Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства слоистых материалов

Физико-механические свойства слоистых материалов (гетинаксов, текстолитов, древесных пластиков) в основном определяются свойствами наполнителей (бумаги, ткани и шпона), содержанием и качеством связующего— смолы, а также содержанием влаги и летучих в пропитанных смолой исходных материалах.  [c.691]

Воспользуемся результатами, представленными в п. 5.1.7 для монослоя, и рассмотрим диссипативные свойства слоистых материалов.  [c.310]

Бумага используется в производстве 50% всего объема слоистых материалов, причем особенно часто — целлюлозная (крафт) бумага в сочетании с фенольной смолой. Более прочную бумагу для промышленного производства слоистых материалов получают из хлопчатобумажных отходов, а также с использованием стеклянных, асбестовых, вискозных и полиакрилонитрильных волокон. Основными достоинствами слоистых материалов на основе бумаги являются низкая стоимость, разнообразие форм и размеров изделий, гладкая поверхность и легко регулируемая толщина. К недостаткам материалов на основе таких наполнителей следует отнести более низкую чем у других слоистых материалов ударную прочность и стойкость к растрескиванию. Использование тканей позволяет ликвидировать эти недостатки, так как ткани изготавливают из более длинных волокон, чем бумагу. Чаще всего используют ткани на основе полиамидных, вискозных и стеклянных волокон. Изменением расположения нитей в тканях удается улучшить некоторые свойства слоистых материалов, однако при этом обычно уменьшается гомогенность наполнителя и материала и увеличивается их стоимость. Снижение стоимости достигается как правило использованием нетканых слоистых наполнителей и матов, образованных длинными целлюлозными, вискозными, стеклянными или синтетическими волокнами, соединенными специальным связующим. Таким путем можно получать слоистые материалы с повышенной ударной прочностью без использования дорогостоящего ткацкого производства. Однако маты, особенно  [c.30]


Механические свойства слоистых материалов коррозионно-стойкая сталь — алюминий, в которых сердцевиной служил алю-  [c.64]

Пластмассы с высокими механическими свойствами — слоистые материалы,  [c.181]

Пластмассы с высокими механическими свойствами слоистые материалы, изготовляемые на основе хлопчатобумажной ткани (текстолит), стеклоткани стеклянных матов и стекло-шпона (стеклотекстолит), асбестовой ткани (асботекстолит), древесного шпона (различные марки ДСП), бумаги (гетинакс). Из этих материалов изготовляют шестерни, подшипники скольжения и другие детали машин, лодки, кузовы автомашин, фюзеляжи. К этой же группе следует отнести волокнит, применяемый для изготовления лестниц эскалаторов метрополитена и других деталей, работающих на истирание, и пр.  [c.214]

Точность измерений амплитудно-фазовым методом может быть весьма высокой, но не выше предела, обусловленного относительной величиной разброса диэлектрических свойств материала слоя, выражаемой через отношение Дп2 2- Относительная погрешность измерения толщины для достаточно однородных диэлектриков составляет 1—3 %, или 50—100 мкм на длине волны 3 см и 20—30 мкм при 8 мм. Амплитудно-фазовый метод реализован в ряде приборов, например, СТ-21 И, СТ-21 ИМ, СТ-31 И, которые успешно применяют при контроле толщины теплозащитных, антикоррозионных и других покрытий и диэлектрических слоистых материалов (керамики, стекла и т. п.)  [c.225]

Типичная слоистая структура представляет собой совокупность связанных слоев с различной ориентацией и определенной схемой чередования. Основной и успешно используемой при анализе слоистых композиционных материалов является система гипотез Кирхгоффа, основанная на предположении, что сечения плоские до деформации остаются плоскими и после деформации. Таким образом, предполагается, что взаимный сдвиг между осями отсутствует. Математически описать упругие свойства слоистого материала с произвольной структурой можно с помощью методов теории армированных сред при известных свойствах каждого слоя. Для классической теории пластин упругие постоянные представлены в равенстве  [c.68]

Проектирование ферм из композиционных материалов таких, какие показаны, например, на рис. 1—4, осуществляется на основе методов, обычно используемых для расчета на прочность. Для того, чтобы определить жесткость, несущую способность или критическую нагрузку элемента фермы, изготовленного из композиционного материала, необходимо учитывать анизотропию и структуру материала [5, 64]. Коэффициенты местной устойчивости, прочность, собственные частоты и упругие постоянные материала определяются свойствами отдельных анизотропных слоев и характером их ориентации в слоистом материале. Эти вопросы и рассмотрены в настоящей главе. Отметим, что согласно принятому ранее определению фермы изгиб ее стержней из рассмотрения исключается.  [c.112]


