Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интегрирование частных дифференциальных уравнений первого порядка

Интегрирование частных дифференциальных уравнений первого порядка  [c.156]

В обычно применяемых методах определение движения свободной точки в пространстве под влиянием ускоряющих сил состоит в интегрировании трех обыкновенных дифференциальных уравнений второго порядка, а определение движения системы свободных точек, взаимно притягивающихся или отталкивающихся, — в интегрировании системы подобных уравнений, число которых втрое больше числа притягивающихся или отталкивающихся точек, если только мы предварительно не уменьшим это последнее число на единицу, рассматривая только относительные движения. Таким образом, в солнечной системе, если мы рассматриваем только взаимные притяжения Солнца и десяти известных планет [ ], определение движений последних относительно первого при помощи обычных методов сводится к интегрированию системы тридцати обыкновенных дифференциальных уравнений второго порядка, связывающих координаты и время, или же, при помощи преобразования Лагранжа, — к интегрированию системы шестидесяти обыкновенных дифференциальных уравнений первого порядка, связывающих время и эллиптические элементы. При помощи этих интегрирований тридцать переменных координат или шестьдесят переменных элементов могут быть найдены, как функции времени. В методе, предложенном в данной работе, задача сводится к отысканию и дифференцированию единственной функции, которая удовлетворяет двум уравнениям в частных производных первого порядка и второй степени подобным же образом всякая другая динамическая задача, относящаяся к движениям (как бы многочисленны они не были) любой системы притягивающихся или отталкивающихся точек (даже если мы предполагаем, что эти точки ограничены какими-либо условиями связи, совместными с законом живой силы), сводится к изучению одной центральной функции, форма которой определяет и характеризует свойства движущейся системы и определяется двумя дифференциальными уравнениями в частных производных первого порядка в сочетании с некоторыми простыми соображениями. Таким образом, по крайней мере интегрирование многих уравнений одного класса заменяется интегрированием двух уравнений другого класса, и даже если считать, что этим не достигается никакого практического облегчения, тем не менее можно получить некое интеллектуальное наслаждение от сведения, пожалуй, самого сложного из всех исследований.  [c.176]


Это замкнутая система трех дифференциальных уравнений первого порядка, приведенная к нормальному виду, т. е. разрешенная относительно входящих в нее производных. Непосредственное или последовательное интегрирование уравнений системы (38) невозможно, так как коэффициенты В2 и Вз, входящие в каждое из уравнений, зависят от всех трех параметров соь 2, Q- Применение других аналитических методов (например, метода исключения) для нахождения общего решения этой системы связано с определенными трудностями. Даже методы, основанные на частных особенно-  [c.31]

Одномерные и квазиодномерные задачи механики описываются системами обыкновенных диф ренциальных уравнений. К одномерным можно отнести задачи о деформировании стержней, балок, а также круглых пластин и оболочек вращения при осесимметричном нагружении. В ряде случаев для трехмерных и двумерных задач теории упругости можно применить метод разделения переменных и решать задачу в рядах Фурье или методом Канторовича. Задачи, для которых тем или иным способом возможно приближенно перейти от уравнений в частных производных к обыкновенным уравнениям, называются квазиодномерными. Для расчетов на ЭВМ наиболее удобной формой представления разрешающих дифференциальных уравнений является система дифференциальных уравнений первого порядка, или каноническая система. Для таких систем разработаны стандартные программы интегрирования, а также различные вычислительные приемы, обеспечивающие достаточную точность решения краевых задач [20, 33].  [c.85]

Мы Пришли К линейному неоднородному дифференциальному уравнению первого порядка с аргументом 2 и неизвестной функцией v для его интегрирования имеется готовая формула ). В том частном случае, когда (11 = 1.12, т. е. обе цепи одинаковы, получим из (6.13)  [c.136]

Ключом к решению одного уравнения первого порядка, как показано в гл. 2, служит использование семейства характеристик в (ж, )-плоскости вдоль каждой характеристики уравнение в частных производных сводится к обыкновенному дифференциальному уравнению. В некоторых случаях затем удается найти решение в аналитическом виде. Но в худшем случае уравнение в частных производных сводится к системе обыкновенных дифференциальных уравнений с последующим пошаговым численным интегрированием. В любом варианте решение можно построить последовательным локальным рассмотрением малых областей не обязательно вычислять сразу все решение в целом. Это, конечно, соответствует основным идеям волнового движения за любой малый интервал времени на поведение в выбранной точке могут оказать влияние только те точки, которые расположены настолько близко, что волны от них успевают дойти вовремя. Поставим следующий вопрос возможны ли такие локальные вычисления для системы (5.1) Если они возможны, то система является гиперболической и можно сформулировать соответствующее точное определение.  [c.116]


