Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Распространение волн по поверхности тел

Современник Ньютона Гюйгенс выступил с другой теорией света ( Трактат о свете , написан в 1678 г., издан в 1690 г.). Он исходил из аналогии между многими акустическими и оптическими явлениями и полагал, что световое возбуждение следует рассматривать как упругие импульсы, распространяющиеся в особой среде — в эфире, заполняющем все пространство как внутри материальных тел, так и между ними. Огромная скорость распространения света обусловливается свойствами эфира (его упругостью и плотностью) и не предполагает быстрых перемещений частиц эфира. Из наблюдений над распространением волн по поверхности воды было известно, что сравнительно медленные движения частиц вверх и вниз метут давать начало волнам, быстро распространяющимся по поверхности воды.  [c.18]


РАСПРОСТРАНЕНИЕ ВОЛН ПО ПОВЕРХНОСТИ УПРУГОГО СПЛОШНОГО ТЕЛА 439  [c.439]

Рассмотрим влияние теплопроводности на распространение волн по поверхности изотропного упругого полупространства. Вместо закона теплопроводности Фурье будем использовать модифицированный закон Максвелла, чтобы учесть то малое время, которое необходимо для установления стационарной теплопроводности после внезапного возникновения градиента температуры в твердом теле. Будем предполагать, таким образом, что поток тепла Н определяется соотношением  [c.56]

Корпускулярная теория света встречается в данном случае с большими трудностями. Уже со времен Ньютона известно, что проходящие вблизи края экрана световые лучи не остаются прямолинейными и что некоторые из них проникают в область геометрической тени. Ньютон приписывал это отклонение влиянию некоторых сил, которые якобы действуют со стороны края экрана на световые корпускулы. Мне кажется, что это явление заслуживает, очевидно, более общего объяснения. Так как, по-видимому, между движением тел и распространением волн существует глубокая связь и так как лучи фазовых волн могут теперь рассматриваться как траектории (возможные траектории) квантов энергии, мы склонны отказаться от принципа инерции и утверждаем Движущееся тело всегда должно следовать за лучом своей фазовой волны. При распространении волны форма поверхностей равной фазы будет непрерывно изменяться, и тело всегда будет двигаться, согласно нашему утверждению, по общему перпендикуляру двух бесконечно близких поверхностей.  [c.636]

Типы звуковых волн и скорость их распространения. Имеется несколько типов звуковых волн продольные, поперечные и поверхностные. Продольными звуковыми волнами наз >1-вают такие волны, когда смещение частиц в среде происходит вдоль распространения волны. Поперечными волнами называют волны, когда смещение частиц в среде происходит перпендикулярно к направлению распространения волны. Поверхностные волны (или, как их называют, волны Рэлея) могут распространяться только по поверхности тела, не проникая заметно в глубь него (рис. 3-2). В твердых телах могут распространяться все виды волн в жидкостях и в газах распространяются только продольные волны. Поперечные волны распространяются в твердых тел ] со скоростью, приблизительно в 2 раза меньшей, чем скорость распространения продоль-  [c.76]


Апериодические импульсы в твердых телах, возбуждаемые, например, при сильном ударе по поверхности тела или облучении ее лазерным импульсом, приводят к возникновению пластических волн, также характеризуемых очень большим затуханием и малой скоростью распространения (начиная с долей метра в секунду). Пластическая волна порождает упругую волну, которая может распространяться на значительные расстояния.  [c.31]

В твердом теле атомы при любой температуре, включая U К, непрерывно совершают колебания около их среднего положения равновесия. При небольших амплитудах такие колеба ния можно считать гармоническими. С повышением температуры амплитуды и энергии этих колебаний увеличиваются. Так как атомы в твердом теле сильно связаны друг с другом, то возбуждение колебаний одного из атомов передается ближайшим атомам, которые, в свою очередь, передают это возбуждение своим соседям и т. д. Этот процесс подобен процессу распространения звуковых волн в твердом теле. Все возможные колебания сильно связанных между собой атомов можно представить как совокупность взаимодействующих упругих волн различной длины, распространяющихся по всему объему кристалла. Так как твердое тело ограничено по размерам, то при данной температуре устанавливается стационарное состояние колебаний, представляющее собой суперпозицию стоячих волн (поверхность твердого тела для звуковых волн является узловой).  [c.141]

