Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Классическая теория слоистых пластин

III. Сведение к классической теории слоистых пластин........49  [c.38]

Данное соотношение основано на классической теории слоистых пластин при условии отсутствия остаточных напряжений, вызван-  [c.240]

Варианты основных уравнений, относящиеся к данному направлению теории слоистых пластин и оболочек и установленные разными авторами, можно разделить на три группы. Первую составляют уравнения, выведенные преимущественно в ранних исследованиях по неклассической теории слоистых оболочек [8, 215, 253 и др. ]. Здесь уравнения равновесия пластин и оболочек устанавливаются без использования вариационных принципов по следующей схеме. При заданной кинематической гипотезе, позволяющей учесть поперечные сдвиговые деформации, удовлетворить кинематическим и силовым условиям межслоевого контакта и условиям на верхней и нижней граничных поверхностях оболочки, определяются традиционные усилия и моменты, которые и подставляются в уравнения равновесия либо классической теории [8, 215], либо теории, основанной на кинематической модели прямой линии [253 ]. Тем самым остается неустановленной система внутренних обобщенных усилий и моментов, соответствующая принятой геометрической модели. Математически это проявляется в заниженном порядке разрешающей системы дифференциальных уравнений, что не позволяет удовлетворить необходимому числу краевых условий и приводит к существенным погрешностям в определении напряженного состояния оболочки, особенно в зонах краевых закреплений.  [c.9]


Выражение (77) совпадает с выражением для эквивалентной нагрузки в классической теории устойчивости пластин. Можно, конечно, привести наглядные соображения о справедливости выражений (77) в теории слоистых пластин. Но эти соображения в лучшем случае будут обладать интуитивной убедительностью, основанной на опыте предыдущего рассмотрения аналогичных, но более простых задач. Вывод, основанный на вариационном принципе, приводит к уравнениям вполне строгим путем, причем все вводимые упрощения на, каждом этапе контролируются.  [c.60]

Типичная слоистая структура представляет собой совокупность связанных слоев с различной ориентацией и определенной схемой чередования. Основной и успешно используемой при анализе слоистых композиционных материалов является система гипотез Кирхгоффа, основанная на предположении, что сечения плоские до деформации остаются плоскими и после деформации. Таким образом, предполагается, что взаимный сдвиг между осями отсутствует. Математически описать упругие свойства слоистого материала с произвольной структурой можно с помощью методов теории армированных сред при известных свойствах каждого слоя. Для классической теории пластин упругие постоянные представлены в равенстве  [c.68]

Температурные напряжения в математической теории слоистых сред учитываются так же, как и в классических теориях пластин и оболочек. Сделаем некоторые замечания.  [c.76]

Внедрение композитов в тонкостенные несущие элементы конструкций и их широкое использование в разнообразных изделиях современной техники выявили необходимость учета новых факторов и поставили перед учеными и специалистами принципиально новые важные задачи механики как композитных материалов, так и конструкций на их основе. К таким факторам, в значительной степени определяющим несущую способность композитных оболочек, следует отнести резко выраженную анизотропию деформативных свойств армированного материала и его низкое сопротивление трансверсальным деформациям. Классическая теория оболочек пренебрегает такими деформациями, что потребовало отказа от традиционных расчетных схем и разработки уточненных математических моделей деформирования тонкостенных слоистых систем. Поэтому создание новых и развитие существующих уточненных методов расчета слоистых анизотропных пластин и оболочек, их апробация и определение границ применимости является важной и актуальной задачей.  [c.5]

В настоящей монографии сравнительному анализу результатов расчета слоистых оболочек и пластин на прочность и устойчивость уделяется значительное внимание. Результаты расчета напряженно-деформированного состояния и критических параметров устойчивости, определенные на основе установленных в параграфах 3.1—3.6 уравнений, сравниваются с результатами, полученными на основе уравнений классической теории, уравнений типа С.П. Тимошенко [43, 118, 121, 226, 265 и др. 1, уравнений, основанных на кинематической модели  [c.81]


Классическая теория анизотропных оболочек строилась на базе классической теории изотропных оболочек и теории анизотропных пластин. Впервые общая теория анизотропных слоистых оболочек на уровне классических предположений была изложена в работах  [c.217]

