Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластичность энергетическое

Энергетическая теория прочности дает для пластичных материалов более точное, по сравнению с третьей теорией, совпадение теоретических расчетов с экспериментальными данными, благодаря чему она получила большое распространение. Для расчета деталей из хрупких материалов данная теория прочности неприменима.  [c.198]

Следовательно, условие прочности (в данном случае это условие пластичности) по энергетической гипотезе формоизменения (называемой также четвертой гипотезой или гипотезой Губера — Мизеса) имеет вид  [c.231]


На основании имеющихся опытных данных можно считать, что для пластичных материалов при трехосном напряженном состоянии удовлетворительные результаты дают энергетическая гипотеза формоизменения и третья гипотеза прочности. Что же касается хрупких материалов, то для них рекомендуется гипотеза прочности Мора или Н. Н. Давиденкова.  [c.234]

Первоначальную идею энергетической гипотезы, выдвинутую в 1885 г. Бельтрами, усовершенствовал львовский проф. А. Губер (в 1904 г.), а затем уточнили Р. Мизес (в 1913 г.) и Г. Генки (в 1924 г.). Экспериментальная проверка пятой гипотезы показала, что она справедлива только для пластичных материалов, у которых =сг с, но критерий перехода здесь точней, чем у третьей гипотезы,  [c.240]

Соотношения (5.309) и (5.310) определяют теорию, которая называется теорией идеальной пластичности Генки. Отметим, что условия (5.310) и (5.311) допускают геометрическую и энергетическую интерпретацию, на которой останавливаться не будем.  [c.284]

С потерей химической стабильности данная зона приобретает свойство механической стабильности, которое заключается в пластичности, возможности легкой перестройки взаимного расположения атомов благодаря изменению их координационного числа. При воздействии механических нагрузок в пористой структуре происходят внутренние трансформации в наиболее энергетически выгодную для восприятия данной нагрузки локальную структуру. Такая трансформация осуществляется посредством структурных фазовых переходов второго рода.  [c.123]

Можно указать на несколько факторов, вызывающих появление подобных дефектов. К ним относятся в первую очередь кинетические факторы, связанные с тем, что кристалл не успевает стать идеальным в процессе кристаллизации и последующей обработки. Далее следует указать, что при не слишком низких температурах из-за конкуренции энергетического и энтропийного факторов присутствие в кристалле некоторого количества дефектных мест будет отвечать термодинамическому равновесию. Наконец, уже созданные идеальные кристаллы могут оказаться испорченными под влиянием факторов (механической обработки, действия радиации), нарушающих строгую периодичность расположения атомов. По этим причинам реальные кристаллы имеют дефекты, и физические свойства кристалла формируются под совместным действием строгой периодичности и отступлений от нее. Можно привести немало примеров, свидетельствующих о важности учета вклада дефектов в формирование свойств материалов. Так, без учета этого вклада оказалось невозможным построение теории прочности и пластичности материалов, поскольку эти характеристики определяются степенью сопротивления тела действию сил, смещающих разные части тела относительно друг друга. Под действием радиации (мощные световые потоки, пучки электронов, нейтронов, заряженных ядер и т. д.). отдельные атомы или группы атомов оказываются выбитыми из своих правильных положений, и поэтому структура и свойства облученных материалов необъяснимы без оценки роли дефектов и т. д. В связи с этим важной составной частью физики твердого  [c.228]


Существует много теорий, построенных не только на критериях текучести и разрушения. К ним относятся атомно-молекулярная теория прочности статистическая теория прочности и пластичности теории прочности, базирующиеся на линейной механике разрушения структурно-энергетическая теория усталости. Все эти теории проходят стадию апробирования. В практике же применяются так называемые классические теории прочности (см. 7.3).  [c.92]

Энергетическая теория прочности обычно хорошо согласуется с экспериментальными данными и широко используется в производственной практике для пластичных материалов.  [c.100]

В технической литературе известно несколько мер деформаций, каждая из которых претендует называться истинной . Мера, введенная здесь определениями (2.16) и (2.17), отвечает некоторым энергетическим соображениям, подробности о которых можно найти в специальной литературе, нащ имер, по теории пластичности.  [c.59]

