Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Излучение температурное

Таким образом, для полного излучения температурное поле в среде в приближении радиационной теплопроводности описывается дифференциальным уравнением (5-76) с граничными условиями (5-77). В качестве граничных условий может быть задано либо поле температур на поверхности Ту,, либо поле полной поверхностной плотности результирующего излучения рез. Все особенности уравнений радиационной теплопроводности в отношении заранее неизвестных коэффициентов La (t=l, 3), m и а уже обсуждались при рассмотрении общего случая диффузионного приближения.  [c.166]


Для определения коэффициента излучения можно использовать также регулярный режим второго рода. Автором рекомендуется следующая методика, основанная на этом режиме. Образец исследуемого материала 1 простой геометрической формы, например в форме пустотелого цилиндра, помещается внутри массивного цилиндрического кожуха 2 (рис. 6-11). Внутренние размеры кожуха мало отличаются от внешних размеров опытного образца, В небольшом зазоре между ними создается низкое давление среды, при котором теплообмен между образцом и кожухом при наличии температурного перепада между ними осуществляется за счет теплового излучения. Температурный перепад создается нагревателем кожуха 3 и нагревателем печи 4, в которую образец с кожухом помещаются. Электрической печью осуществляется грубая регулировка температуры, тонкое регулирование производится с помощью нагревателя кожуха. Он обеспечивает режим, в котором скорость нагревания образца сохраняется постоянной во времени. Кожух служит также для создания равномерного температурного поля вокруг опытного образца. Осевой перекос температуры устраняется с помощью экранной торцовой защиты образца 5.  [c.303]

Экспериментальное определение коэффициента Я сопровождается рядом побочных явлений (торцевые утечки тепла, конвекция, излучение, температурный скачок на границе твердое тело — газ и др.), которые искажают процесс передачи тепла теплопроводностью и являются источниками погрешностей в определении коэффициента X. Влияние этих явлений необходимо устранять в процессе конструирования установки или учитывать расчетным путем — введением соответствующих поправок.  [c.304]

Вольфрамовая лента температурной лампы является селективным излучателем. Коэффициент черноты излучения вольфрама, как и большинства металлов, снижается по мере возрастания длины волны. Поэтому излучение температурной лампы относительно богаче коротковолновыми лучами, чем излучение абсолютно черного тела при той же яркостной температуре. Это обстоятельство следует учитывать при использовании температурной лампы в качестве излучателя.  [c.48]

Примеры. Яркость излучения температурной лампы, функционально связанная с яркостной температурой показание манометра, отсчитываемое по шкале усиленное напряжение на выходе измерительного усилителя.  [c.80]

Тепловое излучение Температурное излучение  [c.51]


Метод нагревания с постоянной скоростью. Образец исследуемого материала простой геометрической формы, например в форме цилиндра, помещается внутри массивного цилиндрического блока, служащего для создания равномерного температурного поля вокруг образца. Внутренние размеры кожуха мало отличаются от внешних размеров опытного образца. Теплообмен между образцом и блоком при наличии температурного перепада осуществляется лишь-за счет теплового излучения. Температурный перепад создается нагревателями блока и печи, в которую помещается блок с образцом. Они обеспечивают режим, при котором скорость нагревания образца сохра-  [c.361]

Температура >10 К. Столь высокой была температура в первые несколько минут после Большого Взрыва. При такой температуре тепловое движение протонов и нейтронов столь интенсивно, что даже огромные ядерные силы не могут удержать эти частицы вместе. Электрон-позитронные пары рождаются и гибнут спонтанно и находятся в тепловом равновесии с излучением. (Температурный порог рождения электрон-позитронной пары составляет б 10 К.)  [c.228]

В дальнейшем для измерений коэффициента теплообмена при высоких.температурах широко применялся метод регулярного режима. В работе [13 ] показано, что этим методом можно пользоваться только в малых температурных интервалах из-за изменения а. Поэтому при измерениях в широком диапазоне температуры его нужно разделять на несколько участков. Измерения, проведенные для частиц песка (й = 0,34 мм) и шамота (с( = 0,4 0,95 2 3,4 4,4 7,5 мм), показали нелинейный характер изменения коэффициента теплообмена как функции Т при температурах 1000°С, что объясняется влиянием излучения. Аналогичные результаты приведены в работе [138].  [c.136]