Интегрирование дифференциальных уравнений в частных производных первого порядка вида  [c.156]

Таким образом, вопрос об интегрировании системы канонических уравнений динамики приведен к интегрированию дифференциального уравнения (11.350) в частных производных первого порядка. Дифференциальное уравнение (11.350) далее будем называть уравнением Остроградского — Гамильтона — Якоби )  [c.356]

Чтобы найти общее решение системы канонических, уравнений динамики, достаточно найти функцию V как полный интеграл дифференциального уравнения с частными производными первого порядка уравнения Остроградского — Гамильтона — Якоби) и продифференцировать этот интеграл по обобщенным координатам и постоянным интегрирования а . Приравнивая частные производные от V по обобщенным координатам обобщенным импульсам р , получим первую группу интегралов канонической системы, а приравнивая постоянным интегрирования производные от V по а , найдем вторую группу интегралов.  [c.358]

Найден полный интеграл дифференциального уравнения с частными производными первого порядка. В него входят постоянные интегрирования а, р, Л и аддитивная постоянная С.  [c.376]

Гамильтон показал, что если известен общий интеграл уравнений движения, представленных в канонической форме, то из него можно вывести полный интеграл этого уравнения с частными производными. Якоби дополнил эту теорему, доказав, что, обратно, если известен какой-нибудь полный интеграл этого уравнения с частными производными, то из него можно получить общий интеграл уравнений, движения. Как мы только что говорили, это уравнение с частными производными, которое мы будем называть уравнением Як оби. подобрано таким образом, что уравнения движения (6) являются для него дифференциальными уравнениями характеристик согласно известному методу интегрирования уравнений с частными производными первого порядка. Мы не будем, однако, пользоваться этим методом.  [c.473]

Воспользуемся уравнением (1), чтобы показать возможность приведения дифференциальных уравнений движения к одному дифференциальному уравнению в частных производных первого порядка. Как показал Гамильтон, вариацию (1) можно разложить с помощью интегрирования по частям на две части так, что одна из них стоит вне, а другая под знаком интеграла и каждая сама по себе должна исчезать. Таким образом, выражение, стоящее под знаком интеграла, будучи приравнено нулю, дает дифференциальные уравнения задачи, а выражение вне знака интеграла дает их интегральные уравнения.  [c.308]

Открытие Гамильтона, согласно которому интегрирование дифференциальных уравнений динамики стоит в связи с интегрированием некоторого уравнения в частных производных первого порядка, основывалось на выводе результатов геометрической оптики, известных в корпускулярной теории, с точки зрения волновой теории, что имело большое значение в развитии физики своего времени. Теория Гамильтона интегрирования дифференциальных уравнений динамики есть прежде всего не что иное, как всеобщая аналитическая формулировка хорощо известного в физической форме соотнощения между световым лучом и световой волной. В силу изложенного здесь исходного положения делается понятной и та ненужно частная форма, в которой Гамильтон опубликовал свою теорию и из которой исходил Якоби. Гамильтон первоначально исходил в своих исследованиях систем лучей из практических запросов оптического приборостроения. В силу этого он рассматривал только такие световые волны, которые выходят из отдельных точек. Обобщение Якоби, вытекавшее отсюда, состояло в том, что для определения луча должны точно так же применяться и другие произвольные световые волны. Как известно, в оптике посредством так называемого принципа Гюйгенса из специальных волн строят общие  [c.513]


ПРИМЕНЕНИЕ ПРЕДШЕСТВУЮЩЕГО ИССЛЕДОВАНИЯ К ИНТЕГРИРОВАНИЮ УРАВНЕНИЙ Б ЧАСТНЫХ ПРОИЗВОДНЫХ ПЕРВОГО ПОРЯДКА И В ЧАСТНОСТИ К СЛУЧАЮ МЕХАНИЧЕСКИХ ЗАДАЧ. ТЕОРЕМА О ТРЕТЬЕМ ИНТЕГРАЛЕ, ВЫВОДИМОМ ИЗ ДВУХ ДАННЫХ ИНТЕГРАЛОВ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ДИНАМИКИ.  [c.237]