Реальное тело не обладает абсолютной жесткостью. Поверхность тела, на которую действует давление продуктов взрыва, деформируется, что оказывает влияние на интенсивность импульсивных нагрузок. Реакция тела на действие нагрузок сводится к следующему 1) вблизи поверхности материал тела под действием высокого давления продуктов взрыва вначале сильно сжимается 2) при внезапном уменьшении давления поверхность тела возвращается в ненапряженное состояние, хотя материал может получить значительную пластическую деформацию 3) в теле возникают возмущений, вызванные действующим давлением продуктов взрыва, длительность действия которых мала, так что длина импульса в материале невелика, однако возмущения имеют вид волны с крутым фронтом. Распространение этих волн проходит с высокими скоростями, т. е. в этом случае, очевидно, зарождаются ударные волны. При большой интенсивности возмущений тело может разрушаться либо в отдельных локальных областях, либо по всему объему.  [c.17]

Распространение вибраций от места их возникновения в механизме к наружным поверхностям происходит по корпусу главным образом за счет изгибных колебаний конструкций (в тех случаях, когда длина изгибной волны значительно больше толщины колеблющейся детали). Одновременно по конструкции распространяются и продольные волны, длины которых соизмеримы с линейными размерами конструкций. Обычно эти волны возникают в области высоких частот потому, что распространение продольных звуковых волн в твердых телах происходит с высокими скоростями.  [c.126]

В зависимости от направления колебаний частиц по отношению к направлению распространения волны волны акустические бывают различных типов. В жидкостях и газах возникают только продольные волны (табл. 1.4), в которых направления колебаний частиц и волны совпадают. В твердых телах наряду с продольными возникают поперечные волны, в которых движение частиц перпендикулярно распространению волны. Кроме того, вдоль свободной поверхности твердого тела могут распространяться поверхностные волны (Рэлея), частицы в которых движутся по эллипсу в плоскости, перпендикулярной поверхности. В металле эти волны практически затухают на глубине 1,5 X. Скорости распространения перечисленных волн, зависящие от свойств среды, связаны между собой соотношениями  [c.20]

Широкое использование их для практических целей одновременно ставило задачи и перед другими разделами радиоэлектроники. Прежде всего, например, возникали вопросы, относящиеся к исследованию своеобразных колебательных систем, используемых в этой области техники. Подлежали глубокому рассмотрению вопросы внутренней электродинамики полых резонаторов и направляющих устройств. Ставились и разрешались вопросы внешней электродинамики, главным образом в связи с развитием радиолокации. Надо было теоретически и практически изучить излучение и прием радиоволн новых диапазонов. По-другому пришлось подойти к расчету и конструированию антенных устройств. Предстояло разобраться в явлениях отражения ультракоротких волн от различных целей , начиная от простых геометрических фигур и кончая сложными телами, какими на практике могли быть корабли, самолеты, ракеты, спутники Земли и другие объекты. Очень большое внимание надо было уделить вопросам распространения волн (влияния подстилающей поверхности, дифракции, рефракции, поляризации и др.). Были подвергнуты изучению явления поглощения и рассеяния ультракоротких волн естественными и искусственными образованиями в атмосфере, в газах, аэрозолях, при наличии метеорологических неоднородностей в атмосфере, отражения от метеорных следов и т. п. Находились в центре внимания также и задачи, связанные с отысканием способов уменьшения или полного устранения отражений этих волн и многое другое. Наконец, нужно было разработать совершенно новые методы измерений и создать для этого измерительную технику.  [c.381]


Отсюда видно, что величина напряжения сжатия в волне определяется модулем упругости материала и отношением скорости частиц к скорости распространения волны. Если абсолютно жесткое тело, движущееся со скоростью v, ударяет по концу стержня в продольном направлении, то на поверхности контакта возникают сжимающие напряжения, величина которых определяется соотношением (15.57) или (15.58). При превышении скоростью ударяющей массы некоторой предельной величины, определяемой пределом текучести, модулем упругости и плотностью стержня, возникнут локальные пластические деформации даже и при очень малой массе ударяющего тела.  [c.509]

