Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гам??л?.то??а Якоби уравнение принцип

Интегралы движения, преобразование Рауса, канонические уравнения Гамильтона, уравнения Якоби— Гамильтона, принцип Гамильтона — Остроградского  [c.372]

Углубленный курс классической механики долгое время считался обязательной частью учебных планов по физике. Однако в настоящее время целесообразность такого курса может показаться сомнительной, так как студентам старших курсов или аспирантам он не дает новых физических понятий, не вводит их непосредственно в современные физические исследования и не оказывает им заметной помощи при решении тех практических задач механики, с которыми им приходится встречаться в лабораторной практике. Но, несмотря на это, классическая механика все же остается неотъемлемой частью физического образования. При подготовке студентов, изучающих современную физику, она играет двоякую роль. Во-первых, в углубленном изложении она может быть использована при переходе к различным областям современной физики. Примером могут служить переменные действие— угол, нужные при построении старой квантовой механики, а также уравнение Гамильтона — Якоби и принцип наименьшего действия, обеспечивающие переход к волновой механике, или скобки Пуассона и канонические преобразования, которые весьма ценны при переходе к новейшей квантовой механике. Во-вторых, классическая механика позволяет студенту, не выходя за пределы понятий классической физики, изучить многие математические методы, необходимые в квантовой механике.  [c.7]


Резюме. При параметрическом задании движения время является дополнительной координатой, которая может принять участие в процессе варьирования. Импульс, соответствующий временной координате, является полной энергией, взятой с обратным знаком. Для склерономных систем время становится циклической координатой, а соответствующий импульс — константой. Это приводит к теореме сохранения энергии для консервативных систем. Исключение времени как циклической координаты позволяет сформулировать новый принцип, определяющий лишь путь механической системы, а не ее движение во времени. Это — принцип Якоби, аналогичный принципу Ферма в оптике. Этот же принцип может быть сформулирован как принцип наименьшего действия . В последнем случае интеграл по времени от удвоенной кинетической энергии минимизируется с дополнительным условием, что при движении и вдоль истинного, и вдоль проварьированного пути должна выполняться теорема о сохранении энергии. Если этот принцип рассматривать с помощью метода неопределенных множителей, то в качестве результирующих уравнений получаются уравнения движения Лагранжа.  [c.165]

А это ие что иное, как принцип Якоби (см. гл. V, п. 6), который снова оказался эквивалентным принципу наименьшего действия. Параллелизм между механическими и оптическими явлениями можно усмотреть уже из сравнения принципа Якоби с принципом Ферма, Принцип Якоби допускает оптическую интерпретацию, если консервативной механической системе поставить в соответствие оптическую среду с коэффициентом преломления, меняющимся пропорционально Ye— V. Эта аналогия может быть использована обеими науками. С одной стороны, канонические уравнения Гамиль-тона становятся применимыми в оптических задачах. С другой стороны, из оптики в область механики могут быть перенесены методы построения волновых фронтов Гюйгенса,  [c.311]

Из выражения, найденного Якоби для принципа наименьшего действия, видно, что если силовая функция и связи не зависят от времени, то и траектория определяется независимо от времени, что не очевидно в уравнениях Лагранжа, но ясно видно из рассмотрения канонических уравнений, которые показывают также, что если траектория известна, то время определяется квадратурой. В принципе наименьшего действия в форме Якоби рассматривается траектория изображающей точки, а не закон ее движения по этой траектории, так как время в этот принцип не входит ни в явном, ни в неявном виде. Поэтому из этого выражения принципа можно получить уравнения движения изображающей точки только введя какой-либо параметр.  [c.867]


ПРИНЦИП НАИМЕНЬШЕГО ДЕЙСТВИЯ В ФОРМЕ ЯКОБИ. УРАВНЕНИЯ ЯКОБИ  [c.152]

Мы установим сначала, какую форму принимает для таких систем интегральный инвариант Пуанкаре — Картана после этого рассмотрим, как записать для них систему уравнений, вид которой напоминает уравнения Лагранжа или уравнения Гамильтона, но порядок ниже (за счет использования интеграла энергии) далее выясним, как выглядят в этом случае вариационный принцип Гамильтона и уравнение Гамильтона — Якоби и какие возможности открываются для определения полного интеграла этого уравнения.  [c.326]