В теории дифференциальных уравнений в частных производных первого порядка [Л. 107] показывается, что задача отыскания поверхностей v(x, у), т. е. интегрирование уравнения (6-38), эквивалентно нахождению векторных поверхностей векторного поля  [c.253]

Для численного интегрирования полученной системы уравнений разобьем выделенный объем среды точками г = г,- (t = l, 2,. ... .п) пап материальных частиц значения всех искомых функций будем определять в точках г = г, (t = l, 2,. .., п). Тогда четыре последних дифференциальных уравнения в частных производных по времени от переменных ссг, а, w, рг перейдут в 4п обыкновенных дифференциальных уравнения но времени, для численного интегрирования которых удобно использовать модифицированный метод Эйлера — Коши. Для определения значений давления Pi в точках f = r, в каждый фиксированный момент времени необходимо решать линейную (для pi ) краевую задачу для первого дифференциального (по г) уравнения второго порядка с краевыми условиями (6.7.17).  [c.85]

При применении метода ВКБ могут встретиться значительно более трудные вопросы построения решения. Примером может служить случай, когда выполняется рекуррентная процедура (1) ж срединная поверхность оболочки содержит линию, где изменяется знак гауссовой кривизны. Впрочем, определенные функции Уо по линейному дифференциальному уравнению в частных производных первого порядка сводится к интегрированию системы обыкновенных уравнений, поэтому выяснение особых точек и характера решения около этих точек не должно представлять в каждом конкретном случае принципиальных затруднений. Вопросы же построения решения в духе метода ВКБ являются при наличии таких особых точек предметом исследования в современном математическом анализе даже в задачах, сводящихся к обыкновенным дифференциальным уравнениям.  [c.239]

Если поле скоростей удовлетворяет условиям динамической возможности движения, то давление и удельный объем определяются либо квадратурами, либо интегрированием системы линейных дифференциальных уравнений в частных производных первого порядка.  [c.187]

Н. Интегрирование уравнений в частных производных первого порядка. Пусть — контактное многообразие, — гиперповерхность в Контактная структура М определяет на Е некоторую геометрическую структуру, в частности — поле так называемых характеристических направлений. Анализ этой геометрической структуры позволяет свести интегрирование общих нелинейных уравнений с частными производными первого порядка к интегрированию системы обыкновенных дифференциальных уравнений.  [c.335]

Материал данного параграфа основывается на результатах работы [120]. Однако в ней изучается главным образом вопрос о том, как можно найти интегралы полной системы уравнений в частных производных первого порядка, если известна некоторая группа преобразований, допустимая этой системой. Задач считается положительно решенной, если в процессе нахождения интегралов используются либо алгебраические операции, либо операции по интегрированию систем обыкновенных дифференциальных уравнений более низкого порядка по сравнению с теми, которые получаются из исходной системы.  [c.265]

Свой труд он сопровождает изложением собственной теории интегрирования дифференциальных уравнений с частными производными первого порядка и решением задачи о колебаниях струны.  [c.245]

Основные работы В. Г. Имшенецкого охватывают вопросы интегрирования уравнений с частными производными первого и второго порядков, а также интегрирование линейных дифференциальных уравнений высших порядков с одним независимым переменным. Предложенный им метод отделения переменных для интегрирования уравнений с частными производными первого порядка имеет тем большее значение для аналитической механики, что доведение задачи до конца вне рамок применения этого метода является счастливой случайностью.  [c.346]

Наконец, Гамильтон связал свою каноническую систему дифференциальных уравнений первого порядка с соответствующим дифференциальным уравнением в частных производных, которому, как выяснилось, удовлетворяет его характеристическая функция Н. Получилась обширная теория. Она дала новую удобную форму уравнений движения, новый подход к проблеме их решения (интегрирования). Она вскрывала более полно и глубоко аналогии между механикой и оптикой, выявила новые возможности геометрической интерпретации, наконец, она вела к выявлению связи между волновыми и кориуску-  [c.208]

Показать, что задача о таутохроне для случая, когда существует силовая функция, приводится к интегрированию одного дифференциального уравнения с частными производными второй степени н первого порядка. (Кёниге, omptes rendus, 1 мая 189-3.)  [c.409]