Решение связанной динамической задачи термоупругости, описываемой системой дифференциальных уравнений (1.54) и (1.56), оправдано в тех случаях, когда механическое и тепловое воздействия на тело изменяются достаточно быстро, так что инерционные члены pUj оказываются по значению сопоставимыми с другими членами в (1.54). К таким случаям относятся, в частности, распространение и затухание упругих волн [34], интенсивные импульсные тепловые воздействия на поверхности тела и быстрое изменение мощности энерговыделения в объеме. При импульсных воздействиях, когда характерное время воздействия сравнимо с периодом релаксации при переносе тепловой энергии в материале тела (для металлов 10 с [25]) вместо (1.49) следует использовать обобщенный закон теплопроводности qi + t ji = —ЯТ, , который учитывает конечную скорость переноса тепловой энергии и запаздывание значения теплового потока относительно текущего значения градиента температуры. Тогда из (1.47) вместо (1.56) получим  [c.21]

В книге описываются закономерности волновых движений в няе- ально упругом теле. Основным отличием такой среды от идеальной сжимаемой жидкости в акустике и от эфира в электродинамике является существование в ней, а в случае наличия границ и постоянное превращение друг в друга, двух различных по свойствам типов волн — волн расширения и сдвига. Можно сказать, что все вопросы, рассмотренные в данной книге, должны раскрыть специфику волновых процессов в упругих телах, обусловленную взаимодействием этих двух типов волн при наличии граничных поверхностей. Таким взаимодействием обусловлен чрезвычайно широкий круг особых явлений в процессах колебаний упругих тел и распространения волн в них. В качестве примеров здесь достаточно упомянуть известное явление существования поверхностной волны в упругом полупространстве и менее изученные вопросы, относящиеся к специфике собственных колебаний упругих тел конечных размеров.  [c.7]

Распространение гармонических волн в упругих телах при наличии границы. Существование двух типов волн в неограниченной упругой среде вызвало большой интерес к проблеме влияния граничных поверхностей на процесс распространения гармонических волн. По существу, задача об отражении и преломлении упругих волн на границе раздела двух полупространств — одна из основных задач в упругой теории света — раскрыла интересные проявления факта наличия двух типов волн в упругом теле. Так, оказалось, что при наклонном падении на свободную поверхность упругого полупространства продольной волны кроме отраженной под тем же углом продольной возникает и поперечная волна. Более того, при определенном угле падения продольной волны всю энергию уносит только отраженная поперечная волна.  [c.11]

Переносы тепла кондукцией и конвекцией характеризуются вектором, который вполне определяется в каждой точке среды локальным градиентом температуры. В противоположность этому лучистый поток в произвольном, относительно малом, объеме прозрачной среды не зависит от температуры этого объема, а определяется излучением внешних источников. Поэтому вектор, характеризующий перенос тепла излучением, определяется интегрально. Тепловое излучение, являющееся по своей природе процессом распространения электромагнитных волн, характеризуется спектром частот, который соответствует энергетическому уровню структурных частиц вещества, находящегося при рассматриваемой температуре. Интегральное тепловое излучение тел, находящихся при одинаковых температурах, определяется их атомной и молекулярной структурой, а также формой и состоянием поверхности тел, т. е. физическими свойствами среды.  [c.455]

Для описания природы явлений разрушения, где применение полученных приближенных результатов целесообразно, могут быть привлечены качественные соображения. Ясно, что разгрузка поверхностей трещины по мере ее распространения требует непрерывной перестройки поля напряжений, а скорость этого процесса ограничена скоростью упругих волн. Следовательно, вся кинетическая энергия, связанная с процессом этой перестройки, будет находиться в пределах огибающей поверхности возмущений, исходящих от растущей трещины со скоростью звука. И чтобы значительная доля этой энергии возвратилась к концу трещины, необходимо, чтобы процесс распространения трещины был длительным. Это означает, что процесс должен происходить настолько долго, чтобы огибающая не только достигла границ и прошла по всему телу, но и чтобы различные волны и колебания внутри огибающей имели возможность пройти по телу и взаимодействовать с трещиной несколько раз. Таким образом, приблизиться к условиям полного использования кинетиче ской энергии можно только тогда, когда размеры пути проходимого трещиной, будут сопоставимы с наибольшим размером тела. Поэтому описанный приближенный подход назван также подходом, соответствующим большому скачку трещины.  [c.230]


