики деформируемых тел. Первые работы принадлежат Р. Куранту [0.9] и Э. Рейсснеру [0.13]. Р. Курант впервые применил преобразование Фридрихса для установления связи между принципами Лагранжа и Кастильяно. Э. Рейсснер [0.13], оценивая результаты своих четырех работ, посвященных вариационным принципам теории упругости, характеризует новизну использования теории [0.9] и полученную в итоге полную формулировку вариационной теоремы как вклад в теорию упругости. В отечественной литературе теория [0.9] впервые применена в работах [0.4], а впоследствии в (0.15, 0.6, 0.1] и др. Однако все эти исследования, как правило, не имеют общего характера и относятся к вариационным формулировкам в терминах стационарности функционалов. К анализу экстремальных свойств функционалов эта теория не применялась.  [c.8]

ОБЩИЕ И ЧАСТНЫЕ ВАРИАЦИОННЫЕ ПРИНЦИПЫ И ТЕОРЕМЫ.  [c.27]

В данной главе изложены общие вопросы теории преобразования вариационных проблем, которая позволяет выделить общие и частные вариационные принципы и теоремы и установить между ними эквивалентную взаимосвязь. Эта глава служит теоретической основой для исследования вариационных принципов теорий упругости и оболочек в гл. 3 и 4.  [c.27]


Общий вариационный принцип и общая вариационная теорема.  [c.30]

С точки зрения приведенной теоремы сформулированная выше экстремальная задача (У.б) соответствует наиболее общему вариационному принципу теории трансверсально-изотропных оболочек. Поэтому из последнего как частные случаи должны следовать все другие вариационные уравнения. В частности, на базе (У.5) и (У.б) могут быть сформулированы классические вариационные принципы Лагранжа и Кастилиано.  [c.82]

По сложившейся традиции в курсы аналитической механики включают общие уравнения движения голономных и неголономных систем, вариационные принципы, теорию канонических преобразований, канонические уравнения с теорией интегрирования их (теорема Гамильтона — Якоби), интегральные инварианты, теорию последнего множителя и т. П. основные законы механики считаются известными и не подвергаются обсуждению.  [c.9]

Остроградский Михаил Васильевич (1801-1862) — известный математик и механик. Учился в Харьковском университете (1816-1820 гг.) и в Париже (1822-1827 гг.). С 1828 г. — профессор в высших учебных заведениях Петербурга, академик. Сформулировал и развил общий вариационный принцип для консервативных систем, доказал теорему (1828 г.) о преобразовании интегралов (теорема Гаусса — Остроградского), построил теорию распространения тепла в твердых телах и жидкостях. Труды по математическому анализу, алгебре, теории чисел, аналитической и небесной механике, гидромеханике, теории упругости, баллистике,  [c.95]

До недавнего времени теорема Нетер служила единственным общим методом нахождения законов сохранения уравнений, следующих из вариационного принципа. В настоящее время развиты более общие методы, основанные не теориях высших и обобщенных симметрий. Современное изложение этого круга вопросов дано в монографии [ ].  [c.14]

При изучении движения механич. систем часто применяют т. н. общие теоремы Д., к-рые также могут быть получены как следствия второго и третьего законов Д. К ним относятся теоремы о движении центра масс (или центра инерции) и об изменении количества движения, момента количеств движения и кинетич. энергии системы. Иной путь решения задач Д. связан с использованием вместо второго закона Д. принципов механики (см. Д Аламбера принцип, Д Аламбера — Лагранжа принцип. Вариационные принципы механики) и получаемых с их помощью ур-ний движения, в частности Лагранжа уравнений механики.  [c.159]

Вариационные принципы, рассмотренные нами выше, значительно шире по содержанию, чем основные теоремы динамики. Вариационные принципы охватывают все случаи движения материальных систем, если рассматривать не только интегральные, но и дифференциальные принципы. Наиболее общими среди рассмотренных приципов являются принцип Даламбера — Лагран-  [c.209]

Шире, чем обычно в общих курсах, освещены общие законы механики — вариационные принципы, энергетические теоремы и идеи общих методов (глава XV), теория тонкостенных систем, динамика (глава XVH) и теория устойчивости систем (глава ХУП1), усталость металлов (глава XIX). Дана по возможности современная трактовка методов строительной механики стержневых систем и общая нелинейная теория тонких стержней.  [c.15]

Нетрадиционно освещается ряд тем кинематика, общие теоремы динамики, вывод уравнений Лагранжа, уравнение Гамильтона — Якоби. Часть материала выходит за рамки университетского курса элементы теории линейных и квадратичных по скоростям интегралов, применение вариационных принципов, новое доказательство теоремы Дарбу о канонических координатах. В книгу включены задачи, иллюстрирующие и дополняющие теоретический материал, даны методические указания к ним.  [c.2]