Коши ( au hy) Огюстен Луи (1789 - 1857) — известный французский математик, один и.э основоположников теории аналитических функций. Окончил Политехническую школу (1807 г.), Школу дорог и мостов (1810 г.) в Париже. В 1810 1813 гг. работал инженером на постройке порта в Шербуре. С 1816 г. профессор Политехнической школы, Сорбонны, Колеж де Франс (1848 - 1857 гг.). Написал более 700 фундаментальных работ по теории функций, математическому анализу, математической физике. Создал теорию функцнй комп-лексного переменного. Заложил основы теории сходимости рядов. Ему принадлежит постановка одной из ос новных задач теории дифференциальных уравнений, метод интегрирования уравнений с частными произвол ными первого порядка. В теории упругости ввел понятие напряжения, расширил понятие деформации и ввел соотношения между компонентами тензора напряжений и тензора деформаций для изотропного тела. Исследовал задачи о деформации стержней, в частности задачу о кручении. В оптике развил математические основания теории Френеля и дисперсии.  [c.242]


Здесь естественно отметить, что хотя речь идет об определении для этого последнего уравнения только интеграла частного типа, однако этот метод с теоретической точки зрения не представляет собой шага вперед, так как он заменяет задачу, относящуюся к системе обыкновенных дифференциальных уравнений, более сложной с точки зрения анализа задачей, относящейся к уравнению с частными производными. Все же надо отметить, что метод Гамильтона—Якоби имеет большое значение, в частности, в приложениях к небесной механике, благодаря той форме, в которой получается общее решение канонической системц а с другой стороны, устанавливая совершенную эквивалентность между указанными выше задачами анализа, он дает возможность решить обратную задачу привести интегрирование какого-нибудь уравнения с частными производными первого порядка к интегрированию соответствующей канонической системы.  [c.297]

Гюнтер Н. М., Интегрирование уравнений в частных производных первого порядка, 1934 г. Имшенецкий В. Г., Интегрирование дифференциальных уравнений с частными производными первого и второго порядков, 1916 г. Прим. ред.)  [c.311]

Метод разделения переменных при интегрировании дифференциальных уравнений с частными производными первого порядка в более общем виде, чем это указано в тексте, разработан Имшенецким В. Г. и изложен в его сочинении Интегрирование дифференциальных уравнений с частными производными первого и второго порядков", Москва, 19J6. Впервые напечатано в 1865 г. в. Ученых записках Казанского университета".  [c.346]

Эта связь между дифференциальными уравнениями динамики и дифференциальными уравнениями в частных производных относится к общей теории дифференциальных уравнений в частных производных первого порядка, где она и была открыта Коши в 1819 г. задолго до Якоби. После того как Якоби самостоятельно подметил и изучил эту связь, он получил общую теорию интегрирования дифференциальных уравнений динамики. Метод состоит в том, что вместо непосредственного исследования основных уравнений динамики ищут достаточно общее решение гамильтоновых уравнений в частных производных, из которого интегрирование первых получается, так сказать, само сабой.  [c.826]

Можно сделать попытку обозреть основные этапы развития аналитической динамики до середины XIX в. Первым шагом явилось установление лагранжевой формы уравнений движения, затем лагранжева теория вариации произвольных постоянных, а также теория Пуассона. Следующим этапом явились во-первых, представление Гамильтоном интегральных уравнений посредством единственной характеристической функции, определяемой а posteriori посредством интегральных уравнений, предполагаемых известными, или посредством условия, что она одновременно удовлетворяет двум дифференциальным уравнениям в частных производных, и, во-вторых, установление канонических уравнений движения. Вслед за тем Якоби свел интегрирование дифференциальных уравнений к проблеме нахождения полного интеграла единственного уравнения в частных производных и дал общую теорию связи интегрирования систем обыкновенных дифференциальных уравнений и уравнения в частных производных первого порядка. Наконец, была разработана теория систем канонических интегралов.  [c.910]

Первые 6 лекций Якоби посвящает изложению основных принципов механики принципу сохранения движения центра тяжести системы, принципу живой силы, принципу площадей и принципу наименьшего действия. С 10-ой лекции Якоби развивает теорию множителя" систем обыкновенных дифференциальных уравнений, являющуюся обобщением теории эйлеров-ского интегрирующего множителя. Якоби показывает каким образом можно в целом ряде случаев построить с помощью последнего множителя" всю систему п независимых интегралов. Изложив подробно теорию этого множителя, Якоби затем применяет ее к решению ряда механических задач. С 19-ой лекции Якоби, исходя из вариационного принципа Гамильтона, излагает тот метод интегрирования уравнения с частными производными первого порядка, который известен под названием метода Якоби-Гамильтона". В следующих лекциях этот метод примендется к ряду задач, взятых главным образом из области небесной механики. В 26 лекции Якоби излагает теорию эллиптических координат и показывает их приложение к разысканию геодезических линий эллипсоида, к задаче построения карт, к выводу основной теоремы Абеля и проч. Наконец, последние лекции Якоби посвящены изложению его классических методов интегрирования нелинейных уравнений в частных производных первого порядка.  [c.4]

