Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Силы инерции — Определение методом звеньев — Определение

Использование при расчете на прочность полной результирующей силы инерции звена, определенной одним из существующих методов, является по существу неправильным, так как полная сила инерции в отношении массы самого звена является фиктивной, несмотря на то, что найденные по этой силе инерции реакции  [c.272]

При определении сил инерции целесообразно применять метод замещения масс. Распределенную массу звена можно заменить системой дискретных масс, если при нахождении их величины и мест расположения соблюдены условия  [c.36]


Выбор закона движения рабочего звена. При проектировании профиля кулачка обычно задаются законом движения толкателя и по нему находят необходимый профиль кулачка, обеспечивающий заданный закон движения. В качестве желаемого закона движения можно принять определенный тип кривой перемещения, график скорости или график ускорений. Имея в виду большое значение в динамике кулачковых механизмов закона изменения ускорений (так как с ускорениями толкателя связаны пропорциональные им и массе звена силы инерции, учитывать которые приходится при расчете замыкающих пружин, при определении напряжений в частях механизма и т. д.), обычно в качестве закона движения задаются кривой ускорений толкателя, выбирая ее целесообразного вида, и затем по ней находят методом графического интегрирования закон изменений скорости, а вторичным интегрированием — график перемещений толкателя, являющийся, как увидим ниже, исходным графиком для определения профиля кулачка.  [c.318]

Применим теперь для решения задачи об определении сил инерции данного механизма метод замещающих точек. В рассматриваемом механизме (рис. 454, а) удобно разместить массы звеньев / и 2 на три точки, так как центры тяжести этих звеньев лежат на прямых, соединяющих центры вращательных пар.  [c.346]

Методы расчета сил, действующих на звенья механизма без учета сил инерции, объединены под названием статики механизмов, а методы расчета сил с учетом сил инерции звеньев, определенных приближенно, — кинетостатики механизмов. Практически методы статического и кинетостатического расчетов механизмов ничем не отличаются, если считать силы инерции заданными внешними силами.  [c.355]

Приближенное решение задачи об определении сил инерции механизма может быть сделано с применением метода замещающих точек (см. 53). Произведем статическое размещение масс звеньев 2 и 3 (рис. 12.9, (1). Массу m2 звена 2 разместим в точках А и В. Тогда массы т л ч Щв, сосредоточенные в этих точка, будут, согласно уравнениям (12.14), равны  [c.246]

I. Силовой анализ механизма имеет целью определение реакций в кинематических парах по заданным величинам сил сопротивления, сил тяжести звеньев и их сил инерции. Силы инерции, как нам известно, можно определять, если известны законы движения звеньев механизма. Имея в своем распоряжении известные законы движения звеньев, мы можем определить главные векторы и главные моменты сил инерции звеньев, которые можно использовать при определении реакций в кинематических парах. Указанные реакции являются причиной возникновения сил трения. Так как силы трения, зависящие от реакций, в свою очередь влияют на реакции, то, вообще говоря, расчет реакций в кинематических парах с учетом сил трения прямым путем выполнить трудно. Эти трудности можно обойди, если воспользоваться методом последовательных приближений, заключающимся в том, что сначала производят силовой расчет, считая силы трения равными нулю. После определения реакций определяют силы трения, благодаря чему можно установить уточненные величины реакций в кинематических парах. После этого производят следующий, уточненный расчет и т. д. до тех пор, пока результаты двух последовательных расчетов окажутся достаточно близкими.  [c.91]


Применим метод замещающих точек для определения сил инерции кривошипно-ползунного механизма (рис. 339,а). Ведущее звено ОА вращается с постоянной угловой скоростью Oi. Центры тяжести отдельных звеньев обозначены буквой S.  [c.349]