Ультразвуковые волны и их распространение. В зависимости от направления колебания частиц по отношению к направлению распространения ультразвуковые волны могут быть продольными, поперечными, поверхностными (рис. 35), нормальными (рис. 36). Прн продольных волнах направление колебаний частиц совпадает с направлением распространения волны, при поперечных — перпендикулярно ему. В жидкой и газообразной средах распространяются только продольные волны, а в твердых телах — волны обоих типов. На поверхности тела могут распространяться поверхностные волны, а в тонких пластинах и проволоке — нормальные.  [c.63]

Наглядным примером распространения волны являются хорошо известные всем волны, идущие по поверхности жидкости. Волны, идущие по поверхности воды от брошенного камня, называются круговыми. Если какое-либо тело, например поплавок, совершает гармонические колебания с какой-то частотой, то от него будут распространяться круговые регулярные волны. Здесь горбы и впадины волны кругами распространяются по поверхности воды (рис. 391) волновая линия в этом случае, очевидно, будет окружностью.  [c.472]

Из многообразия неоднородных волн в дефектоскопии в основном применяются поверхностные (волны Рэлея), нормальные (волны Лэмба) и головные (рис. 2.2, а, б). Поверхностная волна представляет собой линейную комбинацию продольной и поперечной Волн. При ее распространении частицы тела движутся по эллипсам, большая ось которых перпендикулярна границе. Эти фигуры вытягиваются с глубиной, т. е. в направлении, перпендикулярном от поверхности ввода. Проникновение волны в глубь тела приблизительно равно длине волны К. Скорость распространения поверхностной волны s в металлах равна примерно скорос-  [c.25]

Таким образом, совокупность экспериментальных и расчетных данных указывает на возможность образования волн разрушения при ударном сжатии гомогенных хрупких материалов. Скорость этой волны является дозвуковой и убывает по мере распространения. Волна разрушения представляет собой расширяющуюся сетку пересекающихся трещин, зародившихся на поверхности тела под действием напряжения сжатия. В результате дробления материала в волне разрушения его сопротивление сдвигу и растяжению резко уменьшается.  [c.120]

Рассмотрим распространение сферических волн в неограниченной термоупругой среде со сферической полостью радиусом R. На границе г = R температура изменяется по гармоническому закону, поверхность тела свободна от внешней нагрузки, т. е.  [c.259]

Сейсмология нуждается в изучении законов распространения волн от очага землетрясения до земной поверхности и тех изменений, которые претерпевают эти волны при отражении и преломлении на границах раздела. По наблюдениям движений земной поверхности надо получить наибольшую информацию о механизме очага и, в частности, оценить энергию, освобождающуюся при землетрясении. Большое значение имеет изучение структуры земной коры (или ее верхнего слоя) на основании наблюдений за распространением волновых возмущений. Эти задачи чаще всего решаются на основе представления о грунте как упругом теле.  [c.291]

С. А. Чаплыгиным, были посвящены вопросам распространения волн по поверхности тяжелой идеальной жидкости, задаче о движении твердого тела в жидкости и др. Здесь следует также отметить работы советских ученых А. И. Некрасова, Н. Е. Кочггна, Л. Н. Сретенского и др.  [c.14]

Распространение волн по поверхности упругого сплош> ного тела. В предыдущем параграфе мы рассмотрели распространение волн в упругой среде вдали от поверхност>1.  [c.438]

РАСПРОСТРАНЕНИЕ ВОЛН ПО ПОВЕРХНОСТИ УПРУГОГО СЯЛОШНОГО ТЕЛА 441  [c.441]

Распространение волн напряжений в теле при ударе его в преграду с внедрением существенно отличается от аналогичного процесса при соударении. Отличие состоит в том, что внедрение сопровожается приложением нагрузки не только на торцовое сечение (что имеет место при соударении), но и на части его боковой поверхности, которая увеличивается с течением времени по мере внедрения тела (рис. 103). При этом источником волн напряжений является как торцовое сечение (2 = 0), так и загруженная часть внешней боковой поверхности тела.  [c.348]