Разделение мехапич. систем на голономные и неголо-номные весьма существенно, так как к Г. с. применимы многие сравнительно простые ур-ния механики и общие принципы, к-рые не справедливы для неголопом-ных систем. Движение Г. с. может изучаться с помощью Лагранжа уравнений механики, Гамильтона уравнений, Гамильтона — Якоби уравнения, а также с помощью наименьшего действия принципа В форме Гамильтона — Остроградского или Мопертюи — Лагранжа. К Г, с. приложимы также все те общие теоремы механики и дифференциальные вариационные принципы механики, К-рые справедливы и для неголономных систем.  [c.515]

Опыт научной работы членов кафедры и их участие в научно-технической помощи организациям промышленности, выступления перед научно-технической обш,ественностью (с докладами, а также в печати) привели кафедру к выводу о необходимости некоторой модернизации программы основного курса. Начиная с 1959/60 учебного года члены кафедры вели преподавание курса теоретической механики по новой программе. В курс были введены следующие главы Кинематика управляемых движений точки Теория эллиптических траекторий в центральном поле тяготения Земли Вариационный принцип Гамильтона Общая теория малых колебаний с д-степенями свободы Общие теоремы механики тел пере менной массы .  [c.228]

В работах Л. Н. Воробьева (1956), Н. А. Кильчевского (1963, 1964), Д. И. Кутилина (1947), В. В. Новожилова (1958) рассмотрены общие теоремы нелинейной теории упругости. Расширенные вариационные начала (типа предложенных в линейной теории Э. Рейсснером) сформулированы К. 3. Галимовым (1952) и И. Г. Терегуловым (1962). Предложенные вариационные принципы содержат в качестве независимо варьируемых функциональных элементов перемещения, напряжения и деформации, свободные от каких-либо связей внутри и на границе тела. Вариационные начала  [c.74]

Цель этой главы — познакомить читателя с использованием вариационных методов в теории динамических систем, которые позволяют находить интересные орбиты некоторых динамических систем как критические точки некоторых функционалов, определенных на подходящих вспомогательных пространствах, образованных потенциально возможными орбитами. Эта идея восходит к идее использования вариационных принципов в задачах классической механики, которой мы обязаны Мопертюи, Даламберу, Лагранжу и другим. В классической ситуации, когда время непрерывно, источником определенных трудностей является уже то обстоятельство, что пространство потенциально возможных орбит бесконечномерно. Для того чтобы продемонстрировать существенные черты вариационного подхода, не останавливаясь на вышеупомянутых технических деталях, в 2 мы рассмотрим модельную геометрическую задачу описания движения материальной точки внутри выпуклой области. Затем в 3 будет рассмотрен более общий класс сохраняющих площадь двумерных динамических систем — закручивающих отображений, которые напоминают нашу модельную задачу во многих существенных чертах, но включают также множество других интересных ситуаций. Главный результат этого параграфа — теорема 9.3.7, которая гарантирует существование бесконечного множества периодических орбит специального вида для любого закручивающего отображения. Не менее, чем сам этот результат, важен метод, с помощью которого он получен. Этот метод, основанный на использовании функционала действия (9.3.7) для периодических орбит, будет обобщен в гл. 13, что даст возможность получить весьма замечательные результаты о непериодических орбитах. После этого, развив предварительно необходимую локальную теорию, мы переходим к изучению систем с непрерывным временем, хотя мы проделаем это только для геодезических потоков, для которых функционал действия имеет ясный геометрический смысл. При этом важной компонентой доказательства оказывается сведение глобальной задачи к соответствующей конечномерной задаче путем рассмотрения геодезических ломаных (см. доказательство теоремы 9.5.8). В 6 и 7 мы сосредоточим внимание на описании инвариантных множеств, состоящих из глобально минимальных геодезических, т. е. таких геодезических, поднятия которых на универсальное накрытие представляют собой кратчайшие кривые среди кривых, соединяющих любые две точки на геодезической. Главные утверждения этих параграфов — теорема 9.6.7, связывающая геометрическую сложность многообразия, измеряемую скоростью роста объема шаров на универсальном накрытии, с динамической сложностью геодезического потока, выражаемой его топологической энтропией, и теорема 9.7.2, позволяющая построить бесконечно много замкнутых геодезических на поверхности рода больше единицы с произвольной метрикой. Эти геодезические во многом аналогичны биркгофовым минимальным периодическим орбитам из теоремы 9.3.7.  [c.341]

