Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы толщины покрытий

Струйный метод. Толщина покрытия струйным методом определяется по продолжительности действия растворителя, подаваемого с определенной скоростью на поверхность контролируемой детали.  [c.97]

Геометрические размеры детали с покрытием замеряют общим мерительным инструментом. Толщина покрытия может быть определена как разница между поперечными размерами изделия с покрытием и без него, а также прямым определением с помощью толщиномеров различных классов. Толщина покрьггия в любой измеряемой точке должна быть не менее минимальной толщины, установленной в нормативной технической документации на изделие с учетом абсолютной погрешности измерения. Равномерность толщины определяется по разности максимальной и минимальной толщины в измеряемых точках, которая должна укладываться в установленный допуск. При применении образцов-свидетелей в качестве контрольного метода измерения толщины может использоваться металлографический метод. Толщину покрытия определяют на поперечном шлифе при 200-кратном увеличении с помощью металлографических микроскопов различных типов. Изготовление и подготовка шлифов производится по ГОСТ 9.302-79. Производят не менее пяти измерений по наибольшим выступам профиля слоя покрытия по всей длине шлифа. Толщина покрытий равна среднему арифметическому пяти измерений. Допускается отклонение от заданной толщины напыленного слоя в пределах 20 %. При этом толщина покрытия в любой измеряемой точке не должна быть меньше минимальной, установленной технической документацией.  [c.236]


Допустимая температура Эксплуатации покрытия, °С Условия эксплуатации Метод Толщина покрытия, мкм я J, 1 зйа г  [c.234]

Достоверные результаты можно получить только на однородных пленках известной толщины. Может быть эффективным налив краски на плоские черно-белые стеклянные пластинки с помощью аппликатора. Другим методом определения является нанесение краски на прозрачную синтетическую пленку равномерной толщины (например на полиэфирную) и проведение измерений при оптическом контакте окрашенной синтетической пленки со стеклянной пластиной (оптический контакт дает жидкость с показателем преломления, идентичным показателю преломления синтетической пленки) [8]. В обоих методах толщина покрытия определяется исходя из веса краски на единицу площади.  [c.446]

Из выражения (5-25) видно, что толщина покрытия обратно пропорциональна показателю поглощения вещества. Рассмотрим еще два важных момента, играющих существенную роль при установлении толщины покрытия условия эксплуатации покрытий и метод нанесения покрытий на металл.  [c.119]

Толщина слоя покрытия резьбовых деталей должна контролироваться соответствующими методами, так как предельные калибры не проверяют толщину покрытия.  [c.337]

Определение распределения остаточных напряжений по толщине покрытия. Во многих практических случаях требуется знание характера изменения остаточных напряжений по слоям покрытий. В этих целях также можно применять описанный метод измерения. При удалении слоя покрытия толщиной средний уровень остаточных напряжений в нем  [c.118]

Толщина покрытия — важнейшая характеристика, от которой зависят его защитные свойства, выбирают ее из условий получения надежной защиты поверхности металла и экономической целесообразности. Толщина слоя покрытия может определяться неразрушающими (табл. 33) и разрушающими (табл. 34) методами.  [c.53]

Выбор неразрушающих методов контроля толщины покрытий  [c.54]

Магнитный метод основан на регистрации изменения магнитного сопротивления в зависимости от толщины покрытия. Его применяют для измерения толщины покрытий, полученных на ферромагнитных металлах. Относительная погрешность метода +10%.  [c.54]

Радиационный метод основан на измерении интенсивности обратного рассеяния р-излучения в зависимости от толщины покрытия применим, когда атомные номера основного металла и покрытия отличаются не менее чем на 2. Относительная погрешность метода 5 %.  [c.54]


Оптический метод основан на измерении уступа, образованного краем покрытия с основным металлом, способом светового сечения или растровым способом с помощью оптического микроскопа. Метод применим для измерения толщины покрытия от 1 до 40 мкм с коэффициентом отражения не менее 0,3. Уступ получают растворением небольшого участка покрытия с предварительной изоляцией остальной части поверхности.  [c.55]