Проектирование механизмов и машин (синтез) должно быть завершено обоснованным определением конфигураций и расчетом размеров всех их элементов, деталей и сборочных единиц по критериям прочности, надежности, долговечности и требуемого выполнения технологических функций. Однако такая цель может быть достигнута лишь методом последовательных приближений. Действительно, для реализации требуемых движений рабочих органов какой-либо машины должны быть выбраны подходящая кинематическая схема механизма и размеры длин звеньев. Для преодоления сил полезных и вредных сопротивлений, свойственных технологическому процессу, необходимо обеспечить прочные размеры звеньев, которые зависят не только от технологических факторов, но и от сил инерции, сил трения звеньев машины и т. д. Но силы инерции и моменты сил инерции их не могут быть опре 74  [c.74]

Метод касательных сил дает приближенное решение задачи определения момента инерции маховика, так как при расчетах не учитываются добавочные силы инерции, возникающие вследствие неравномерности вращения ведущего звена. Этот метод находит широкое применение при расчете маховиков для тихоходных машин.  [c.179]

В задачу силового расчета механизмов и машин входит определение усилий, действующих на отдельные звенья и кинематические пары механизмов при заданных условиях движения. Основным методом силового расчета механизмов является кинетостатический метод. Этот метод, на основании принципа Даламбера, приводит задачи динамики машин к задачам статики. При определении условий равновесия отдельных звеньев машин, кроме действующих на них внешних сил, принимаются в расчет также внутренние силы инерции. Силовой расчет дает возможность правильно, по условиям прочности, выбрать конструктивную форму и размеры отдельных звеньев и деталей машин, определить давления и силы трения в кинематических парах, а также правильно оценить необходимую мощность для привода машины или механизма.  [c.37]

Реакции, не известные по величине и направлению, представляют в виде двух составляющих нормальной Я" (параллельной звену) и тангенциальной (перпендикулярной к звену) (рис. 5.5, г). Для звеньев, образующих кинематическую пару, они равны по модулю и противоположно направлены. Реакции определяют из условий равновесия, составленных для структурных групп и входного звена с учетом сил и моментов сил инерции. Так как обычно известны нагрузки на выходном звене, реакции определяют в кинематических парах структурной группы, содержащей выходное звено, и далее осуществляют переход к следующей структурной группе в направлении к входному звену. Для определения реакции используют графоаналитический метод (метод планов сил) или аналитический метод векторного анализа с применением ЭВМ 16, 73, 79, 90, 91, ПО, 1311.  [c.232]

Точное-определение сил, действующих в звеньях кулисного механизма, довольно трудоемко и может быть проведено на основании использования общих методов теории машин и механизмов с учетом сил инерции. Обычно за расчетное усилие на пальце кривошипа принимают усилие при среднем положении кулисы, определяемое из уравнения моментов относительно оси вращения кулисы. В этом положении силы инерции равны нулю и необходимо учитывать только силы резания, веса и трения в направляющих.  [c.287]

Для определения точек приложения результирующих сил инерции звеньев 2 я 4, имеющих сложное движение, удобно воспользоваться методом, указанным выше. Для этого определяем положение центров качения и К1, звеньев 2 и 4 в предположении, что точкой  [c.345]


Силы инерции определяются по заданному весу звеньев и ускорениям. Метод определения зависит от вида движения звена.  [c.156]

В динамике машин рассматриваются методы определения движения звеньев механизма под действием внешних движущих сил и сил сопротивления. Силы задаются в зависимости от тех процессов, которые происходят в машине. Например, в двигателе внутреннего сгорания, приводящем в движение генератор электрического тока, движущей силой является давление расширяющегося газа на поршень, а силами сопротивления — сопротивление ротора генератора вращению и т. д. Кроме того, в этом разделе курса изучаются силы, действующие на звенья механизмов рассматриваются вопросы регулирования движения, уравновешивания сил инерции и др.  [c.3]

Силы инерции — Определение методом замещения масс 367—375 — Определение линии действия 371 --звена — Определение в плоскопараллельном движении 365 — при вращательном движении 366  [c.584]