Принцип Гамильтона. Чтобы полнее выяснить свойства полного интеграла уравнения в частных производных Гамильтона — Якоби, следует рассмотреть функцию действия. Сначала выведем известный принцип Гамильтона из принципа Эйлера — Лагранжа (п. 8). Имеем  [c.315]

Интересной особенностью частного принципа относитель ности является вид уравнения Гамильтона — Якоби  [c.348]

КАНОНИЧЕСКИЕ УРАВНЕНИЯ. ТЕОРЕМЫ ЯКОБИ И ПУАССОНА. ПРИНЦИПЫ ГАМИЛЬТОНА, НАИМЕНЬШЕГО ДЕЙСТВИЯ И НАИМЕНЬШЕГО ПРИНУЖДЕНИЯ  [c.364]

Следовательно, принцип последнего множителя Якоби применим к каноническим уравнениям движения  [c.256]

Таков принцип наименьшего действия в той форме, которую ему дал Лагранж. Якоби значительно уточнил этот принцип, показав, что он приводит к дифференциальным уравнениям траекторий и позволяет определить их независимо от времени, в течение которого они описываются (п°431 и 432).  [c.322]

Принцип Якоби показывает, что если связи и силовая функция не зависят от времени, то и определение траектории выполняется независимо от времени. Это свойство, не представляющееся очевидным в уравнениях Лагранжа, обнаруживается при первом взгляде, когда уравнения написаны в канонической форме. Из канонических уравнений видно также, что если траектория известна, то t определяется квадратурой (п° 450),  [c.324]

Лекции дают достаточно глубокий фундамент для изучения специальной теории относительности, квантовой механики и других разделов теоретической физики. В них подробно освещаются вариационные принципы и интегральные инварианты механики, канонические преобразования и уравнение Гамильтона — Якоби.  [c.2]

Обобщенно-консервативные системы. Уравнения Уиттекера. Уравнения Якоби. Принцип наименьшего  [c.6]

Курс аналитической механики является фундаментом, на который опирается изучение таких разделов теоретической физики, как квантовая механика, специальная и общая теория относительности и др. Поэтому в книге подробно освещаются вариационные принципы и интегральные инварианты механики, канонические преобразования, уравнение Гамильтона — Якоби, системы с циклическими координатами (главы И, III, IV и VII). Следуя идеям А. Пуанкаре и Э. Картана, автор кладет в основу изложения материала интегральные инварианты механики, которые здесь являются не декоративным украшением теории, а ее рабочим аппаратом.  [c.9]

Книга представляет собой углубленный курс классической механики, написанный на современном уровне. Помимо краткого обзора элементарных принципов, в ней изложены вариационные принципы механики, задача двух тел, движение твердого тела, специальная теория относительности, уравнения Гамильтона, канонические преобразования, метод Гамильтона — Якоби, малые колебания и методы Лагранжа и Гамильтона для непрерывных систем и полей. Показывается связь между классическим развитием механики и его квантовым продолжением. Книга содержит большое число тщательно подобранных примеров и задач.  [c.2]

Полученное равенство имеет такую же форму, как равенство (7.40), относящееся к одной материальной точке. Принцип, выражаемый уравнением (7.44), часто называют принципом наименьшего действия в форме Якоби.  [c.258]


Таким образом, главная функция Гамильтона осуществляет переход к постоянным координатам р и постоянным импульсам а. Решая уравнение Гамильтона — Якоби, мы в то же время получаем решение рассматриваемой механической задачи. Говоря на математическом языке, мы установили соответствие между 2п каноническими уравнениями движения, которые являются обыкновенными дифференциальными уравнениями первого порядка, и уравнением Гамильтона — Якоби, которое является уравнением первого порядка в частных производных. Такое соответствие имеет место не только для уравнений Гамильтона известно, что каждому уравнению первого порядка в частных производных соответствует определенная система обыкновенных дифференциальных уравнений первого порядка. В данном случае эта связь между рассматриваемым уравнением в частных производных и соответствующими каноническими уравнениями может быть объяснена происхождением этих уравнений от общего вариационного принципа — модифицированного принципа Гамильтона.  [c.304]