Растворы, применяемые для определения толщины покрытия струйным методом  [c.57]

ВЛ-515. Покрытие на основе эмали ВЛ-515 не нуждается в специальном грунте, так как обладает высокой адгезией к металлу. После дробеструйной очистки и обезжиривания внутренней и внешней поверхностей трубы оно наносится методом окунания и подвергается горячей сушке при 393 К в течение 1 ч. Для обеспечения необходимой сплошности и высоких антикоррозионных свойств толщина покрытия на основе эмали ВЛ-515 должна составлять 55—85 мкм, чта достигается нанесением двухслойного покрытия.  [c.159]

Радиоактивный толщиномер покрытий ИТП-5705 работает по компенсационному методу с тремя источниками (рабочим и двумя компенсационными) и приемником в виде дифференциальной ионизационной камеры [2]. Он предназначен для бесконтактного автоматического контроля толщины покрытий в процессе их нанесения на стальную ленту или при перемещении и резке ленты. Принцип действия прибора можно описать следующим образом.  [c.397]

ВТМ позволяют успешно решать задачи контроля размеров изделий.Этими методами измеряют диаметр проволоки, прутков и труб, толщину металлических листов и стенок труб при одностороннем доступе к объекту, толщину электропроводящих (например, гальванических) и диэлектрических (например, лакокрасочных) покрытий на электропроводящих основаниях, толщину слоев многослойных структур, содержащих электропроводящие слои. Измеряемые толщины могут изменяться в пределах от микрометров до десятков миллиметров. Для большинства приборов погрешность измерения 2—5%. Минимальная площадь зоны. контроля может быть доведена до 1 мм , что позволяет измерить толщину покрытия на малых объектах сложной конфигурации, С помощью ВТМ измеряют зазоры, перемещения и вибрации в машинах и механизмах.  [c.83]

Для измерения концентрации изотопной метки по толщине покрытия предлагается метод активационной авторадиографии [2], который позволяет получать наглядную картину распределения изотопа с хорошим разрешением по поверхности и высокой точностью даже для сложных матриц.  [c.178]

Рассматриваются некоторые свойства, определяющие области применения различных тугоплавких покрытий, нанесенных на углеродные материалы плазменным напылением, газофазным, химическим и электрохимическим методами. Показано, что покрытие из двуокиси циркония, получаемое путем нанесения на графит методом аргоно-дуговой наплавки циркония и окислением последнего в кислороде, отличается высокой термостойкостью, определяемой металлическими прожилками циркония в двуокиси, а также наличием пластичного металлического слоя, демпфирующего напряжения, возникающие в окисной плевке при эксплуатации. Метод газофазного осаждения может быть использован для нанесения различных тугоплавких покрытий как на графитовые изделия, так и в качестве барьерных на углеродные волокна при этом толщина покрытия определяется его назначением. Путем химического и последующего электрохимического наращивания, например меди на углеродные волокна, возможно получение композиции медь—углеродное волокно с содержанием волоков 20—50 об.%.  [c.264]

Согласно стандарту [35], измерения твердости по Виккерсу проводятся при нагрузках от 9,8 Н (1 кгс) до 980 Н (100 кгс). По схеме нагружения метод напоминает измерение твердости по Бринеллю, только в качестве индентора используется четырехгранная алмазная пирамида с углом между противоположными гранями 2,38 рад (136 ). Численное значение.твердости по Виккерсу (НУ) определяют по длине диагонали отпечатка, используя специальные таблицы, либо по формуле [35]. При измерении твердости необходимо, чтобы минимальная толщина покрытия была больше диагонали отпечатка в 1,2 раза. Методом Виккерса можно измерять твердость поверхностных слоев или покрытий толщиной до 0,03—0,05 мм [40]. Если толщина слоя не известна, то проводится несколько измерений при различных нагрузках до тех пор, пока при уменьшении нагрузки значения твердости не будут близки по своим значениям или совпадать.  [c.26]


Металлопокрытия, нанесенные электролитическим методом, снижают усталостные характеристики [51, 52], причем коэффициент снижения предела выносливости пропорционален толщине покрытия.  [c.31]