Анализ картины сил, действующих на звенья механизма. Определение главных векторов и главных моментов сил инерции графическим методом или с использованием ЭВМ.  [c.18]

В заданиях на курсовой проект предлагается провести силовой расчет рычажного механизма с целью определения реакций в кинематических парах при заданных внешних силах. В предыдущей главе было показано, что задание внешних сил, действующих на звенья механизма, позволяет найти закон движения начального звена в виде зависимостей (/) и (). Следовательно, при силовом расчете механизмов законы движения начального звена и всех остальных подвижных звеньев механизма считаются заданными. Угловые ускорения звеньев и линейные ускорения центров масс, определяющие силы инерции звеньев при их движении, могут быть найдены методами кинематического анализа с использованием аналитических, графических или численных методов исследования.  [c.187]

Иногда определяют наибольший допускаемый угол давления только на основании силового расчета механизма в его определенном мгновенном положении и учитывают силы инерции совместно с силами полезного сопротивления и трения, т. е. решают динамическую задачу вне связи с кинематической. Силы инерции ведомого звена кулачкового механизма в любом мгновенном положении его зависят от профиля кулачка (угла давления н радиуса кривизны центрового профиля, т. е. кривой, описываемой центром ролика при своем движении относительно кулачка). Так как силы инерции при этом сами являются функцией угла давления, то такой метод расчета не позволяет полностью раскрыть зависимости угла давления от различных факторов, а значит выбрать его наивыгоднейшим, исходя из реальных условий работы механизма.  [c.94]

Нахождение скоростей и ускорений заданных точек звеньев механизма необходимо при решении задач динамики механизмов, например при вычислении сил инерции, нахождении приведенной силы по методу Н. Е. Жуковского, определении кинетической энергии звеньев и механизмов.  [c.36]

Рассмотренный метод уравновешивания вращающихся звеньев применяется в случаях, когда известны расположение и величина масс, силы инерции которых необходимо уравновесить. Обычно этот метод используется при конструировании звеньев механизма, для определения рациональной формы звена, удовлетворяющей условию тг - 0.  [c.120]

Для определения линии действия сил инерции звеньев 3, 5, 10, И и 12, совершающих сложное движение, пользуются методом разложения этого движения звеньев на простейшие поступательное и вращательное.  [c.215]

Для определения моментов инерции рук, ног, челюстей живых людей были предложены варианты различных методов, хорошо известных в прикладной механике. От большинства этих предложений трудно ожидать удовлетворительных результатов, поскольку на исследуемую часть человеческого тела во время ее движения действуют силы (в первую очередь мышечные), которые невозможно учесть и которыми нельзя пренебречь, так же как и влиянием нервной системы человека. Наличие всех этих обстоятельств делает подобные экспериментальные определения очень неточными и ненадежными. Для устранения этих обстоятельств авторы этих предложений пытаются применить различные косвенные способы, как, например, рука человека должна быть приведена в движение пружиной внезапно, неожиданно для обладателя этой руки или же, наоборот, обладатель руки должен расслабить мышцы и не противиться качанию руки. Иногда пытаются учесть действие этих сил (внешних для испытуемого звена) изменением начальных условий подвешивают к руке в различных местах грузы и определяют неизвестный момент инерции руки совместно с известным моментом инерции добавочного груза по изменениям периода колебаний системы в зависимости от положения груза.  [c.26]

Показано непрестанное расширение области применения теории машин и механизмов. Так в биомеханике теории машин и механизмов пришлось поставить и решать многие новые вопросы теория механизмов с очень большим числом степеней свободы, изучение незамкнутых кинематических цепей, исследование новых видов связей в механических системах машина и человек , развитие методов измерения сил, измерение перемещений и их первых, вторых и третьих производных по времени. По требованиям биомеханики в геометрии масс созданы новые приборы для быстрого и точного определения моментов инерции частей живого человеческого тела, принимаемых за звенья механизма.  [c.271]