При переходе ко все более разреженным системам влияние кондуктивного переноса уменьшается вследствие роста термического сопротивления газовых прослоек согласно (4.40). При этом энергия в основном переносится излучением. Профили температуры (рис. 4. 0) оказываются очень близкими к распределениям, рассчитанным для случая радиационного переноса (см. рис. 4.8). Роль теплопроводности сводится к сглаживанию температурных скачков около ограничивающих модель поверхностей.  [c.167]

Цель данной книги — изложение основных принципов термометрии в интервале от 0,5 до приблизительно 3000 К. В течение последних 25 лет по этому вопросу накоплен весьма богатый опыт, и настало время объединить полученные результаты и обсудить достигнутые успехи. Большая часть работ последних лет относилась к низкотемпературной термометрии ниже приблизительно 30 К и их результаты послужили основой Предварительной температурной шкалы 1976 г. от 0,5 до 30 К. Таким образом, температура 0,5 К оказалась удобной нижней границей интервала температур, обсуждаемого в книге. Верхняя граница не обладает такой же определенностью, поскольку термометрия по излучению, рассматриваемая в гл. 7, может быть в принципе распространена на сколь угодно высокие температуры и достаточно лишь теплового равновесия в системе, температура которой измеряется. При всем разнообразии условий в термометрии, охватывающей интервал от температур жидкого гелия до точки плавления платины, общими являются требования теплового равновесия и теплового контакта с термометром. Эти требования неизменно присутствуют при всех термометрических работах и всех температурах на протяжении данной книги. Ясное понимание физических основ каждого из различных методов термометрии представляется обязательным для детального обсуждения их принципов, точности, интервала применения и ограничений. По этой причине каждой из основных глав предпослано краткое изложение физических основ метода в той мере, в какой это требуется для теории и практики термометрии.  [c.9]

Вводная глава книги содержит краткое обсуждение понятия температура , обзор истории термометрии и вскрывает важное различие между первичной и вторичной термометриями. В гл. 2 рассматриваются истоки известных международных соглашений о термометрии, обсуждаются развитие и современное состояние Международной практической температурной шкалы. В гл. 3 рассмотрены главные методы измерения термодинамических температур, к которым относится газовая термометрия, акустическая термометрия и шумовая термометрия. В гл. 4 описаны реперные точки температуры, тройные точки и точки кипения газов, точки затвердевания и сверхпроводящие точки металлов. Здесь же рассмотрены требования к однородности температуры при сравнении термометров. Три последующие главы посвящены основным методам практической термометрии, термометрам сопротивления, термопарам и термометрии по излучению. Во всех главах, в том числе и во вводной, даны не только физические основы методов высшей точности, применяемых в эталонных лабораториях, но и их подробное описание. Приведены также примеры измерений температуры в промышленных условиях. Книга завершается краткой главой о ртутной термометрии. Каждая глава дополнена обширной библиографией.  [c.9]


В этой главе, посвященной практическим вопросам измерения температуры, прежде всего рассматриваются три основных метода первичной термометрии. Это — классическая газовая термометрия, акустическая газовая термометрия и шумовая термометрия. Затем выясняется роль магнитной термометрии. Магнитная термометрия в обсуждаемом случае не применяется в качестве первичного метода, однако она тесно связана с первичной термометрией и поэтому ее роль выясняется ниже. То же самое можно сказать о газовых термометрах, основанных на коэффициенте преломления и диэлектрической проницаемости как тот, так и другой могут быть использованы в качестве интерполяционного прибора. Термометрия, основанная на определении характеристик теплового излучения, рассматривается отдельно в гл. 7. В данной главе в основном обсуждаются принципиальные основы каждого из методов, а не результаты измерений, поскольку последние были представлены в гл. 2, где говорилось о температурных шкалах.  [c.76]

Проблема детектора теплового излучения неотделима от вопроса об излучательных свойствах источника излучения. Спектральные характеристики излучения черного тела, как будет показано, описываются законом Планка. Проинтегрированный по всем длинам волн закон Планка приводит к закону Стефана — Больцмана, который описывает температурную зависимость полного излучения, испущенного черным телом. Если бы не было необходимости учитывать излучательные свойства материалов, оптический термометр был бы очень простым. К сожалению, реальные материалы не ведут себя как черное тело, и в законы Планка и Стефана — Больцмана приходится вводить поправочные факторы, называемые коэффициентами излучения. Коэффициент излучения зависит от температуры и от длины волны и является функцией электронной структуры материала, а также макроскопической формы его поверхности.  [c.311]