Предельные кривые для некоторых распространенных композитов, построенные при помощи методов, рассмотренных в разд. 4.3, 4.4, н результаты экспериментальных исследований показаны на рис. 4.3—4.14. Приведенные примеры являются всего лишь иллюстрацией прогресса в области анализа прочностных свойств слоистых композитов. Многие из подходов предложены сравнительно недавно и еще не нашли широкого распространения среди исследователей. Дело в том, что часто финансовые соображения заставляют организации, использующие композиты, применять один, ставший привычным, критерий прочности, а не исследовать возмол<ности других критериев. Надежное предсказание предельных напрял<ений композитов невозможно без экспериментальной проверки критериев на большом количестве различных материалов в широком диапазоне условий плоского напряженного состояния. В настоящее время таких данных пока еще недостаточно.  [c.165]

Анализ усадочных напряжений можно осуществить на различных уровнях. Простейший подход основан на концепции однородного ортотропного слоя. Суть его состоит в том, что одиночный слой композита рассматривается как исходный материал, необходимые термоупругие свойства которого определяются экспериментально. Далее полученные характеристики используются в линейном термоупругом анализе для расчета термических деформаций и напряжений в каждом слое. Подобная процедура применяется для анализа термических напряжений в фанере или другом слоистом материале, составленном из листов разнородных материалов. Уравнения термоупругого анализа слоистых сред имеют вид [37]  [c.253]

Рассмотренный метод не отражает волокнистый многофазный характер композита. Любые изменения в свойствах составляющих композит материалов или в их процентном содержании приводят к необходимости повторного экспериментального определения всех термоупругих констант слоя. Анализ слоистых плит и результаты, полученные при его помощи, не обеспечивают глубокого понимания напряженного и деформированного состояния композита на уровне армирующих волокон или матрицы (т, е. на структурном уровне). В последующих разделах показано, что именно эта информация может иметь решающее значение при оценке механических свойств слоистого композита.  [c.255]

Известно, что особая роль в формировании важнейших физико-меха- нических характеристик слоистых композиций, изготовленных различными методами, принадлежит диффузионным процессам, развивающимся в зоне сопряжения слоев во время их технологического взаимодействия, термической обработки и в условиях эксплуатации при повышенных температурах. В биметаллических соединениях, изготовленных при оптимальных режимах сварки взрывом, наблюдается высокая прочность связи слоев и практически полное отсутствие диффузионной зоны в исходном состоянии. Это делает возможным соединение самых разнородных по свойствам металлических материалов и обеспечивает получение слоистых композиций, перспективных для использования в ряде отраслей новой техники.  [c.238]

Значительный интерес представляют доклады по свойствам композиционных материалов, являющихся перспективными для использования при низких температурах, так как в слоистых композициях тормозится распространение трещин.  [c.9]

Таблица 2. Изменение механических свойств слоистых композиционных материалов при охлаждении от 300 до 77 К , % Таблица 2. Изменение механических свойств слоистых композиционных материалов при охлаждении от 300 до 77 К , %
Большая часть широко используемых на практике композитов представляет собой слоистые материалы. Поэтому расчет слоистых материалов представляет собой первостепенную задачу. При выводе уравнения состояния следует обратить внимание на то, что в направлении слоев и в направлении, перпендикулярном слоям, свойства рассматриваемого материала являются различными. Принимая это во внимание, рассмотрим два слоистых материала материал, армированный тканью, и материал, армированный слоями хаотически расположенных волокон.  [c.64]

Характерным свойством слоистых пластиков является анизотропия их механических свойств. Это означает, что изделия из таких пластмасс должны нагружаться главным образом в направлении их максимальной прочности. Нужно учитывать, что слоистые пластики стоят намного дороже традиционных конструкционных материалов, и поэтому необходимо в максимальной степени использовать их возможности. При создании изделий из армированных пластиков надо по возможности избегать нагружения изделий в направлении, перпендикулярно слоям, или же на сдвиг силами, действующими в плоскости слоев (рис. 27, б).  [c.101]


Эти формулы справедливы П )и одинаковых разрывных удлинениях связующего и волокна. Если разрывные удлинения их разные, то в формулы (10)—(12) надо ставить значения о и соответствующие разрывному удлинению готового материала Слоистые материалы обладают существенной анизотропией свойств Упругие свойства таких материалов определяются четырьмя  [c.316]