Уменьшение площади сечения наплавленного металла при заданной толщине свариваемого металла достигается соответствующей разделкой кромок, например применением двустороннего скоса кромок вместо одностороннего. Уменьшение Р за счет увеличения глубины и площади проплавления достигается сваркой методом опирания (с глубоким проваром, погруженной дугой). Сущность способа заключается в том, что электрод опирают с легким нажимом покрытия о свариваемый металл под углом 15—20° к вертикали, перемещают углом назад по линии наложения валика без поперечных колебаний. Используют электроды с повышенной толщиной покрытия. Силу сварочного тока увеличивают на 20—40% и выбирают поформуле / в=(60+70) а. Увеличенная мощность сварочной дуги, концентрированный ввод тепла, быстрое перемещение электрода под углом и интенсивное вытеснение расплавленного металла сварочной ванны из-под дуги давлением дуги создают условия для глубокого провара при минимальном разбрызгивании. Этот метод используют при сварке в нижнем положении стыковых швов и угловых в лодочку .  [c.71]

Брэдфорд [71] использовал метод термического испарения в вакууме для нанесения алюминия и двуокиси кремния на пла-стиню/ из нержавеющей стали. Нанесение осуществлялось при давлении 10 -133 Па. В испарительную камеру с вольфрамовым нагревателем засыпался алюминий чистоты 99,99% и наносился на диск из нержавеющей стали. Расстояние до покрываемой детали составляло 280 мм. После напыления алюминия таким же образом наносят двуокись кремния. Скорость нанесения 300 нм/с. Степень черноты покрытия при толщине слоя 0,5 мкм составила 0,52. Следует отметить, что увеличение толщины покрытия позволяет повысить степень черноты, однако при этом ухудшается адгезия.  [c.107]

Таким образом, на получение заданных оптических характеристик терморегулирующих покрытий существенно влияет их толщина. Выражения (5-23) и (5-25) позволяют рассчитать значения оптимальной толщины покрытия. Однако они не учитывают специфических условий работы деталей с покрытиями, а также метода нанесения материала. Поэтому при определении толщйны покрытия деталей, работающих при температурах выше 500 С, необходимо большую из величин, полученных по формулам (5-23) и (5-25), увеличить на 30—35%.  [c.120]

Исследовалось влияние токо дуги I и дистанции напыления L на пористость плазмовапыленного покрытия порошка титана марки ПТС дисрерсностью 50-М00 мкм. Также изучалась сорбция азота полученным покрытием и устанавливалась связь между скоростью сорбции и режимами напыления через характеристики пористой структуры. Пористость покрытия определялась по методу ртутной порометрии, скорость сорбции — по методу Вагнера. Толщина покрытия составляла 166 436 мкм.  [c.182]

Кроме контроля несплошиостей метод вихревых токов позволяет производить контроль физико-механических свойств и марок материалов, измерять толщину покрытий, измерять деформации и коробление объектов.  [c.199]

Толщину покрытий определяют магнитными (толщинеметрами ИТП-1, ИТП-5, ИТП-200) и электромагнитными (толщинометрами МТ-10Н, МТ-20Н, МТ-ЗОН, МТ-40НЦ, МТА-2, МТА-ЗН, МИП-10) методами. Принцип действия приборов основан на изменении силы притяжения магнита к ферромагнитной подложке в зависимости от толщины немагнитной пленки.  [c.25]

Для определения толщины покрытий известны разнообразные способы -от простого измерения микрометром до применения сложных оптически. и магнитных приборов. Распространено определение толщины покрытий магнитными методами без нарушения целостности покрытия (толщиномерами типа ИТП-1, МИП-10, МТ-ЗОН и др.). Пршщип действия этих приборов основан на изменении силы протяжения мапптга к ферромагнитной подложке  [c.116]