Этот результат представляет собой случай изгиба пластинок, исиользоваиный впоследствии А. Надаи для экспериментального подтверждения приближенной теории изгиба ), предложенной Кирхгоффом. О другой интересной краевой задаче упоминается н Натуральной философии Томсона—Тэйта. Здесь сообщается по этому поводу До сих пор, к сожалению, математикам не удалось решить, а возможно, что они даже и не пытались решать, прекрасную задачу об изгибании широкой, весьма тонкой полосы (подобной, например, часовой пружине) в круговое кольцо ). Лэмб исследовал антикластический изгиб по краю тонкой полосы ) и достиг большого прогресса в решении задачи о балке ). Рассматривая бесконечно длинную балку узкого прямоугольного сечения, нагруженную через равные интервалы равными сосредоточенными силами, действующими поочередно вверх и вниз, он упростил решение двумерной задачи а для некоторых случаев получил уравнения кривых прогиба. Таким путем было показано, что элементарная теория изгиба Бернулли достаточно точна, если высота сечения балки мала в сравнении с ее длиной. При этом было также показано, что поправка на поперечную силу, даваемая элементарной теорией Рэнкина и Грасхофа, несколько преувеличена и должна быть снижена до 75% от рекомендуемого этой теорией значения. Надлежит упомянуть также и о труде Лэмба, посвященном теории колебаний упругих сфер ) и распространению упругих волн по поверхности полубесконечного тела ), а также в теле, ограниченном двумя плоскими гранями ). Он изложил также и теорию колебаний естественно искривленного стержня ). Особый интерес для инженеров представляет его и Р. В. Саусвелла трактовка колебаний круглого диска ).  [c.407]

Волновые движения. Распространение волн в твердых телах волны на поверхности моря волны, вызываемые движением корабля распространение волн в каналах и реках приливы сехюмические процессы звуковые колебания общая проблема шума в различных средах и т. п. Окружающая пас среда (жидкости, газы, твердые тела и различные поля) постоянно находится в состоянии вибраций и различных распространяющихся во времени и по объемам возмущенных движений. Непосредственно ясно, что эти явления играют очень важную роль в нашей жизни и существенны при решении многочисленных технических вопросов.  [c.11]

Для определения линейной комбинации векторов щ и щ, дающей истинное смещение и, надо обратиться к предельным условиям на границе тела. Отсюда же определится связь между волновым вектором к и частотой а следовательно, и скорость распространения волны. На свободной поверхности должно выполняться условие tXiftrtft = 0. Поскольку вектор нормали п направлен по оси Zi то отсюда следуют условия  [c.135]

Отсутствие мнимой части корня указывает на слабое затуха-ние поверхностной волны оно вызывается только обычным затуханием объемных волн. В результате волна Релея способна распространяться на большое расстояние вдоль поверхности твердого тела. Ее проникновение внутрь тела невелико на глубине длины волны интенсивность звука составляет около 5 % интенсивности на поверхности тела (волна с 51/-поляризацией). При распространении поверхностной волны частицы тела движутся, вращаясь по эллипсам с большой осью, перпендикулярной границе. Вытя-нутость эллипса с глубиной увеличивается.  [c.12]


В окрестности дефекта на поверхности раздела в нагруженном композиционном теле локальные напряжения резко возрастают, особенно около границ дефекта. Если уровень локальных напряжений достаточно высок, то дефект становится неустойчивым и может развиться до столь больших размеров, что тело разрушится. При исследовании динамических задач теории упругости было установлено, что динамическая концентрация напряжений выше концентрации, рассчитанной для соответ-ствуюш,ей статической задачи. Вследствие этого может оказаться, что дефект на поверхности раздела будет развиваться или нет в зависимости от того, прикладывается ли внешняя нагрузка внезапно, скачком, или же возрастает постепенно. Распространение дефекта вдоль поверхности раздела двух соединенных упругих тел с различными упругими константами и различными плотностями изучалось в работе Брока и Ахенбаха [17]. Было установлено, что развитие дефекта вызвано концентрацией напряжений, возникающей в тот момент, когда система горизонтально поляризованных волн достигает границы дефекта. Предполагалось, что разрыву адгезионных связей предшествует течение в слое, связывающем тела в единую систему. Была вычислена скорость перемещения переднего фронта зоны течения для различных значений параметров, определяющих свойства материала, и различных систем волн. Оказалось, что по достижении критического уровня пластической деформации происходит разрыв материала на заднем фронте зоны течения.  [c.387]