В круг значимых внешних воздействий также следует отнести и радиационное облучение элементов атомных энергетических установок. Из всех компонентов облучения наибольшей повреждающей способностью обладает нейтронный поток. В числе последствий радиационного облучения укажем, прежде всего, на уменьшение характеристик пластичности. Одновременно снижается трещиностойкость материала. Именно это обстоятельство определяет одну из важнейших проблем современной ядерной энергетики, решать которую надлежит путем создания новых сталей и сплавов.  [c.64]

Вал круглого поперечного сечения подвергается действию изгибающего (Л/ ) и крутящего (Л/ р) момента. Найти соотношение между указанными моментами, при котором материал в окрестности наиболее напряженной точки вала придет в состояние пластичности. Материал вала предполагать идеально-пластическим. Задачу решить в двух вариантах с точки зрения энергетической теории пластичности (4.13) и на основании теории наибольших касательных напряжений.  [c.195]

Примечание. Через к обозначена пластическая постоянная, т. е. а От (где а = 1/2 если придерживаться гипотезы Сен-Венана, или а = 1/]/ 3, если исходить из энергетических представлений о причине пластичности).  [c.235]

Энергетическая (четвертая) теория прочности основана на гипотезе о том, что опасное состояние материала наступает, когда удельная потенциальная энергия изменения формы достигает опасного значения [Нф ], определяемого опытным путем для одноосного напряженного состояния. Четвертая теория прочности широко используется при расчетах конструкций из пластичных материалов. Для хрупких материалов она неприменима.  [c.345]

В таком виде условие пластичности соответствует предположению, что интенсивность напряжений достигает величины предела текучести. Такое же условие получается при использовании энергетической теории прочности.  [c.573]

Теория энергии изменения формы. Получившая- широкое распространение для. пластичных материалов, энергетическая теория основана на предположении, что опасное состояние, материала, независимо, от напряженного СОСТОЯНИЯ наступает тогда., когда удельная- потенциальная энергия деформации, связанная с изменением формы, достигает определенной величины-..  [c.103]

Часто вид разрушения устанавливают по величине пластической деформации, предшествующей разрушению хрупкому разрушению не предшествует пластическая деформация. Вязкое разрушение связывают со значительной пластической деформацией. Однако при таком подходе нередки несоответствия энергетических затрат собственно на разрушение с величиной пластической деформации. Возможны случаи, когда хрупкое разрушение (сколом) происходит после значительной пластической деформации, в то же время разрушение пластичных металлов, также претерпевших большую деформацию, часто не требует больших затрат энергии. Высокопрочные современные материалы, разрушаясь вязко, не обнаруживают высоких пластических свойств.  [c.189]


Срок службы современных энергетических установок в зависимости от их назначения изменяется от нескольких тысяч до 250 000—300 000 ч. Проведение испытаний на ползучесть длительностью, близкой к сроку службы, является технически трудоемкой и дорогостоящей задачей и значительно отдаляет срок промышленного внедрения новых жаропрочных материалов, используемых в современных энергетических установках. В связи с этим существует необходимость прогнозирования характеристик прочности и пластичности на заданный ресурс по результатам испытаний ограниченной длительности.  [c.67]

Но ведь окислов немало, и совершенно очевидно, что многие из них при высокой температуре могут взаимодействовать с металлической основой или с ее окислом, что крайне нежелательно. Необходимо было определить энергетические возможности и направление реакции между металлической пластичной мат-86  [c.86]

Если использовать энергетическое условие пластичности (четвертая теория), то эквивалентное напряжение по этой теории в указанной опасной точке может быть найдено по формуле  [c.724]

В томе И излагается теория деформации стержней, энергетические основы механики твердого деформируемого тела и элементы строительной механики (статика стержневых систем). При обсуждении ряда вопросов используется и аппарат теорий упругости, пластичности и ползучести, с одной стороны, для оценки элементарной теории, составляющей основное содержание курса, а с другой стороны, для решения задач, не разрешаемых при помощи элементарной теории.  [c.2]

В работе [2] показано, что упругопластический расчет осесимметричных корпусных конструкций энергетического оборудования и сосудов давления может быть удобно выполнен на основе разработанного ранее матричного метода расчета таких конструкций в упругой области (см. 1 гл. 3). Используемые в этом методе рекуррентные матричные соотношения метода начальных параметров не изменяются, а в формулах для оболочек, пластин и колец модули упругости Е и Z) заменяются соответствующими интегральными функциями пластичности, которые уточняются в последовательных приближениях.  [c.205]