Если по приведенной общей теореме из двух интегралов найден третий, то из этого последнего и одного из прежних находится четвертый и т. д. пока не вернемся к одному из данных. Существуют интегралы, которые при этой операции исчерпывают всю систему интегральных уравнений, в то время как для других цикл замыкается раньше. Смысл этой основной теоремы, известной уже в течение 30 лет, был в супщости скрыт. Она была открыта Пуассоном и была также известна Лагранжу, который пользовался ею как вспомогательной теоремой во второй части Аналитической механики появившейся только после его смерти. ) Но этой теореме придавалось всегда совершенно иное значение она должна была только показывать, что в некотором разложении известные члены не зависят от времени, и увидеть в ней ее теперешнее значение было не так легко. В этой теореме заложен в то же время фундамент для интегрирования дифференциальных уравпетшн в частных производных первого порядка.  [c.8]

Уравнения (3.72), (3.76) и (3.84) образуют систему гиперболических дифференциальных уравнений в частных производных первого порядка с двумя независимыми переменными, которыми являются осевая координата х и время Решение этой системы находится путем интегрирования. Функцию можно проинтегрировать на некотором интервале, если она непрерывна на этом интервале. Метод характеристик позволяет проинтегрировать известные непрерывные функции, вид которых типичен для рассматриваемой системы уравнений. Поэтому метод характеристик представляет собой, по существу, строгую математическую процедуру замены квазилинейных неоднородных уравнений в частных производных системой общих дифференциальных уравнений, обычно называемых совместными уравнениями, которые справедливы и интегрируемы на поверхностях, называемых характеристиками или характеристическими поверхностями. Мы дали в какой-то степени упрощенное описание этой процедуры более строгое математическое описание можно найти в классической монографии Куранта и Фридрихса [50] или в содержательной работе Цукроу и Хофмана [41].  [c.340]

Пусть теперь известны как функции координат величины Требуется найти перемещения щ. Тогда на (1.3) можно смотреть как на систему шести дифференциальных уравнений в частных производных первого порядка для трех неизвестных функций гг,(ж) при заданных начальных условиях. Например, пусть в некоторой точке Мо с координатами ж заданы два вектора й° и <3°. Разумеется, задача интегрирования этой системы дифференциальных уравнений не всегда выполнима. Введем так называемые условия их интегрируемости. Рассмотрим сначала односвязную область и в ней точку Mq с координатами Пусть в этой точке известны перемещение и тензор поворота ujfj. Тогда перемещение в любой точке М можно выразить следующим образом  [c.10]


Полное изложение методов интегрирования уравнений в частных производных первого порядка можно найти в известной книге В. Г. Имшенецкого Интегрирование дифференциальных уравнений с частнывли производными первого и второго порядков . М., Моск. матем. об-во, 1916.  [c.20]

В 1 главы V была упомянута идея Гамильтона, заключающаяся в установлении родства между общим решением канонической системы дифференциальных уравнений и решением двух уравнений в частных производных первого порядка. Якоби, развивая эту глубокую идею Гамильтона, создал метод интегрирования канонической системы уравнений, показав, что если известно решение (именно, полный интеграл) одного уравнения в частных производных первого порядка, то общее решение канонической системы находится диффере1щированием полного интеграла по  [c.323]


Смотреть страницы где упоминается термин Интегрирование частных дифференциальных уравнений первого порядка : [c.31]    [c.26]    [c.219]    [c.767]    [c.830]    [c.4]    [c.142]    [c.9]   
Смотреть главы в:

Термодинамика для инженеров  -> Интегрирование частных дифференциальных уравнений первого порядка



ПОИСК



Дифференциальное уравнение первого порядка

Дифференциальные первого порядка

Интегрирование

Интегрирование дифференциальных

Интегрирование дифференциальных уравнений

Интегрирование уравнений

К п частный

Первое интегрирование

Порядок дифференциального уравнения

Уравнение первого порядка



© 2025 Mash-xxl.info Реклама на сайте