Точность, с которой расчет отражает реальное поведение изотермической полости, почти всегда ограничена недостатком знания отражательных свойств стенки. На практике наиболее существенным ограничивающим фактором, как правило, является температурная неоднородность, приводящая к неопределенности температуры, которая должна быть приписана испущенному излучению. Это почти всегда имеет место в полостях с достаточно высокой излучательной способностью, т. е.  [c.328]

Наличие температурного градиента можно принять во внимание, включив в уравнения (7.38) и (7.40) члены, которые учитывают изменение испущенного излучения от каждого из элементов 1, / и к. Для этого га (хо, X, Тхц) определяется, например, в виде  [c.343]

Градуированное черное тело переменной температуры не слишком удобно в качестве средства передачи температурной шкалы, однако большинство его функций столь же хорошо выполняет тщательно сконструированная вольфрамовая ленточная лампа. Излучение, испущенное в данном направлении при данной длине волны малой определенной областью на ленте, может быть градуировано в значениях электрического тока через лампу. Соотношение ток — температура может быть сделано хорошо воспроизводимым для широкой области температур. От 700 до 1700 °С используются вакуумные лампы, а от 1500 до 2700 °С — газонаполненные.  [c.350]

При температурном равновесии тел количество отдаваемой лучистой энергии будет равно количеству поглощаемой лучистой энергии. Спектр излучения большинства твердых и жидких тел непрерывен. Эти тела испускают лучи всех длин волн от малых до больших.  [c.458]

На рис. 3.13 показано влияние параметра ослабления излучения на температурное состояние слоя. Результаты приведены для случая В - < , когда влияние теп-62  [c.62]

Рис. 3.13. Влияние параметра ослабления излучения К, на температурное состояние полупрозрачного слоя при прямоточной (а) и противоточной (б, штриховые кривые) схемах (В -> °°) 1 - =0,5 2 - а , =1 3 - ATj =2 4-а , =4 5-а , =8 Рис. 3.13. <a href="/info/349561">Влияние параметра</a> ослабления излучения К, на температурное состояние полупрозрачного слоя при прямоточной (а) и противоточной (б, штриховые кривые) схемах (В -> °°) 1 - =0,5 2 - а , =1 3 - ATj =2 4-а , =4 5-а , =8
С увеличением теплопроводности пористого материала (уменьшение В) температурное поле внутри полупрозрачного слоя выравнивается (рис. 3.14), а температура внутренней поверхности повышается. В условиях высокотемпературного нагрева газа в объемном гелиоприемнике это может привести к высокому уровню температуры внутренней поверхности и, как следствие, - к значительному ее обратному излучению и снижению эффективности устройства.  [c.63]

Тепловой метод контроля основан на регистрации ин-фра фасного излучения, исходящего от поверхности нагретого тела. Тепловым источником нагревают контролируемый объект. В зоне несплошности отвод теплоты происходит с иной интенсивностью по сравнению с хорошо проваренным участком шва. Возникающие температурные градиенты в несколько десятых градуса предопределяют различие в тепловом инфракрасном излучении этих участков, которое регистрируется соответствующим приемником и затем преобразуется в электрические сигналы. Этот метод позволяет выявлять как поверхностные, так и внутренние дефекты в виде расслоений, пустот, раковин и других дефектов.  [c.220]

При учете конкретных условий эксплуатации оптических приборов следует при выборе марок оптического стекла учитывать их устойчивость к влажной атмосфере и слабокпелым водным растворам, к ионизирующему излучению, температурный коэффициент линейного расширения, теплопроводность, удельную теплоемкость, плотность, модуль упругости и модуль сдвига, электрические и магнитные свойства.  [c.507]


Отличительная особенность теплового излучения заключается в том, что оно органически присуще всякому макрофизическому телу и количественно определяется одним только температурным уровнем последнего. Поэтому тепловое излучение называют также излучением температурным. Будучи возбуждаемо и непрерывно поддерживаемо внутренними микроструктурными движениями вещества, тепловое излучение каждого тела во внешнее пространство имеет место совершенно независимо от свойств и состояния окружающих тел, в частности, и тогда, когда последние находятся при температуре, совпадающей с температурой данного тела. Многие важнейшие законы теплового излучения основываются именно на том факте, что оно в неприкосновенном виде развивается в термически равновесных системах, наличие же или отсутствие равновесности в других отношениях вообще не играет какой-либо роли. Первым следствием отсюда служит утверждение, что испусканию теплового излучения непременно сопутствует более или менее интенсивное поглощение падающего на тело извне излучения, причем в условиях термического равновесия оба эффекта компенсируют друг друга. Если же взаимодействующие излучением тела находятся при разных температурах, то для каждого из них баланс  [c.187]