Свойства этих материалов зависят от вида используемых волокон, их относительного объема, ориентацгш в слоях, материала х трицы и схемы нагружения. По существу, проще обеспечить свойства слоистых материалов в соответствии с конструкцией, нежели создавать конструкцию, исходя из свойств материалов, как бывает при использовании стандартных конструкционных металлов.  [c.79]

В каждом случае наряду с механичес1шми и физическими свойствами слоистых материалов большую роль играет их технологичность, которая включает все характеристики, обеспечивающие возможность придания слоистому изделию нужной конечной формы и состояния, включая способность к гибке, деформации и соединения с аналогичным материалом и разнородными метал-дамй,  [c.80]

Фпаико-механические свойства слоистых материалов приведены в табл. 37.  [c.145]

Высокие жесткость и прочность армирующих волокон, составляющие основу прочности и жесткости композиционных материалов, реализуются лишь в случае их определенного расположения по отношению к действующему полю напряжений (действующей нагрузке). Вследствие большого разнообразия нагрузок применяются различные схемы укладки арматуры. Варьируя направлением укладки слоев, можно получить слоистые материалы с различной ориентацией армирующих волокон, обладающие в плоскости укладки изотропными и анизотропными свойствами. Именно в возможности придания материалу оптимальной для каждого частного случая анизотропии заключается главное преимущество волокнистых композиционных материалов [44]. В зависимости от ориентации армирующих волокон в плоскости укладки слоистые структуры можно подразделить на следующие основные группы однонаправленные, ортогонально-армированные с переменным углом укладки волокон по толщине, перекрестно-армированные и хаотически-армированные.  [c.5]

Двукратное увеличение межслой-нон прочности при сдвиге эпоксифе-нольных углепластиков достигается травлением углеродных волокон концентрированном азотной кислотой в течение 30 мин [20]. Прочность при растяжении в трансверсальном направлении углепластиков вследствие обработки волокон в азотной кислоте возрастает в 1.6 раза. Некоторое улучшение этих характеристик в слоистых стеклопластиках достигается также за счет пспольчЗования волокон некруглого поперечного сечения — эллипсоидных, ромбовидных, треугольных и др. Изменение формы углеродных волокон не оказывает заметного влияния на механические свойства углепластиков. Указанный метод приводит лишь к некоторому улучшению трансверсальных и сдвиговых свойств композиционных материалов, но не решает проблемы. Вследствие слоистой структуры в материале сохраняются плоскости, через которые напряжения передаются низкомодульным и низкопрочным связующим, что не исключает опасности преждевременного их разрушения. Особенно это относится к материалам, воспринимающим в конструкциях сдвиговую и трансверсальную нагрузку в условиях повышенных температур.  [c.9]

Экспериментальные данные свидетельствуют о том, что при растяжении слоистых материалов с относительно невысокой степенью анизотропии упругих свойств, присущей ортогонально-армированным материалам, характер распределения деформаций по длине и толщине образца мало зависит от его формы (параметра /П1). Так, для стеклопластика. Г-4С с укладкой волокон 5 1 при нагружении в направлении большей степени ориентации волокон изменение значений Щ] в 1,7 раза практически не сказывается на относительном изменении деформаций нижней и верхней поверхностей ("П = +1) рабочей части образца. Относительные показатели деформаций при т) = о образцов-лопаток незначительно выше, чем образцов-полосок. Примерно то же наблюдается в случае испытаний ортогонально-армированных углепластиков. Увеличение степени анизотропии упругих свойств способствует повышению чувствительности относительных деформаций к изменению формы образца. Это хорошо иллюстрируют данные, полученные при растяжении образцов из однонаправленных углепластиков в направлении волокон.  [c.33]

Следует также обобщить и расширить сведения о свойствах слоистых систем, армированных волокнами из различных материалов,— так называемых гибриЗяма композиционных материалов. По мере того как материаловеды разрабатывают новые материалы с улучшенными свойствами, которые могут или уже применяются в комбинации с существующими (например, высокопрочные стальные и углеродные волокна, комбинации стекловолокон и углеродных волокон и т. д.),- постоянно возникают новые проблемы микро- и макромеханики, которые должны эффективно решаться для того, чтобы эти материалы нашли применение и заняли свое место в ряду композиционных материалов.  [c.106]