СПОСОБНОСТЬ [вращательная — отношение угла поворота плоскости поляризации света к расстоянию, пройденному светом в оптически активной среде излучательная — отношение светового потока, испускаемого светящейся поверхностью, к площади этой поверхности и к интервалу частот, в котором содержится излучение отражательная — отношение отраженной телом энергии к полной энергии падающих на него электромагнитных волн в единичном интервале частот поглощательная— отношение поглощенного телом потока энергии электромагнитного излучения в некотором интервале частот к потоку энергии падающего на него электромагнит-, ного излучения в том же интервале частот разрешающая прибора — характеристика способности прибора (оптического давать раздельные изображения двух близких друг к другу точек объекта спектрального давать раздельные изображения двух близких друг к другу по длинам волн спектральных линий) тормозная — отношение энергии, теряемой ионизирующей частицей на некотором участке пути в веществе, к длине этого участка пути] СРЕДА [есть общее наименование физических объектов, в которых движутся тела или частицы и распространяются волны активная — вещество, в котором осуществлена инверсия населенностей уровней энергии и в результате чего может быть достигнуто усиление электромагнитных волн при их прохождении через вещество анизотропная — вещество, физические свойства которого неодинаковы по различным направлениям гнротронная — среда, в которой существует естественная или искусственная оптическая активность диспергирующая — вещество, фазовая скорость распространения волн в котором зависит от их частоты изотропная — вещество, физические свойства которого одинаковы по всем выбранным в нем направлениям конденсированная—твердая или жидкая среда]  [c.279]

В анизотропных средах структура и свойства Р. в. зависят от типа анизотропии и направления распространения волн. Р. в. могут распространяться не только по плоской, но и по криволинейной свободной поверхности твёрдого тела. При этом меняются их скорость, распределение смещений и напряжений с глубиной, а также спектр допустимых частот, к-рый из непро-- рывного может стать дискретным, как, наир., для 404 сяучая Р. в, на поверхность сферы.  [c.404]

Крутизна фронта откольного импульса определяется скоростью разрушения в последующие моменты времени. Предельная скорость разрушения, которая отвечает появлению откольного импульса, может бьггь достигнута по мере его развития во многих сечениях образца в разные моменты времени. Время задержки уменьшается с ростом растягивающих напряжений при распространении отраженной волны разрежения вглубь тела. На рис.5.39 показана линия предельных (в указанном смысле) состояний при отколе на диаграмме расстояние —время. Откольный импульс приходит на контролируемую свободную поверхность из точки на этой линии, где ее наклон совпадает с наклоном соответствующей характеристики, так что длительность первого импульса на профиле скорости свободной  [c.226]

До развития электронной техники экспериментальное исследование упругих волн в твердых телах ограничивалось в значительной мере улавливанием сейсмических волн и исследованием колебаний слыщимых частот в опытах по акустике. Б. Гопкинсон [58] был в числе первых исследователей распространения импульсов напряжения в лабораторных условиях, причем он проводил эти опыты с целью изучения природы зависимости давления от времени при взрыве или при встрече снаряда с жесткой поверхностью. Его приспособление, известное под названием стержня Гопкинсона, основано на применении элементарной теории распространения упругих импульсов напряжения в цилиндрическом стержне, когда длина импульса велика по сравнению с радиусом стержня. Электрический вариант стержня Гопкинсона, предложенный в 1948 г. Девисом [25], даёт возможность экспериментально исследовать природу распространения импульсов, длина которых сравнима с поперечными размерами стержня. Этот вариант будет описан в следующем параграфе.  [c.85]


Смотреть страницы где упоминается термин Распространение волн по поверхности тел : [c.708]    [c.50]    [c.70]    [c.13]    [c.36]    [c.309]    [c.667]    [c.267]    [c.240]    [c.409]    [c.157]    [c.173]    [c.65]    [c.817]   
Теория упругости (1937) -- [ c.438 ]



ПОИСК



Волны распространение

Поверхность волны

Распространение волн от сферической поверхности. Уменьшение амплитуды повторного движения

Распространение волн по поверхности упругого сплошного тела

Распространение земных волн над плоской поверхностью Земли

Распространение электромагнитных волн над поверхностью Земли



© 2025 Mash-xxl.info Реклама на сайте