Все эти силы по отношению к ведущему звену являются реальными внешними силами. При определении приведенной силы инер-ции Р р будем учитывать силы инерции всех движущихся звеньев механизма, за исключением ведущего звена, а также связанного с ним маховика и, кроме того, будем исходить из предпосылки, что ведущее звено вращается с постоянной угловой скоростью Последнее обстоятельство и является одним из источников неточности рассматриваемого метода (при определении силы Р ]р пренебрегаем силами инерции движущихся звеньев механизма, вознн-  [c.105]

Весьма важными для практики характеристиками движения являются скорости и ускорения точек механизмов. Вопрос определения скоростей движущейся в плоскости фигуры возникает перед инженером при проектировании механизмов парораспределения, автоматов и вообще во всех случаях, где имеет значение согласование движений отдельных звеньев механизма. При проектировании новых и изучении работы существующих механизмов имеет большое практическое значение учет сил инерции, которые зависят от ускорений соответствующих точек. Графические методы изучения законов движения дают простое и удобное в практическом отношении решение векторных уравнений для скоростей и ускорений. Задача исследования закономерности изменения путей, скоростей и ускорений за полный цикл движения исследуемого механизма в зависимости от заданного параметра наилучшим способом решается при помощи графиков дБижения, которые называют кинематическими диаграммами. Кинематическая диа -рамма дает наглядное графическое изображение изменения одного из кинематических элементов движения в зависимости от другого. Например,  [c.61]

В плане см вектор представлен тем же отрезком (/с), что и реакция / 32, но противоположно направлен. При определении реакций по второму методу будем полагать, что все внешние силы и пары сил, приложенные к звену, а также силы инерции и пары их заменены одной равнодействующей силой. Этот метод заключается в следующем. Реакцию R , приложенную в центре шарнира А, разлагаем на две составляющие так, чтобы одна из них была направлена параллельно линии действия равнодействующей сил, приложенных к звену, а другая — по оси звена. Величину первой из них определяем непосредственно из условия равновесия звена. Так, выделяя из двухповодковой группы звено 3, раскладываем силу Рз на две составляющие Rb и R , параллельные линии действия силы Рз и приложенные соответственно в центрах В и С шарниров. Таким образом, одна из составляющих реакций в каждом из шарниров (В и С) полностью известна другая составляющая — Rb — обеих реакций, направленная по оси ВС звена, неизвестна по величине. На рис. 340, а показано разложение силы Рз, приложенной к звену 5. Для этого в центре шарнира С или В параллельно линии действия силы Р3 откладываем отрезок D, изображающий в масияабе ip силу Р3. Конец D отложенного отрезка соединяем прямой DB с точкой В. Через точку F пересечения линии действия вектора Р3 и прямой DB проводим параллельно оси СВ звена прямую FE, которая и разделит отрезок D на части, обратно пропорциональные расстояниям между точками приложения слагаемых сил и равнодействующей. Таким образом, одна из составляющих Rb = ED реакции / 43, приложенной в центре шарнира В, и R — СЕ реакции 23, приложенной в центре шарнира С, известна по величине и направлению вторые составляющие R b и Rb этих реакций направлены по оси звена ВС в противоположные стороны. Аналогично раскладываем  [c.354]

Определение необходимого момента инерции маховика методом касательных сил сводится к определению наибольшей избыточной работы ДЛщах [см. формулу (8.5) ]. С этой целью должны быть построены графики изменения работы сил сопротивлений (Лс) и работы движущих сил (Лд), приведенных к ведущему звену, в зависимости от угла поворота его ф.  [c.179]