Магнитные сплавы платины принадлежат к системе платина—железо и системе платина—кобальт. Оба сплава обладают очень большой коэрцитивной силой по намагниченности Нсм= = 520 кА м и сравнительно большой остаточной индукцией. Поэтому у них коэрцитивная сила по индукции Нсв н энергетическое произведение (ВН)тах достигают больших значений. Высокое значение объясняют наличием в сплавах платины однодоменных частиц Ре—Р( и Со—Р(, рассеянных в маломагнитной матрице. Оба сплава платины пластичны и легко поддаются всем видам механической обработки, однако из-за высокой стоимости их применение ограничено только микроминиатюрными магнитами.  [c.117]

В большинстве разрабатываемых конструкций ТЭП и ядер-ных установок имеются перегрузки и вибрации. Многие детали ядерных реакторов и ТЭП свариваются и имеют сложную форму. Поэтому полуфабрикаты, из которых они изготавливаются, должны обладать достаточно большим запасом пластичности при комнатной температуре, а сварные швы на деталях не должны растрескиваться. По этим причинам переход молибдена с понижением температуры из пластичного в хрупкое состояние оказался серьезным препятствием для широкого использования этого металла в ядерных энергетических установках.  [c.16]

Значительно снижают длительную пластичность концентраторы напряжения. Именно они часто служат причиной аварий энергетического оборудования. Влияние их тем заметнее, чем выше жаропрочность и чем меньше длительная пластичность материала.  [c.90]

При выводе формул для предельных нагрузок были использованы условия пластичности по теории максимальных касательных напряжений и энергетической теории. Выбирали ту формулу, которая давала более простые зависимости. Эксперименты показали, что результаты расчетов по этим теориям одинаково хорошо согласуются. В частности, на рис. 7-1,а представлены предельные давления для трубчатых образцов, определенные опытным путем и по обеим теориям (сплошные линии). Экспериментальные значения находятся между расчетными по обеим теориям.  [c.360]

РАЗРЯД (искровой имеет вид прерывистых зигзагообразных разветвляющихся нитей, быстро прекращающихся после пробоя разрядного промежутка уменьшения напряжения, вызванного самим разрядом кистевой относится к разновидности коронного разряда, сопровождающегося появлением искр вблизи острия коронный — высоковольтный самостоятельный разряд, возникающий в резко неоднородном электрическом поле вблизи электродов с большой кривизной поверхности (острие, проволока) лавинный электрический разряд в газе, в котором возникающие при ионизации электроны сами производят дальнейшую ионизацию несамостоятельный— газовый разряд, существующий при ионизации газа внешним ионизатором самостоятельный не требует для своего поддержания внешнего ионизатора тлеющий происходит самостоятельно в газе при низкой температуре катода, сравнительно малой плотности тока и пониженном по сравнению с атмосферным давлении газа электрический — прохождение электрического тока через вещество, сопровождающееся изменением состояния вещества под действием электрического поля) РАЗУПРОЧНЕНИЕ — понижение прочности и повышение пластичности предварительно упрочненных материалов, РАКЕТОДИНАМИКА — наука о движении летательных аппаратов, снабженных реактивными двигателями РАСПАД радиоактивный (альфа состоит в испускании тяжелыми ядрами некоторых химических элементов альфа-частиц бета обозначает три типа ядерных превращений электронный и позитронный распады, а также электронный захват гамма является жестким электромагнитным излучением, энергия которого испускается при переходах ядер из возбужденных энергетических состояний в основное или менее возбужденное состояние, а также при ядерных реакциях) РАСПЫЛЕНИЕ катодное — разрушение твердых тел при  [c.269]


Опыты подтверждают энергетическую теорию формоизменения для пластичных материалов, а напряжение текучести отображается этой теорией лучше, чем остальными [6, 22, 104, 108, 129, 140].  [c.14]

С интенсивным повышением жаропрочности аустенитной стали при резком падении длительной пластичности понижается сопротивление термической усталости. Использование высокожаропрочных сталей для элементов энергетических установок, работающих при переменных тепловых нагрузках, в целом ряде случаев может оказаться нецелесообразным. Сказанное подтверждают данные эксплуатации корпусов стопорных клапанов турбины СКР-100 [40].  [c.148]