Принцип минимизации, примененный к интегралу (5.6.12) с целью нахождения пути механической системы, называется принципом Якоби . Время не входит в его формулировку. Он определяет траекторию С-точки в пространстве конфигураций, а не движение во времени. Однако это последнее легко найти путем интегрирования уравнения  [c.162]

Введение. Принцип наименьшего действия и его обобщение, произведенное Гамильтоном, переводят задачу механики в область вариационного исчисления. Уравнения движения Лагранжа, вытекающие из стационарности некоторого определенного интеграла, являются основными дифференциальными уравнениями теоретической механики. И тем не менее мы еще не достигли конца пути. Функция Лагранжа квадратична по скоростям. Гамильтон обнаружил замечательное преобразование, делающее функцию Лагранжа линейной по скоростям при одновременном удвоении числа механических переменных. Это преобразование применимо не только к специальному виду функции Лагранжа, встречающемуся в механике. Преобразование Гамильтона сводит все лагранжевы задачи к особенно простой форме, названной Якоби канонической формой. Первоначальные п дифференциальных лагранжевых уравнений второго порядка заменяются при этом 2га дифференциальными уравнениями первого порядка, так называемыми каноническими уравнениями , которые замечательны своей простой и симметричной структурой. Открытие этих дифференциальных уравнений ознаменовало собой начало новой эры в развитии теоретической механики.  [c.190]

Уравнение (7.35 ) является уравнением в частных производных первого порядка оно называется уравнением Гамильтона — ЯК Оби. Это уравнение может быть записано в явном виде для любой частной задачи, так как соответствующая функция Гамильтона будет для этой задачи известной функцией от q , и t. Решение уравнения Гамильтона—Якоби представляет известные трудности, но в принципе предполагается возможным. Далее мы ограничим наше исследование лишь разъяснением общего хода решения.  [c.96]

Принцип Мопертюи-Лагранжа. При заданной константе энергии h уравнения движения консервативной или обобщенно консервативной системы могут быть записаны в форме уравнений Якоби (см. уравнения (36) п. 152). Эти уравнения имеют форму уравнений Лагранжа второго рода, где в качестве функции Лагранжа L выступает функция Якоби Р, а роль независимой переменной играет обобщенная координата qi. По аналогии с действием S по Гамильтону введем действие по Лагранжу  [c.483]

Открытие Гамильтона, согласно которому интегрирование дифференциальных уравнений динамики стоит в связи с интегрированием некоторого уравнения в частных производных первого порядка, основывалось на выводе результатов геометрической оптики, известных в корпускулярной теории, с точки зрения волновой теории, что имело большое значение в развитии физики своего времени. Теория Гамильтона интегрирования дифференциальных уравнений динамики есть прежде всего не что иное, как всеобщая аналитическая формулировка хорощо известного в физической форме соотнощения между световым лучом и световой волной. В силу изложенного здесь исходного положения делается понятной и та ненужно частная форма, в которой Гамильтон опубликовал свою теорию и из которой исходил Якоби. Гамильтон первоначально исходил в своих исследованиях систем лучей из практических запросов оптического приборостроения. В силу этого он рассматривал только такие световые волны, которые выходят из отдельных точек. Обобщение Якоби, вытекавшее отсюда, состояло в том, что для определения луча должны точно так же применяться и другие произвольные световые волны. Как известно, в оптике посредством так называемого принципа Гюйгенса из специальных волн строят общие  [c.513]

Заметим, что из выражения, найденного Якоби для принципа наименьшего действия, видно, что если силовая функция и связи не зависят от вре-.мени, то и определение траектории выполняется независимо от времени, что не представляется очевидным в уравнениях Лагранжа, но непосредственно ясно из рассмотрения ка[юнических уравнений, которые показывают  [c.875]