ТЕПЛОВОЕ ИЗЛУЧЕНИЕ (температурное излучение), эл.-магн. излучение, испускаемое в-вом и возникающее за счёт его внутр. энергии (в отличие, напр., от люминесценции, к-рая возбуждается внеш. источниками энергии). Т. и. имеет сплошной спектр, положение максимума к-рого зависит от темп-ры в-ва. С её повышением возрастает общая энергия испускаемого Т. и., а максимум перемещается в область малых длин волн. Т. и. испускает, напр., поверхность накалённого металла, земная атмосфера и т. д.  [c.745]

В гидроприводах с ]1асосами небольших мощностей (менее, С кВт) рабочая жидкость охлаждается обычно без применения специальных охладителей — путем теплового излучения и конвенционного переноса тепла окружающем с )сдой. Однако при болт.шнх мощностях и длительных режимах работы гидросисюмы необходимо применять для обеспечения требуемых температурных условий охлагк-дающие устройства (теплообменные устройства или охладители).  [c.416]

Радиационный теплообмен не оказывает существенного влияния на эффективную теплопроводность неподвижного слоя из-за малых температурных напоров в ячейках слоя и незначительности их размеров. В движущемся слое возникает разрыхленная пристенная зона, где роль излучения может возрасти. Конвективный теплообмен в неподвижном не-продуваемом слое практически отсутствует. В движущемся непродуваемом слое появляются токи твердых частиц и увлекаемых ими газовых прослоек. Особенно важны относительные смещения в пристенной зоне, так как здесь скорость газа падает до нуля, а скорость частиц снижается лишь на 5—50%. На кондуктивный теплообмен в движущемся слое положительно влияет периодическое нарушение сложной кинематической цепи контактов частиц, их возможное вращение и поперечные перемещения в пристенной зоне (особенно при малых О/ т и большой скорости слоя), перекатывание и скольжение частиц вдоль стенок канала, т. е. в районе граничной газовой пленки, и пр. Подобные интенсифицирующие эффекты в неподвижном слое, разумеется, невозможны. Однако следует также учесть  [c.331]

Предположим, что требуется найти излучательную способность изотермической полости, показанной на рис. 7.5. Величина, которую необходимо вычислить, представляет собой отношение спектральной яркости элемента стенки А5, визируемого в Р, к спектральной яркости черного тела при той же температуре. В свою очередь поток излучения, исходящий из в направлении апертуры а, состоит из двух частей потока, излученного самим элементом А5, и лучистого потока, отраженного тем же элементом А5. Первый зависит только от коэффициента излучения стенки и ее температуры и не зависит от присутствия остальной части полости. Отраженный поток, со своей стороны, зависит от коэффициента отражения поверхности элемента А5 и от лучистого потока, попадающего на А5 из остальной части полости. На значении отраженного потока сказывается влияние а, так как лучистый поток, который в замкнутой полости пришел бы от а в направлении А5, в рассматриваемом случае отсутствует. Именно этот эффект отсутствия падающего потока от а в потоке излучения, отраженного от А5, и необходимо вычислить. Следует также учесть, что отсутствует не только лучистый поток в направлении а- А5, но и лучистый поток от а в направлении остальной части стенок полости. Таким образом, лучистый поток, поступающий в А5 от всей оставщейся части полости, является несколько обедненным. Из всего этого должно быть ясно, что расчет излучательной способности такой полости никоим образом не является тривиальной операцией. Для строгого вычисления необходимо знать в деталях геометрию полости и системы наблюдения, угловые зависимости излучательной и отражательной характеристик материала стенки полости, а также распределение температуры вдоль стенок полости. Температурная неоднородность изменяет поток излучения полости в целом так же, как и наличие апертуры, но с некоторым дополнительным усложнением, которое состоит в том, что изменение потока  [c.327]