В данном томе излагаются методы определения характеристик материала по характеристикам его компонентов (теория эффективных модулей), анализируется линейно упругое, вязкоупругое и упругопластическое поведение композ1Щионных материалов, рассматриваются конечные деформации идеальных волокнистых композитов, описывается применение статистических теорий для определения свойств неоднородных материалов. Далее приводятся решения задач о колебаниях в слоистых композитах и о распространении в них воли, критерии разрушения анизотропных сред, описание исследования композиционных материалов методом фотоупругости.  [c.4]

Глава 1 служит введением к тому. В ней рассматриваются основные понятия микромеханики, дается определение эффективных модулей и изучается влияние количества волокон в толще одного слоя на эффективные свойства слоистого композита. В главе 2 Н. Дж. Пагано выводит точные выражения для эффективных модулей слоистых материалов. Далее он обсуждает переход от точных результатов к теории слоистых пластин и явление пограничного слоя у свободных поверхностей. Глава 3 представляет собой обзор различных подходов к вычислению эффективных упругих модулей композиционных материалов. Вязкоупругое поведение композитов обсуждается в главе 4. Кроме того, эта глава служит введением в теорию вязкоупругости.  [c.11]


Для определения влияния влаги на стекло и связь между ним и аппретом Воган и Макферсон [50] выдерживали термообработанную и аппретированную силаном стеклоткань в течение 12 недель в атмосфере с относительной влажностью 95% при 38°С. Установлено, что после такой выдержки свойства эпоксидных слоистых материалов, армированных данными тканями, несколько ухудшаются. Ряд эпоксидных препрегов, изготовленных на одинаковой стеклоткани, но различно обработанных, выдержива-  [c.27]

На рис. 16, б приведен подобный график, иллюстрирующий свойства при растяжении и сжатии полиимидного боропластика [1]. Многие критические свойства ориентированных слоистых материалов рассмотрены Дюксом [2]. Теоретические разработки аналитических методов даны в работах Цая и соавторов [21, 22] и других источниках.  [c.60]

Сравнение жталлических и полимерных матриц. Сравнительные характеристики металлических и полимерных матриц приведены в табл. 5 и 6 [8]. В целом полимерные матрицы обеспечивают для слоистых материалов более высокие удельные свойства при растяншнии и изгибе, они более изучены на данном этапе, сырье и производство их более дешево, они более технологичны, ремонто-способны и более эффективны в качестве теплоизоляции.  [c.91]

Распределение слоев. Наиболее эффективны композиционные конструкции с однонаправленными нагрузками, что позволяет максимально использовать свойства волокон, поэтому конструктор зачастую привязывает композиционную конструкцию к осям, вдоль которых направлены усилия. Например, конструкция из композиционных материалов типа фермы, нагруженной усилиями, действующими вдоль стержней, может оказаться более эффективной, чем оболочка, обычно применяемая в конструкциях из металла. Впрочем иногда бывает невозможно выделить геометрически простые направления действия нагрузок, и слоистые материалы прих чится армировать в нескольких направлениях.  [c.97]

Сердцевина из полистироловой пены в слоистом материале с обшивкой из стеклопластика используется в стандартных контейнерах, разрабатываемых фирмой Dow hemi al ompany, показанных на рис. 10 и обсуждавшихся Расселом и Мэйки [10]. Кроме стеклопластика, компанией исследовалось также эффективность других покрытий — алюминия и стали. Масса такого контейнера составляет 1590 кг. Применяемые в этих контейнерах слоистые панели имеют наилучшую прочность на изгиб и хорошие локальные противоударные свойства, что свидетельствует о вы-  [c.214]

Широкое применение конструкций из композитов немыслимо без точного определения их несущей способности и, следовательно, без умения надежно предсказывать предельные напряжения и деформации каждого конкретного композита в условиях эксплуатации. Как правило, основным источником информации о прочностных свойствах композита являются испытания в условиях одноосного напряженного состояния, тогда как в реальных конструкциях материал находится в сложном напряженном состоянии. Элементы современных силовых конструкций из композитов составляются обычно из различно ориентированных однонаправленных слоев, уложенных в определенной последовательности по толщине. Прочностные свойства слоистых композитов в отличие от изотропных и однородных материалов обладают отчетливо выраженной анизотропией. Более того, достижение  [c.140]