Для покрытий, полученных из порошковых материалов электростатическим и электрофоретическим методом, пористость покрытия зависит в основном от методов последующего уплотнения порошка (прокаткой, гидростатическим обжатием). Алюминиевое покрытие с пористостью 3-5 % получают уплотнением прокаткой при толщине слоя порошка 20— 25 мкм, а гидростатическим обжатием - не менее 400 МПа - при толщине слоя порошка 40-50 мкм. Для металлиэационных покрьггий порте-  [c.68]

Для непрерывного контроля толщины покрытий на металле применен радиоволновой толщиномер СТ-21 И при этом используется амплитуднофазовый метод контроля с фазовой отстройкой от влияния кривизны контролируемой поверхности за счет несимметричной установки опоры относительно оси антенны толщиномера.  [c.260]

В ряде стран организовано централизованное производство стандартизированных контрольных образцов с различными сочетаниями материалов покрытия и подложки. Такие образцы широко используют при градуировании и поверке магнитных толщиномеров в процессе их разработки и эксплуатации. Тем не менее огромное число вновь разрабатываемых и применяемых материалов исключает возможность серийного выпуска всей гаммы образцов. Поэтому важнейшей задачей, стоящей перед разработчиками приборов магнитной толщинометрии, является создание безобразцового метода измерения толщины покрытий.  [c.61]

Электромагнитные метод накладной катушки метод проходной катушки экранный метод Лакокрасочные и гальванические покрытия, стенки листов и труб Проволока, прутки, трубы контроль по маркам Листы, сварные соединения Толщина покрытий и стенок, несплошности, трещины, электропроводность поверхностных слоев Вытянутые в длину несплошности твердость, поверхностное содержание углерода, размеры Скоростной контроль толщины, качество точечной сварки выяв-, ленне несплошностей  [c.476]


По второму способу отработанный раствор химического палладирования подкисляют концентрированной соляной кислотой в присутствии нидикатора-метилораижа, при этом выпадает осадок диамнио-хлорида палладия, который отфильтровывают и сразу же промывают несколько раз холодной дистиллированной водой (8— Ю °С) до отсут ствия ионов хлора. Отмытый осадок растворяют в 25 % ном растворе аммиака и используют (после определения концентрации палладия) для приготовления раствора палладирования. Толщина палладиевого покрытия определяется по образцу свидетелю взвешиванием до и после нанесения покрытия или методом снятия покрытия в азотной кислоте (1 1) с последующим определением палладия весовым методом  [c.87]

Существует два метода нанесения пленочных покрытий метод конденсации (изотермический метод) и метод молекулярного потока. В первом из них температуры эмиттера и подложки одинаковы пленка растет за счет конденсации на подложке насыщенных паров материала эмиттера. Во втором методе температура эмиттера выше, и мы по существу имеем дело с направленным потоком атомов на подлоншу. Поскольку процесс образования пленки происходит при довольно высоких температурах (порядка сотен градусов), то существенное влияние на скорость роста толщины покрытия и его качество оказывает взаимная диффузия атомов подложки и напыляемого вещества. Естественно возникает вопрос о концентрации атомов подложки внутри пленки и скорости роста толщины последней. В работе [1 ] авторы заранее предполагают определенный закон движения границы пленки, в то время как в действительности последний должен быть получен из физических условий задачи. Кроме того, приводимое ими решение в случае линейного роста границы не удовлетворяет граничным условиям, и следовательно непригодно.  [c.102]

Методом газофазного осаждения при пиролизе хлоридов тугоплавких металлов на углеродные волокна (УВ) наносятся покрытия Si , Ti , Zr и др. В связи с малой величиной объектов (диаметр филаментов составляет 6—8 мкм) значительные трудности возникают при определении толщины покрытия, составляющей 5—500 ммкм.  [c.116]

Характерными дефектами покрытий, полученных методом электронно-лучевого напыления, являются каналы, идущие внутрь покрытия от его наружной поверхности. Эти дефекты уменьшают стойкость к горячей коррозии и окислению, облегчая проникновение газов в покрытие. Замечено, что каналы образуются только при вращении образцов и соответствуют неровностям их поверхности, а глубина их проникновения в покрытие зависит от величины неровностей. В случае грубо опескоструенной поверхности детали каналы пронизывают всю толщину покрытия и достигают его границы со сплавом (рис. 3, а). Риски, остающиеся на поверхности детали после шлифования, образуют дефекты в напыленном покрытии в том случае, если они определенным  [c.218]