Рис. 7.19. Вольфрамовая ленточная лампа, применяемая в качестве воспроизводимого источника теплового излучения для градуировки радиационных пирометров, а также для сличения температурных шкал в области 700—1700 С (любезно представлено фирмой GE Со, Лондон) [56]. / — пирексовая пластинка, расположенная под углом 5 к нормали 2 — пирексовая пластинка толщиной 4 мм, расположенная под углом 5° к нормали 3—вольфрамовая лента 1,3x0,07 мм 4 — посеребренная медь 5 — никель 6 — небольшая метка 7 — большой двухштырьковый цоколь. Рис. 7.19. <a href="/info/3817">Вольфрамовая ленточная лампа</a>, применяемая в качестве воспроизводимого <a href="/info/402092">источника теплового излучения</a> для градуировки <a href="/info/10253">радиационных пирометров</a>, а также для сличения <a href="/info/3903">температурных шкал</a> в области 700—1700 С (любезно представлено фирмой GE Со, Лондон) [56]. / — пирексовая пластинка, расположенная под углом 5 к нормали 2 — пирексовая пластинка толщиной 4 мм, расположенная под углом 5° к нормали 3—вольфрамовая лента 1,3x0,07 мм 4 — посеребренная медь 5 — никель 6 — небольшая метка 7 — большой двухштырьковый цоколь.
Существуют два основных источника шума, появляющегося в выходном сигнале детектора шум самого детектора и флуктуации, присутствующие в тепловом излучении, которое попадает в детектор [58]. Ни один из них не ограничивает чувствительность фотоэлектрических пирометров в области выше 700 °С. Оба детектора (фотоумножитель и кремниевый фотодиод) могут быть использованы с временем усреднения, достаточно большим, чтобы снизить случайную погрешность из-за шума детектора и флуктуаций излучения до уровня в несколько миликельвинов в температурном эквиваленте.  [c.377]

В гл. 3 рассматривались измерения термодинамической температуры газовым термометром и другими первичными термометрами. Было показано, что в температурной области выше примерно 30 К практически все численные значения термодинамической температуры основаны на газовой термометрии. Однако усовершенствования в термометрии излучения, возможно, это изменят. Уже измерения температурных интервалов в области от 630 °С до точки золота показали, что МПТШ-68 вблизи 800 °С содержит погрешность около 0,4 °С [15, 75]. Фотоэлектрический пирометр сам по себе не является первичным термометром, так как им можно измерить не абсолютную спектральную яркость источника, а только отношение спектральных яркостей двух источников, и невозможно, чтобы один из них находился в тройной точке воды. Однако фотоэлектрическая пирометрия может дать очень точные значения- для разностей температур  [c.381]


Неоднородное излучение приводит к росту температурного градиента внутри частицы, т. е. дТр1дх1. Было показано [665], что прп а А.  [c.44]

С изменением температуры контролируемого веи1.ества произведение р/ остается неизменным и, следовательно, температурная погрешность для подобных устройств на точность не влияет. Интеп-сивность потока излучения, отраженного веществом, можио приближенно определить по формуле  [c.159]

Рассмотрим, например, расчет пластины, работающей в глубоком вакууме (74]. На рис. 5-1 показана математическая модель пластины с покрытием. При анализе теплопередачи будем считать температурное поле в сечении равномерным и одномерным, что при малом отношении толн ины к длине дает достаточно точные результаты. В случае одномерности предполагается, что температурный градиент покрытия в направлении х является очень малым по сравнению с температурным градиентом покрытия, нормальным к поверхности. Следовательно, в покрытии рассматривается только составляющая теплового потока от пластины к окружающей среде и все тепло в направлении х проходит по металлу подложки. Введем следующие предположения передача тепла окружающей среде происходит только излучением среда имеет температуру, равную 0 К радиационная поверх-  [c.111]


Смотреть страницы где упоминается термин Излучение температурное : [c.376]    [c.123]    [c.204]    [c.742]    [c.95]    [c.114]    [c.328]    [c.347]    [c.389]    [c.397]    [c.148]    [c.14]    [c.159]    [c.191]   
Основные термины в области температурных измерений (1992) -- [ c.0 ]

Справочник по элементарной физике (1960) -- [ c.166 ]



ПОИСК



Акустика микронеоднородных с сред. Температурные и вязкие волны . 20. Поршневое излучение плоюской волны. Импульс бегущей плоской волны

Взаимодействие излучения с анизотропными молекулами при температурном равновесии Модель для описания в НЛО геометрических свойств распространения света

Влияние неравномерности температурного поля в сечении газового потока на теплопередачу излучением

Тепловое или температурное излучение

Теплопередача излучением при неравномерном температурном поле газового потока над изотермической поверхностью нагрева

Шкала температурная пирометра микроволнового излучения



© 2025 Mash-xxl.info Реклама на сайте