Обратимся теперь к наиболее популярной из используемых для расчета слоистых композитов теорий, а именно к классической теории слоистых пластин (КТП), разработанной Ставски [22] и Донгом с соавторами [5] и широко применяемой Эштоном и Уитни [1]. КТП представляет собой приближенную теорию,  [c.49]

Данная работа приводит к единой точке зрения различные имеющиеся в литературе решения, относящиеся к аналогичным, но более частным классам материалов. Она также поясняет те приближения, которые делаются в классической теории слоистых пластин. Наконец, вне весьма локализованных областей пограничного слоя при нагрузках, удовлетворяющих условиям = onst, ( аа) = onst, результаты данной работы позволяют вычислить во всех деталях поле напряжений в призматическом теле рассмотренного здесь вида.  [c.59]

Классическая теория слоистых пластин 49 Композиты (композиционные материалы) бороалюминиевые 231, 232, 234, 426 ---бороэпоксидные 27, 32. 34, 35, 163,  [c.554]

Первые расчеты напряжений композитных пластин проводились с использованием классической теории слоистых пластин (КТСП), в которой соотношения напряжения—деформации между эффективными величинами давались суммой с весами, пропорциональными концентрациям слоев  [c.419]

Рис. 4.45. Зависимость модуля упругости от отношения а/Ь, расстатавная по классической теории слоистых пластин [36] для слоистого композита AS-4/3502 с укладкой [ 30°/т 30°/90 ] . Инишшрующая трещина образована тефлоновым вкладышем. Рис. 4.45. Зависимость <a href="/info/487">модуля упругости</a> от отношения а/Ь, расстатавная по классической теории слоистых пластин [36] для слоистого композита AS-4/3502 с укладкой [ 30°/т 30°/90 ] . Инишшрующая трещина образована тефлоновым вкладышем.
Заманчивне возможности упрощенных формулировок и решений с давних пор побуждали исследователей, работающих в области механики конструкций, попытаться описать особенности трехмерного поведения пластин в рамках двумерной классической теории. Все более широкое использование слоистых композитов в авиационных конструкциях за последнее десятилетие стимулировало практический интерес к теориям пластин, в которых учитываются деформации поперечного сдвига, межслойные напряжения и влияние толщины. Ниже будет сделано несколько коротких замечаний о современных вариационных формулировках в этих задачах, чтобы проиллюстрировать мощь вариационных методов, открывающих новые пути построения теорий, которые учитывали бы указанные факторы.  [c.416]

Улучшения, вводимые рассмотрением в- рам ах теории упругости в -3.3, 3.4, 5.2—5.5, приводят, разумеется, к точным, или почти точным, значениям для деформаций и перемещений, а также и для напряжений. Однако эти методы, как правило, трудно или невозможно при енять к конструкциям типа ферм или конструкциям, изготовленным из слоистых материалов, но, во всяком случае, если главное внимание уделяется ошибкам при определении прогибов, то можно воспользоваться поправками к классической теории,-которые получаются гораздо более простым способом. Такие поправки основываются на прибавлении прогибов, обу словленных поперечными деформациями (главным образом деформациями поперечного сдвига), к прогибам, возникающим всййдствие изгиба и рассматртаемым в классических теориях. Такой тиц поправок впервые был использован С. П. Тимошенко для балок, а для пластин, по-видимому, автором ).  [c.378]

Центральное место в монографии занимает третья глава, в которой на основе единой кинематической гипотезы, позволяющей учесть поперечные сдвиговые деформации, удовлетворить условиям межслоевого контакта и условиям на граничных поверхностях, из принципа возможных перемещений получены нелинейные тензорные уравнения статики упругих анизотропных слоистых оболочек и сформулированы соответствующие им краевые условия. Указаны предельные переходы к уравнениям классической теории оболочек и ортотропной оболочки, предоставляющим возможность учета эффектов сдвига в одном направлении ортотропии (армирования) и неучета — в другом. Приведены упрощенные уравнения, пригодные для расчета пологих оболочек. Линеаризованные уравнения статической устойчивости слоистых оболочек, основанные на концепции Эйлера о разветвлении форм равновесия, сформулированы в параграфе 3.4, а в параграфе 3.5 из принципа виртуальных работ эластокинетики выведены нелинейные уравнения динамики. Здесь же приведены линеаризованные уравнения динамической устойчивости слоистых оболочек и пластин, обсуждены предельные переходы и упрощения, подобные тем, какие были сделаны в задаче статики. Параграф 3.5 посвящен формулировке неклассических уравнений многослойных оболочек в системе координат, связанной с линиями кривизн поверхности приведения. В этой же системе координат составлены уравнения, описывающие осесимметричную деформацию слоистой ортотропной оболочки вращения. В параграфе 3.7 описаны  [c.12]