При выборе материалов для таких элементов, как пароперегреватели и паропроводы, также следует придавать существенное значение характеристикам длительной и термоциклической пластичности, особенно принимая во внимание необходимость обеспечения надежной работы металла в условиях повышенной маневренности энергетических установок.  [c.185]

Если пластическую деформацию металла при растяжении рассматривать в главных осях, то можно считать, что напряжения, действующие в поперечных направлениях, равны нулю С2 = О, аз = 0. Для этого случая, как известно, условие пластичности по 4-й (энергетической) теории прочности  [c.232]

Однако, при нагружении конструкций из малоуглеродистых, низко- и среднелегированных сталей, содержащих плоскостные дефекты, имеет место, как правило, развитое пластическое течение в вершине данных концентраторов (зона АВ на рис. 3.2). В общем случае это снижает опасность хрупких разрушений, так как часть энергии нагружения расходуется на образование пластических зон. В данных зонах напряжения и деформации уже не контролируются величиной коэффициентов интенсивности напряжений, а определяются из соотношений теории пластичности. Дпя некоторого упрощения описания процесса разрушения в механике разрушения вводят критерии, описывающие поведение материала за пределом упругости 5 — критическое раскрытие трещины и — критическое значение независящего от контура интегрирования некоторого интеграла. Деформационный критерий 5 основан на раскрытии берегов трещины до некоторых постоянных критических значений для рассматриваемого материала. На основе контурного Jj,-интеграла представляется возможность оценить момент разрушения конструкций с трещинами в упругопластической стадии нагружения посредством определения энергии, необходимой для начала процесса разрушения. При этом полагается, что критическое значение энергетического параметра, предшествующее разрушению, является характеристикой материала. Существуют также и другие характеристики разрушения, которые не получили широкого распространения на практике. Например, сопротивление микросколу [R ]. сопротивление отрыву, угол раскрытия вершины трещины, двухпараметрический критерий разрушения Морозова Е. М. и др.  [c.81]

В этом случае не максимальное касательное напрянсение, а октаэдрическое касательное напряжение Токт достигает некоторого постоянного для данного материала предельного значения. Критерий пластичности Губера — Мизеса соответствует известному условию энергетической теории прочности.  [c.278]

Процесс образования новых зародышей и роста новых зерен продолжается, пока деформированная структура полностью не заменится новыми зернами. Этот процесс (рекристаллизация) сопровождается резким снижением твердости и прочности с одновременным увеличением пластичности. При дальнейшем повышении температуры отжига рост зерна феррита происходит за счет соседних, энергетически менее выгодных. С ростом зерна предел прочности (ТВ, твердость, коэрцитивная сила Яе и остаточная индукция Вг уменьшаются, а магнитные проницаемости цо и .imax увеличиваются.  [c.92]

В современных конструкциях сосудов высокого давления, энергетических установках и аппаратах широко применяются резьбовые соединения больших диаметров, работающие в условиях переменного теплового и механического воздействия. Такие условия внешнего нагружения приводят к упругопластическому циклическому деформированию с возможным выходом из строя при малом числе циклов нагружения. Из-за ограничений по компоновке увеличить размеры этих соединений не представляется возмонсным. Для изготовления элементов крепежа в энергетике и других отраслях техники применяются теплоустойчивые стали, обладающие высокими характеристиками сопротивления однократному нагружению и пониженными свойствами пластичности. Дальнейшее повышение механических свойств применяемых металлов не приводит к увеличению сопротивления циклическому разрушению резьбовых соединений из-за смены механизма разрушения усталостного на хрупкий). Повышения работоспособности резьбовых соединений можно достигнуть лишь совершенствованием конструкций и применением материалов, обладающих повышенной сопротивляемостью циклическому нагружению при наличии трещин  [c.387]

Для анализа процесса разрушения материалов были созданы различные теории прочности теория наибольших касательных деформаций, или приведенных напряжений Сен-Венана теория максимальных касательных напряжений, или критерий Кулона—Треска, который был использован для разработки условия пластичности Треска—Сен-Венана ряд энергетических теорий (Губер, Бельт-рами, Мотт) уточненная теория наибольших касательных напряжений (теория Мора) и последующие обобщения этой теории с учетом вида напряженного состояния теория трещипообразования (Гриффитс, А. Ф. Иоффе) дислокационные теории разрушения (Ирвин, Орован, Орлов В. С., Зинер, Стро, Коттрелл, Хонда и др.).  [c.15]