Мы уже упоминали, что подобная идея промелькнула и у Прелля, который пробовал определять равновесие механизма с помощью уравнивания моментов, образованных произведениями сил на скорости, повернутые на 90°. Однако Прелль дает лишь частные решения и кроме того он не владел общим методом графического определения скоростей механизма. Решение же, предложенное Жуковским, при всей его простоте оказалось весьма общим. Действительно, пусть задан механизм, не находящийся в равновесии под действием некоторой системы сил, включающей и силы инерции. Тогда, пользуясь приведенной теоремой Жуковского о жестком рычаге, можно сделать полный кинетостатический расчет механизма, определить уравновешивающую силу, приложенную к ведущему звену механизма, определить приведенную к крайней точке ведущего звена массу механизма, определить живую силу механизма. Наконец, если жесткий рычаг Жуковского рассчитать как ферму, то усилие в каждом стержне рычага дает усилие в одноименном стержне механизма.  [c.86]

Задачей силового расчета механизмов является определение усилий в звеньях механизмов и реакций в их кинематических парах. Отчасти эта задача нами уже разбиралась при рассмотрении метода разложения сил для равновесного движения машины. Для данного движения в задачах на передачу сил, связанную в основном с определением движунхей силы по заданному полезному сопротивлению или наоборот, можно было, как уже в свое время отмечалось, не принимать во внимание сил инерции звеньев (поскольку силы инерции при равновесном движении не оказывают прямого влияния на передачу сил, так как их приведенная сила инерции оказывается равной нулю). Поэтому при применении метода разложения сил нами не учитывались силы инерции звеньев. Вместе с тем усилия в звеньях и реакции в кинематических парах, которые при этом получались, представляли собой лишь статические части полных динамических усилий и динамических реакций в кинематических парах.  [c.114]

Развитием графических методов кинематики и кинетостатики в духе идей Виттенбауэра занимался К. Федергофер. Ему принадлежат работы по определению и учету сил инерции отдельных звеньев механизмов, исследования в области пространственных механизмов.  [c.211]

Статика диад. Начнем с трехшарнирной диады, каждое звено которой нагружено одно11 силой и Ру соответственно, в которую уже заранее включены силы инерции (фиг. 567,а). Для определения трёх реакций от этих сил в трёх щарнирах применяем метод разло-л ения каждой реакции на две. Так, для внешнего щарнира А разлагаем реакцию на две, из которых одна направлена по АС, а другая — перпендикулярно АС.  [c.394]

Давыдов Я. С. К определению силы инерции плоско движущегося звена методом замещающих точек. Труды Горьковск. ин-та инженеров водного транспорта, вып. 15, Горький, 1958.  [c.178]

Определение момента инерции маховика по диаграмме касательных усилий является приближенным методом. Этот метод даст достаточно точные результаты для механизмов с большой ранномерностью хода (б 0,1), снабженных тяжелым маховиком, момент инерции которого значительно превышает моменты инерции остальных вращающихся звеньев механизма. Найдем приведенные к точке А ведущего звена ОА = г механизма (рис. 73) силы движущую Р р, полб зных сопротивлений Р р, тяжести Р р, инерции Р р.  [c.105]

Метод определения собственных частот многомассных систем покажем на примере трехмассной динамической модели, состоящей из трех звеньев с моментами инерции / , /г, /з, соединенных упругими элементами, имеющими коэффициенты жесткости С1 и сг (рис. 51). За обобщенные координаты примем углы поворота валов в сечениях А (или В), С (или )) и Е (или Е) фь ф2 и фз. Уравнения движения при отсутствии внешних сил и диссипации энергии имеют такой вид  [c.119]



Смотреть страницы где упоминается термин Силы инерции — Определение методом звеньев — Определение : [c.82]    [c.29]   
Теория механизмов и машин (1973) -- [ c.364 , c.367 ]



ПОИСК



Методы от сил инерции

Определение сил инерции

Определение сил инерции звеньев

Силы Определение

Силы инерции

Силы инерции звеньев



© 2025 Mash-xxl.info Реклама на сайте