Итак, переход от классической модели деформирования слоистых тонкостенных пластин к той или иной корректной уточненной модели сопровождается увеличением не только порядка системы дифференциальных уравнений, но и спектрального радиуса матрицы ее коэффициентов и, как следствие, появлением быстропеременных решений, имеющих ярко выраженный характер погранслоев и описывающих краевые эффекты напряженного состояния, связанные с учетом поперечных сдвигов и обжатия нормали. Такая ситуация характерна не только для балок или для длинных прямоугольных пластинок, изгибающихся по цилиндрической поверхности, но, как будет показано ниже, и для элементов конструкций других геометрических форм — цилиндрических панелей, оболочек вращения и др. Отметим, что стандратные методы их решения, которые согласно известной (см, [283 ]) классификации делятся на три основные группы (методы пристрелки, конечно-разностные методы, вариационные методы, метод колло-каций и др.), на этом классе задач малоэффективны. Так, группа методов пристрелки, включающая в себя, в частности, широко используемый и весьма эффективный в задачах классической теории оболочек метод дискретной ортого-нализации С.К. Годунова [97 ], на классе задач уточненной теории оболочек оказывается практически непригодной. Методами этой группы интегрирование краевой задачи сводится к интегрированию ряда задач Коши, формулируемых для той же системы уравнений. Для эллиптических дифференциальных уравнений теории оболочек такие задачи некорректны (см., например, [1]), что при их пошаговом интегрировании проявляется в форме неустойчивости вычислительного  [c.109]

Во-первых, общие уравнения нелинейной теории упругости используются для обоснованного вывода уравнений устойчивости для тонких и тонкостенных тел. Работы этого направления (В. В. Новожилов, 1940, 1948 В. В. Болотин, 1956, 1965 А. И. Лурье, 1966, и др.) уже обсуждались в 3. Во-вторых, решения задач, полученные на основе теории упругости, могут быть использованы для оценки точности и установления границ применения известных приближенных решений. К этому направлению относятся работы Л. С. Лейбензона (1917) и А. Ю. Ишлинского (1954). Заметим, что в этих работах в качестве уравнений для описания форм равновесия, смежных с невозмущенной формой, предлагалось использовать классические уравнения теории упругости внешние силы входили при этом только в возмущенные граничные условия. Этот подход обсуждался недавно А. Н. Гузем (1967). В-третьих, необходимость в привлечении уравнений теории упругости возникает в задачах об устойчивости пластин и оболочек, находящихся в контакте с упругим материалом пониженной жесткости. Применительно к слоистым пластинам с мягким наполнителем этот подход развивался А. П. Вороновичем (1948), В. Н. Москаленко (1964) и другими. Устойчивость цилиндрических оболочек с мягким упругим ядром рассматривалась А. П. Варваком (1966). Типичным для этих задач является применение теории пластин и оболочек к несущим слоям и трехмерной теории упругости — к заполнителю.  [c.346]

Основным структурным элементом такого включения является графитная пластина. Ее вид и выявляемое при ионной бомбардировке слоистое строение естественно связывать с гетеродесмичностью межатомных сил в графите. Значительная разница поверхностных энергий базисной и призменной граней кристалла графита должна приводить к анизотропии скорости роста граней. С позиций классической теории роста кристаллов преобладание продольного разрастания пластины (вдоль плоскости базиса) представляется закономерным, так как критическая величина двухмерного зародыша на базисной грани велика. Наличие же сильных ненасыщенных связей на призменных гранях позволяет предположить, что здесь критическая величина зародыша мала и даже возможен беззародышевый нормальный рост — путем последовательного присоединения атомов. До последнего времени обычно и принималось, что графитная пластина формируется путем послойного няпяста.ния гексагональных сеток, берущих начало от редко возникающих двухмерных зародышей.  [c.31]