Наиболее распространенным методом получения покрытия с повышенной толщиной внешнего слоя алюминия является непрерывное, дешевое алюминирование погружением в металлический расплав. Однако описанные в литературе методы подготовки поверхности титана более длительные, чем для стали 1 ч при 70 °С пли 2— 3 ч при 20 °С для химической и электрохимической обработки, 1.5 ч для окисления поверхности при 500 °С и последующего восстановления пленки в водороде, 5 мин для погружения в водные флюсы фторидного или хлорпдно-фторидного составов при 80— 100 °С [1-6].  [c.187]

Покрытие из интерметаллических порошков, нанесенное на плоскую металлическую поверхность струйно-плазменным методом, толщиной 0,3—1,0 мм отделяется от основы механически благодаря малой прочности соединения с полированной поверхностью плоского металлического образца. Предварительно, до отделения покрытия, из образца вырезается электроэрозионным методом призма сечением 4x20 мм. Отделенные от основы пластинки покрытий помещаются на опорные призмы установки и нагружаются сосредоточенной нагрузкой до разрушения. Определяется Овизг — предел прочности при изгибе и / — прогиб, характеризующий величину упругой деформации покрытия. Этот метод имеет, по нашему мнению, преимущества перед более универсальными испытаниями на растяжение, описанными выше. Он исключает опасные перекосы, неизбежные при закреплении образцов в захватах машины, и обеспечивает надежные результаты, удобные для сравнцтельных оценок качества различных  [c.54]

Таким образом, отрывной характер разрушения можно обеспе-. чить варьированием толщины покрытия и диаметра торца штифта. Авторами [95 ] в качестве критерия корректности испытаний предложено отношение радиуса штифта г к толщине покрытия 6. Расчеты показали, что штифтовый метод определения прочности соединения покрытия можно применять только при малых значениях г/8 ( 2,0). При других величинах г/б этот метод испытаний можно использовать только для покрытий, у которых когезионная прочность значительно выше прочности соединения с основным металлом. Представляют  [c.59]

Методы контроля то.чщины покрытий, получаемых электрохимическими и химическими способами, а также термины и определения основных понятий в области измерения толщины стандартизированы [122, 132]. Анализ литературы показал, что из девяти методов определения толщины покрытий, рекомендуемых стандартом [122], для газотермических покрытий используются лишь три магнитный, электромагнитный (вихревых токов) и металлографический. Остальные методы не применяются либо из-за высокой коррозионной стойкости керамических покрытий (кулонометрический метод и методы струи и капли), либо из-за сложности и специфичности необходимого оборудования (радиационный и оптический методы), либо из-за больших погрешностей (гравиметрический метод).  [c.82]

Магнитный метод имеет две разновидности. Отрывной магнитный метод (рис. 5.1, а) основан на измерении с помощью пружины 4 усилия, которое необходимо приложить к магниту для отрыва его от поверхности покрытия 2, нанесенного на основной металл 1. Сила отрыва магнита коррелирует с толщиной покрытия. Метод хорошо зарекомендовал себя в производственных условиях при серийном и массовом выпуске изделий [134]. Для определения толщины покрытий предварительно строятся градуировочные кривые для эталонных юбразцов с известной то.чщиной покрытия, К недостаткам метода следует отнести влияние чистоты и структуры покрытия, а также термической обработки и химического состава основного металла на результаты измерений. Метод применяется для оценки толщины немагнитных покрытий, нанесенных на ферромагнитную основу, возможно использование его и в тех случаях, когда магнитные свойства материалов резко различаются. Некоторые приборы, основанные на этом методе, выпускаются серийно (толщиномер конструкции Н. С. Акулова, ИТП-5 и др.) и характеризуются простотой конструкции и портативностью. Пределы измерения этими толщиномерами О—2000 мкм. Наибольшая погрешность измерения 10% продолжительность измерения 5—6 с. В некоторых конструкциях приборов постоянный магнит заменен на электромагнит, и усилие измеряется не пружинными динамометрами, а изменением силы тока намагничивания.  [c.82]