Разделение мехапич. систем на голономные и неголо-номные весьма существенно, так как к Г. с. применимы многие сравнительно простые ур-ния механики и общие принципы, к-рые не справедливы для неголопом-ных систем. Движение Г. с. может изучаться с помощью Лагранжа уравнений механики, Гамильтона уравнений, Гамильтона — Якоби уравнения, а также с помощью наименьшего действия принципа В форме Гамильтона — Остроградского или Мопертюи — Лагранжа. К Г, с. приложимы также все те общие теоремы механики и дифференциальные вариационные принципы механики, К-рые справедливы и для неголономных систем.  [c.515]


Описание движения С. с с. п. обычно основывается на ур-ниях, связывающих обобщённые координаты и обобщённые импульсы (в т. ч. поля, токи, напряжения) входящих Ь неё объектов. Порядок этих ур-ний определяется числом степеней свободы С, с с. и. Так, плоское движение маятника а иоле тяжести или изменения тока в Г, С, Д-контуре описывается дифференц. ур-ниями 2-го порядка и соответствует С. с с. п. с одной степенью свободы. Ур-ния движения консервативных (сохраняющих энергию) С. с с, п. могут быть получены из вари-ац. принципа (см. Наименьшего действия принцип). При этом различаются три оси. типа эквивалевтных описаний движения С. с с. п. через Лагранжа ф-цию, содержащую обобщённые координаты и скорости, через Гамильтона ф-цию, содержащую обобщённые импульсы и координаты, и через ф-цию действия (см, Гамильтона — Якоби уравнение), выраженную через обобщённые координаты и их производные. В первых двух случаях в ур-ния входят полные производные по времени, в последнем случав — частные производные.  [c.535]

Основное в динамике Гамильтона— Якоби— вариационный принцип, связанный с оптико-механической аналогией, теория интегрирования канонических уравнений Гамильтона и уравнение в частвсых производных Гамильтона — Якоби в связи с касательным преобразованием. Внутренний смысл всей этой математической схемы заключен в ее связи с принципом Гюйгенса, в возможности представлять механическое движение не только в виде перемещения тела (системы точек), но и в виде развертывания касательного преобразования поверхностей равного действия, в глубокой связи траектории луча с некоторой поверхностью (волновой или действия ), выражающей взаимосвязанность корпускулярного и волнового аспектов движения в механике и физике.  [c.216]

М. тесно связана со многими др. разделами физики. Ряд понятий и методов М. при соотвотствукщих обобщениях находит приложение в оптике, статистич. физике, квантовой М., электродинамике, теории относительности и др. (см., напр., Действие, Канонические уравнения механики, Лагранжа функци.ч, Лагранжа уравнения механики, Гамильтона — Якоби уравнения, Наименьшего действия принцип). Кроме того, при решении ряда задач газовой динамики, теории взрыва, теплообмена в движущихся жидкостях и газах, динамики сильно разреженной среды (см. Супераэродинамика), магнитной гидродинамики и т. д. одновременно используются методы и ур-ния как теоретич. М., так и соответственно термодинамики, молекулярной физики, теории электричества и др.  [c.210]

Вариационный принцип Мопертюи — Лагранжа. Рассмотрим теперь координатное пространство q и будем считать, что ось в этом пространстве играет такую же роль, какую в общем случае в расширенном координатном пространстве играла ось времени. В этом пространстве выберем дне точки и проведем между ними прямой путь, соответствующий уравнениям Якоби для рассматриваемой консервативной (обобщенно консервативной) системы. На этом пути /y = /i = onst. Проведем между этнми же точками однопараметрический пучок окольных путей, расположенных в изоэнергетическом подпространстве , т. е. таких, что вдоль них тоже Я = Л. В качестве функционала на этом пучке возьмем интеграл  [c.330]

В книге дано систематическ(1е и достаточно доступное изложение O HOD аналитической механики В нее включены разделы уравнения Лагранжа, уравнения Гамильтона, теория Якоби, неголономные системы, вариационные принципы и теория возмущений. Приводятся многочисленные примеры, иллюстрирующие применение рассматриваемых методов.  [c.2]