Для установления дифференциальных уравнений равновесия воспользуемся принципом возможных перемещений [207]. Вариационные принципы открывают естественный путь для сведения трехмерных задач механики сплошных сред к двумерным задачам теории пластин и оболочек. Их использование позволяет установить систему обобщенных внутренних усилий, соответствующую независимым обобщенным кинематическим параметрам конечносдвиговой слоистой оболочечной системы и получить корректные уравнения ее равновесия. Вместе с ними устанавливаются кинематические и естественные граничные условия задачи. Дифференциальные уравнения и краевые условия получаются из вариационного принципа путем применения формальной математической процедуры, что важно, поскольку корректное использование формального аналитического метода позволяет избежать ошибочных формулировок, которые могли бы возникнуть при составлении уравнений равновесия и краевых условий методами элементарной статики. Анализ публикаций, посвященных неклассическим моделям деформирования многослойных оболочек, выявляет многочистенные примеры таких формулировок [8, 9, 215, 250, 253 и др.]. Укажем также и на известный [301 ] классический пример такого рода — условие Пуассона на свободном крае.  [c.47]

В этой главе рассмотрены вопросы численного интегрирования линейных и нелинейных краевых задач для систем обыкновенных дифференциальных уравнений, возникающих при исследовании прочности, устойчивости, свободных колебаний анизотропных слоистых композитных оболочек вращения после разделения угловой и меридиональной переменных. В предыдущих главах было показано, что корректный расчет таких оболочек и пластин в большинстве случаев требует привлечения неклассических дифференциальных уравнений повышенного порядка. Там же (см. параграфы 4.1, 4.4, 5.2, 6.2) отмечалась важная особенность таких уравнений — существование быстропеременных решений экспоненциального типа, имеющих ярко выраженный характер погранслоев и существенных лишь в малых окрестностях краевых закреплений, точек приложения сосредоточенных сил, мест резкого изменения геометрии конструкции и т.д. Стандартные схемы численного интегрирования краевых задач на таком классе дифференциальных уравнений малоэффективны — попытки их применения встречают принципиальные трудности, характер и формы проявления которых подробно обсуждались в параграфе 4.1 (см. также [136]). Добавим к этому замечание о закономерном характере данного явления — существование решений экспоненциального типа с чрезвычайно большим (по сравнению с длиной промежутка интегрирования) показателем изменяемости в неклассических математических моделях деформирования тонкостенных слоистых систем, дифференциальными уравнениями которых учитываются поперечные сдвиговые деформации, обжатие нормали и другие второстепенные" факторы, естественно и необходимо. Такие решения описывают краевые эффекты напряженного состояния, связанные с учетом этих факторов, и существуют не только у неклассических уравнений, установленных в настоящей монографии, но и в других вариантах неклассических уравнений повышенного порядка, что уже было показано (см. параграф 4.1) на конкретном примере. Болес того, подобные явления наблюдаются не только в теории оболочек, но и в других математических моделях механики и физики. Известным классическим примером такого рода может служить течение Навье—Стокса — при малой вязкости жидкости, как впервые было показано Л. Прандтлем (см., например, [330]), вблизи обтекаемого тела возникает зона пограничного слоя. Такие задачи согласно известной [56, 70 и др.] классификации относятся к классу сингулярно возмущенных, т.е. содержащих малый параметр и претерпевающих понижение порядка, если положить параметр равным нулю. Проблема сингулярных возмущений привлекала внимание многих авторов [56, 70, 173, 190 и др.]. Последние десятилетия отмечены значительными достижениями в ее разработке — в создании и обосновании методов асимптотического интегрирования для различных  [c.195]



Смотреть страницы где упоминается термин Классическая теория слоистых пластин : [c.16]    [c.51]    [c.244]    [c.198]    [c.243]    [c.248]   
Механика композиционных материалов Том 2 (1978) -- [ c.49 ]



ПОИСК



Газ классический

Пластины слоистые

Слоистых пластин теория

Теория классическая

Теория пластин



© 2025 Mash-xxl.info Реклама на сайте