Подводя итог изложенному, можно сказать, что рассмотренный комбинированный подход, объединяющий метод конечных элементов и анализ слоистой среды, является приемлемым для прогнозирования свойств слоистых композитов при простых температурно-силовых воздействиях, когда материал матрицы нелинейно упругий и чувствителен к ползучести, Применение этого подхода к боропластикам на эпоксидном связующем подтвердило оценки уровней усадочных напряжений в этих материалах, полученные при помощи линейного термоупругого анализа. Усадочные напряжения, определенные с учетом ползучести для типичного цикла отверждения слоистого композита, могут в зависимости от схемы армирования составлять по величине от 80 до 100% усадочных напряжений, рассчитанных при помощи линейного термоупругого анализа. Величина усадочных напряжений, по-В1 димому, не чувствительна к небольшим изменениям скорости охлаждения композита. Однако нагрев выше температуры отверл<дения (повторный) приводит к значительному увеличению усадочных напряжений.  [c.283]

Борное волокно выпускают диаметром 100, 130 или 200 мкм. Его получают путем осаждения из паровой фазы на тонкую вольфрамовую проволоку. Технология получения слоистых пластиков, армированных этим волокном, достигла большого совершенства. По опубликованным данным, высокие при комнатной температуре статические и динамические механические свойства этих материалов повышаются при низких температурах при этом другие характеристики изменяются незначительно [7,8]. Прочность при сжатии борэпоксидиых слоистых пластиков при температуре 4 К часто превышает 3450 МПа. Недостатками материалов является большая величина сечения захвата нейтронов и высокая их стоимость.  [c.75]

Применительно к низким температурам изучались и другие связующие, не на эпоксидной основе [6]. Механические свойства слоистых пластиков на фенольной, полиэфирной, полиуретановой, фенилсилановой и полибензимидазо-ловой основах мало отличаются от материалов с эпоксидной матрицей. Они более предпочтительны в случае масштабных конструкций, когда важное значение имеет вопрос стоимости.  [c.77]

На основе фторуглеродных смол и стеклянных графитовых тканей получаются слоистые материалы, обладающие высокой механической прочностью, химической стойкостью, малой усадкой и хорошими антифрикционными свойствами. Кроме стеклопорошка, стекловолокна и стеклотканей из литературы известно применение и других видов стеклонаполни-телей.  [c.180]

При прессовании слоистых пластиков происходит а) расплавление смолы, содержащейся в исходном слоистом прессматериале б) дальнейшая пропитка расплавленной смолой прессуемых материалов и уплотнение их под воздействием давления и температуры в) перевод смолы наполнителя в отверждённое и нерастворимое состояние и г) удаление значительной части летучих из прессматериала. Максималь-но удаление влаги и летучих, особенно в процессе предварительной термической обработки имеет существенное значение для обеспечения более высоких электрических и механических свойств слоистых пластиков.  [c.691]

Фенопласты — пресспорошки, волокниты и слоистые материалы — составляют большую группу термореактивных пластмасс отличаются относительно высокими физико-механическими свойствами, теплостойкостью и способностью заполнять пресс-форму. Повышенной ударной вязкостью обладают ФКП — пресспорошки, модифицированные каучуком и полимеризационными смолами повышенной химической стойкостью — фенолиты и декоррозиты. Для изготовления деталей применяют гранулы (таблетки).  [c.265]

Общие сведения (257). Основные физико-механические свойства пластмасс (258). Пластмассы в машиностроения (260). Применение пластмасс в машиностроении (268). Сравнительные физико-меха-пические свойства некоторых конструкционных материалов (270). Признаки, по которым можно определить вид пластмассы (270). Физико-механические показатели термопластических материалов (272). Механические свойства полиамидных смол отечественных марок (274). Антифрикционные свойства деталей из капрона в зависимости от вида термической обработки (274). Антифрикционные свойства капрона и металлических антифрикционных материалов (274). Примерное назначение термопластических материалов (275). Сравнительные физико-механические показатели материалов, применяемых для изготовления подшипников (278). Предельные нагрузки па подшипники из пластмасс (280). Физико-механические свойства термореактивных материалов (280). Примерное назначение прессовочных материалов (282). Физико-мёханические свойства конструкционных слоистых пластиков < (286). Фиаико-механические показатели стеклопластиков (288). Примерное назначение термореактивных материалов (288).  [c.536]



Смотреть страницы где упоминается термин Свойства слоистых материалов : [c.28]    [c.211]    [c.74]    [c.305]    [c.146]    [c.59]    [c.270]    [c.278]    [c.646]   
Композиционные материалы с металлической матрицей Т4 (1978) -- [ c.61 ]



ПОИСК



Свойства материалов

Слоистые материалы



© 2025 Mash-xxl.info Реклама на сайте