Энергетические критерии позволяют анализировать повышенные скорости развития трещин при коэффициентах интенсивности напряжений, близких к критическим. В случае использования деформационных критериев в уравнение типа (10) вместо коэффициента интенсивности напряжений К вводят коэффициент интенсивности деформаций Kie [аналогично уравнению (7) для скоростей развития трещин длительного статического нагружения]. При этом в расчетные уравнения входят базоные характеристики механических свойств — предел текучести, показатель упрочнения в упругопластической области и предельная пластичность  [c.25]

Ударные испытания образцов е надрезом (U или V-образным), проводимые на маятниковых и ротационных коирах, позволяют устанавливать работу разрушения (ударную вязкость), приходящуюся на единицу поверхности (по минимальному сечению образца). Ударная вязкость зависит от прочности и пластичности материала при разруишнин и в значительной степени характеризует его склонность к переходу в хрупкое состояние (при снижении температуры, увеличении остроты надреза и скорости приложения нагрузки). Оснащение копров аппаратурой для регистрации усилий, перемещений, скоростей продвижения трещин позволяет определять количественные значения характеристик прочности и пластичности, кото-)ые уже могут являться расчетными. <роме того, получены определенные корреляционные связи между ударной вязкостью и энергетическими характеристиками механики разрушения Glr и J 1с-  [c.28]


Щелочные угеталлы могут взаимодействовать также с кислородом, растворенным в твердом металле. При этом, если свободная энергия образования окисла твердого металла меньше энергии образования окиси щелочного металла, то щелочные металлы отбирают у твердых металлов растворенный в них кислород. В результате этого щелочной металл может проникать по границам зерен твердого металла и также интенсифицировать межкристаллитную коррозию. Такое явление наблюдается, например, при коррозии ниобия в литии, когда последний проникает по границам зерен и образует там окислы ниобия, причем глубина проникновения лития тем больше, чем выше содержание кислорода в ниобии. Известно также, что свободные от кислорода Nb, Та, Ti, Zr, Mo и W плохо растворяются в щелочных металлах. На механические свойства твердых металлов влияет смачивание их жидким металлом даже в отсутствие коррозионного воздействия, В некоторых случаях достаточно пластичный металл после выдержки в жидком металле становится хрупким. Это явление связывают с адсорбционным влиянием среды. Жидкий металл проникает по линиям дислокаций, образующимся на ранних стадиях деформации.. Адсорбированные жидкие металлы уменьшают энергетический барьер, препятствующий выходу дислокаций на поверхность и разупрочняющий металл.  [c.144]

В результате легирования и термической обработки создаются искажения кристаллической решетки, препятствующие перемещению дислокаций и затрудняющие пластическую деформацию. Если временное сопротивление и предел текучести технически чистого железа составляют всего 25 и 15 кГ/мм соответственно, то у стали 25Х2М1Ф, применяемой для изготовления шпилек и гаек энергетического оборудования, временное сопротивление достигает 85 кГ/мм и предел текучести 11 кГ1мм . Путем легирования и термической обработки стали временное сопротивление можно повысить до 140— 160 KfjuMp-, однако при этом резко снижается пластичность.  [c.100]

Эти уравнения входят как существенный составной элемент в условия накопления повреждений, формулируемых на базе силовых, энергетических и деформационных критериев разрушения. При этом, как указывалось ранее, преимущественное значение при расчетах прочности и долговечности имеют деформационные критерии разрушения, позволяющие наиболее полно учесть кинетику деформаций в зонах максимальной нагруженно-сти и изменение во времени характеристик пластичности. Деформационные критерии разрушения применимы для двух основных стадий повреждения — образования макротрещин и их развития до достижения неустойчивого критического состояния.  [c.12]

В основу формул для определения расчетных напря/конпй для пластичных материалов положена [V (энергетическая) теория прочности для хрупких материалов — I теория прочности [45].  [c.23]