В логарифмической зависимости от толщины покрытия [135]. Метод применяется только в том случае, если магнитная проницаемость покрытия значительно меньше магнитной проницаемости основного металла. В качестве рабочего зонда может использоваться и однополюсный наконечник, однако в этом случае увеличивается погрешность измерения. Большинство приборов, основанных на индукционном магнитном методе, имеют переносные датчики-зонды, позволяющие измерять толщину покрытия на труднодоступных участках деталей сложной формы и в отверстиях. Среди широко распространенных и выпускаемых серийно приборов можно отметить толщиномеры типа МТ. Диапазон измерения этих приборов от О до 10000 мкм, погрешность измерения 5—10%, шероховатость поверхности покрытия не должна быть более Вг20 мкм. Выпускаются приборы со Стрелочной и цифровой индикацией.  [c.83]


Смотреть страницы где упоминается термин Методы толщины покрытий : [c.432]    [c.28]    [c.216]    [c.269]    [c.80]    [c.135]    [c.84]    [c.53]    [c.81]   
Справочник контроллера машиностроительного завода Издание 3 (1980) -- [ c.352 , c.355 ]



ПОИСК



Агрегат нанесения металлических покрытий методом толщина покрытий 566 - Параметры процесса: масса

Измерение толщины покрытий на металлах электромагнитными методами

Кокиль -- Выбор расположения поверхности разъема 79 — 81 — Выпучивание стенок 95 — Конструирование 95—103 — Методы изготовления 99—101 — Нанесение облицовки (покрытия) на рабочие поверхности 66, 102 — Напряжения и деформации в рабочих стенках 93 — 95, 103 — Образование трещин 94 — Основные разновидности 75, 76 — Особые приемы изготовления рабочих стенок 101, 102 — Относительная толщина стенки 92 — Понятие

Магнитный отрывной метод измерения толщины покрытий

Магнитный отрывной метод измерения толщины покрытий (магнитная толщеметМагнитоструктурный анализ

Метод определения толщины по цвету окраски покрытия

Метод определения толщины покрытия физических вихревых токов

Метод определения толщины покрытия химический капельный 2.87, 88 Растворы

Методы измерения толщины покрытий

Методы измерения толщины покрытий с разрушением образца

Методы измерения толщины покрытий с разрушением покрытия и изделия

Методы измерения толщины покрытий, основанные на разрушении образцов

Методы контроля толщины гальванических покрытий - и пористости

Методы контроля толщины покрытия

Методы определения толщины лакокрасочных покрытий

Методы покрытий

Неразрушающие методы измерения толщины покрытий

Общие рекомендации по применению методов контроля толщины покрытий

Определение толщины покрытия физическими методами

Определение толщины прозрачных лакокрасочных покрытий методом светового сечения

Оптические методы измерения толщины покрытий

Приборы, основанные на индуктивном методе измерения толщины покрытий

Приборы, основанные на индукционном методе измерения толщины покрытий

Приборы, основанные на магнитном методе измерения толщины покрытий

Приборы, основанные на радиометрическом методе измерения толщины покрытий

Прочие методы измерения толщины покрытий

Прочие радиометрические методы измерения толщины покрытий

Средства и методы измерения толщины покрытий

Толщина покрытий, измерение магнитными методами

Толщина покрытия

Толщина покрытия, метод определения

Толщина покрытия, метод определения вихревые токов

Толщина покрытия, метод определения гравиметрический

Толщина покрытия, метод определения индукционный

Толщина покрытия, метод определения капли

Толщина покрытия, метод определения кулонометрический

Толщина покрытия, метод определения магнитный

Толщина покрытия, метод определения металлографический

Толщина покрытия, метод определения оптический

Толщина покрытия, метод определения отрывной

Толщина покрытия, метод определения радиационный

Толщина покрытия, метод определения струи

Толщина покрытия, метод определения электромагнитный



© 2025 Mash-xxl.info Реклама на сайте