Общий принцип здесь таков нужно поднять геометрические объекты иэ конфигурационного пространства V в фазовое пространство T V, в котором особенности или исчезают, или упрощаются (в теории дифференциальных уравнений в частных производных и в квантовой теории такой подход называется микролокальным ). Это поднятие трансформирует простые факты дифференциальной геометрии в общие теоремы симплектической и контактной геометрии, чья область применения гораздо шире (например, можно использовать дифференциально-геометрическую интуицию, рассматривая поверхности в евклидовом пространстве, для того чтобы получить результаты, касающиеся общих вариационных задач с односторонними ограничениями).  [c.5]

Можно показать, что полученные в предыдущих разделах этого параграфа результаты, основанные частично на полукачест-венных соображениях и оценке максимального слагаемого статистической суммы изинговской системы, являются следствием вариационного подхода к оценке этой суммы. Так как вариационная теорема Боголюбова, лежащая в основе статистического вариационного принципа, имеет общее значение и используется не только в применении к дискретным системам, докажем ее здесь в общем виде (Н. Н. Боголюбов, 1956).  [c.689]


Остальные задачи дополнительного раздела главы посвящены дискретным система.м (ячеистая модель жидкости в этом отношении является как бы переходной). Это и задачи на использование регулярных методов (низкие и высокие температуры) или на использование приближения Брегга—Вильямса. В раздел задач вынесено доказательство ряда теорем общего характера, не являющихся специально статистическими, которые используются в основном тексте главы при выводе вариационной теоремы Боголюбова в общем виде (вариант ее вывода приведен в задаче 33). И последний параграф — это использование вариационного принципа применительно к характерным задачам теории дискретных систем при простейшем однопараметровом выборе нулевого гамильтониана. В задаче 28 показано, что полученные таким образом решения, эквивалентные результатам приближения Брегга—Вильямса, при специальном выборе взаимодействия узлов (бесконечно слабое взаимодействие с бесконечным радиусом его действия) являются точными в пределе N 00.  [c.716]

Введение понятия об областях изохрон оказалось полезным для решения задач о предельном быстродействии. Эти результаты были подытожены в монографии А. Я. Лернера Принципы построения быстродействующих следящих систем и регуляторов . Дальнейшее развитие теории состояло в формулировке общей вариационной задачи нахождения оптимальной фазовой траектории в и-мерном фазовом пространстве для любых начальных условий, а также в формулировке и доказательстве теоремы о га-интервалах, на базе которой оказалось возможным построить метод синтеза алгоритма оптимальных управляющих устройств.  [c.250]

В последнее время появились работы, в которых рассматривается сопряжение нескольких физических полей. В работах [9, 13, 20Ь—(1, 21, 22, 24, 29, 33, 35е— , 36, 45, 58а] рассмотрено совместное влияние температурного, магнитного и электрического полей и поля деформаций. В этом направлении получено много общих результатов определены основные уравнения магнитотермоупругости, сформулированы энергетические принципы, получены вариационное уравнение и теорема взаимности, рассмотре ны вопросы единственности решения уравнений, в некоторых задачах исследованы волновые процессы.  [c.244]

Теория оболочек, изложенная в монографии В. В. Новожилова (использованная и в настоящей книге), согласуется с вариационными энергетическими -принципами и теоремами взаимности, причем принятые в ней параметры допустимы в понимании В. Т. Койтера, но от уравнений, отнесенных к линиям главных кривизн, представленных в упомянутой монографии, не может быть осуществлен переход к уравнениям в тензорной ( юрме в общих координатах для произвольной оболочки. В частности, и в статико-геометрической аналогии в этой монографии должны иметься в виду не-тензбрные мембранные усилия и моменты.  [c.130]


Смотреть страницы где упоминается термин Общие теоремы и вариационные принципы : [c.2]    [c.585]    [c.289]    [c.7]    [c.350]    [c.370]    [c.224]   
Смотреть главы в:

Теория упругости  -> Общие теоремы и вариационные принципы

Теория упругости  -> Общие теоремы и вариационные принципы



ПОИСК



Вариационная теорема

Общие и частные вариационные принципы и теоремы Основы теории преобразования вариационных проблем Общие и частные вариационные принципы и теоремы

Общие принципы

Общие теоремы

Отдел пятый ОБЩИЕ ПРИНЦИПЫ, ЗАКОНЫ, ТЕОРЕМЫ, МЕТОДЫ СТАТИКИ ДЕФОРМИРУЕМЫХ СИСТЕМ Вариационные принципы и энергетические теоремы статической проблемы упругости

Принцип вариационный

Ряд вариационный



© 2025 Mash-xxl.info Реклама на сайте