Как инструмент для изучения произвольных голономных систем материальных точек получены уравнения Лагранжа второго рода и канонические уравнения Гамильтона [66]. Дается понятие о лагран-жевом формализме [1, 36]. Изучается поведение полной энергии системы в зависимости от структуры обобщенных сил и кинетической энергии. Дается метод циклических координат [5, 58]. Устанавливается, что для голономных систем интегргипы количества движения, кинетического момента и обобщенный интегргия энергии Якоби [70] всегда могут быть представлены как следствие существования соответствующих циклических координат. Указывается на возможность использования аппарата теории групп для поиска интегралов движения [5]. Изложение вариационных принципов Гамильтона и Мопертюи-Лагранжа-Якоби [17, 38, 70] выполнено в соответствии с современной теорией оптимальных процессов [2, 5, 13]. Геометрически наглядная трактовка придана теории малых колеба-  [c.12]

Выдающиеся результаты в области общих принципов механики получили М. В. Остроградский, В. Гамильтон, К. Гаусс и Г. Герц. Теория интегрирования уравнений динамики была разработана В. Гамильтоном, М. В. Остроградским и К. Якоби, добившихся независимо друг от друга фундаментальных результатов в этой части механики. В общей теории движения систем материальных точек глубокие исследования провел С. А. Чаплыгин. С. А. Чаплыгину принадлежит особая система дифференциальных уравнений движения систем с неголономными связями. Теория движения систем с неголопомнымн связями является одним из сравнительно новых разделов теоретической механики. Эта теория непосредственно связана с современными исследованиями свойств так называемых неголопомиых пространств, обобщающих в известном смысле пространства Лобачевского и Ри.мапа.  [c.38]

Чтобы вывести принцип Якоби, достаточно повторить до-казательство, уже данное в п° 432, т. е. показать, что исключение времени из уравнений Лагранжа  [c.323]

Следует подчеркнуть, что в принципе наименьшего действия в форме Якоби рассматривается траектория изображающей точки, а не закон ее движения по этой траектории. Это видно из того, что уравнение (7.44) содержит элемент траектории dp и не содержит времени /, так как Н = onst, а V зависит только от Qi. Поэтому из принципа наименьшего действия в форме Якоби можно получить дифференциальные уравнения траектории изображающей точки. Это лучше всего сделать посредством введения какого-либо параметра, например расстояния вдоль траектории. Тогда уравнение (7.44) можно будет записать в виде  [c.259]

Резюме. Механические траектории консервативных систем могут быть получены из частного решения уравнения в частных производных Гамильтона — Якоби с помощью построения ортогональных траекторий к поверхностям S = onst. Это построение аналогично построению волнового фронта и световых лучей в геометрической оптике. Поверхности равного времени в оптике соответствуют поверхностям равного действия в механике, а принцип наименьшего времени Ферма — принципу наименьшего действия или принципу Якоби. И оптические и механические явления могут быть описаны как с помощью волн, так и с помощью частиц. При описании с помощью волн мы оперируем с бесконечным семейством поверхностей, которое определяется уравнением в частных производных Гамильтона. При описании же с помощью частиц мы оперируем с ортогональными траекториями к этим поверхностям, и они определяются принципами. Ферма и Якоби. Аналогия распространяется только на траектории механических частиц, не касаясь того, как движение происходит во времени. Кроме того, ири этой аналогии среди всех возможных механических траекторий выделяются те, по которым движение начинается перпендикулярно к заданной поверхности.  [c.314]



Смотреть страницы где упоминается термин Гам??л?.то??а Якоби уравнение принцип : [c.24]    [c.580]    [c.9]    [c.232]    [c.460]    [c.20]    [c.161]    [c.260]    [c.84]    [c.483]    [c.548]   
Аналитическая динамика (1999) -- [ c.327 ]



ПОИСК



Гам??л?.то??а Якоби уравнение уравнению

Интегралы движения, преобразование Рауса, канонические уравнения Гамильтона, уравнения Якоби — Гамильтона, принцип Гамильтона — Остроградского

Канонические уравнения. Теоремы Якоби и Пуассона. Принципы Гамильтона, наименьшего действия и наименьшего принуждения

Принцип Якоби

Принцип наименьшего действия в форме Якоби Уравнения Якоби

Уравнения Якоби

Якоби

Якоби Якоби



© 2025 Mash-xxl.info Реклама на сайте