Изучение структурных и энергетических закономерностей пластической деформации в приповерхностных слоях материалов в сравнении с их внутренними объемными слоями имеет важное значение для развития теории и практики процессов трения, износа и схватывания. При этом следует отметить, что. поверхностные слои кристаллических материалов имеют, как правило, свои специфические закономерности пластической деформации. Так, например, в работе [11 при нагружении монокристаллов кремния через пластичную деформируемую среду силами контактного трения было найдено, что в тонких приповерхностных слоях на глубине от сотых и десятых долей микрона до нескольких микрон величины критического напряжения сдвига и энергии активации движения дислокаций значительно меньше, чем аналогичные характеристики в объеме кристалла. Было также показано [2], что при одинаковом уровне внешне приложенных напряжений по поперечному сечению кристалла в радиусе действия дислокационных сил изображения эффективное напряжение сдвига значительно выше, чем внутри кристалла. Поэтому поверхностные источники генерируют значительно большее количество дислокационных петель и на большее расстояние от источника по сравнению с объемными источниками аналогичной конфигурации и геометрии при одинаковом уровне внешних напряжений. Высказывалось также предположение, что облегченные условия пластического течения в приповерхностных слоях обусловлены не только большим количеством легкодействующих гомогенных и различного рода гетерогенных источников сдвига [3], но и различной скоростью движения дислокаций у поверхности и внутри кристалла [2]. Аномальное пластическое течение поверхностных слоев материала на начальной стадии деформации может быть обусловлено действием и ряда других факто-зов, например а) действием дислокационных сил изображения 4, 5] б) различием в проявлении механизмов диссипации энергии на дислокациях, движущихся в объеме кристалла и у его поверхности причем в общем случае это различи е, по-видимому, может проявляться на всех семи фононных ветвях диссипации энергии (эффект фононного ветра, термоупругая диссипация, фонон-ная вязкость, радиационное трение и т. д.) [6], а также на электронной [71 ветви рассеяния вводимой в кристалл энергии в) особенностями атомно-электронной структуры поверхностных слоев и их отличием от объема кристалла, которые могут проявляться во влиянии поверхностного пространственного заряда и дебаевского радиуса экранирования на вели-  [c.39]

Как показали расчетные исследования (см. приложение 1), скорость движения пластичного слоя шлака для основных энергетических углей намного меньше жидкого. Поэтому в дальнейших теоретических и расчетных построениях скоростью движения этого слоя прене- брегается, и поверхность э с / = /о считается границей между шлаковой коркой и текущей л-сидкой пленкой шлака.  [c.69]

Второй — отдельные локальные повреждения в виде очень глубоких кратеров (питтингов), у которых глубина соизмерима с диаметром, а иногда и превышает его. Для таких пластичных материалов, >как армкожелезо, никель, и другие, внешний вид питтингов также имеет правильное очертание с явными признаками деформационного ироисхождения наличие гребня выдавленното металла, Появление линий скольжения во руг питтинга. Отдельные питтинги достигают по глубине 15—20 мкм, а по диаметру до 30—40 мкм. Таких локальных питтинговых повреждений значительно меньше, чем лункообразных вмятин. При продолжении испытаний количество и тех и других следов воздействия возрастает, а ранее возникшие остаются довольно длительное время неизменными, что говорит о том, что они образуются в результате энергетического воздействия при захлопывании единичных кавитационных пузырьков.  [c.15]

На основании данных исследований разрушений гибов пароперегревателей мощных энергетических котлов можно утверждать, что термомеханическая малоцикловая усталость совместно с ползучестью и коррозией является одной из широко распространенных причин преждевременных разрушений. Кроме того, ускоренному появлению трещин способствует недостаточная длительная и циклическая пластичность наклепанного материала обогреваемых гибов.  [c.18]

Вопрос о влиянии режимов термической обработки на характеристики термоусталостной прочности и термоциклической пластичности наклепанной стали особенно важен для теплоэнергетики ввиду того, что многочисленные разрушения элементов трубных систем происходят при малоцикловых нагрузках в неизотермических условиях. В ЦНИИТМАШе были проведены исследования влияния холодной деформации и режимов последующей термической обработки на сопротивление разрушению и деформированию при термоциклическом нагружении аустенитных сталей 12Х18Н10Т, 12Х18Н12Т и Х16НМ2, широко используемых для изготовления высокотемпературных элементов пароперегревателей мощных энергетических котлов [24, 41 ]. Образцы для исследования были как из пруткового металла, так и из паропере-гревательных труб диаметром 32 мм и толщиной стенки 7 мм.  [c.152]


Смотреть страницы где упоминается термин Пластичность энергетическое : [c.164]    [c.36]    [c.20]   
Теория обработки металлов давлением Издание 2 (1978) -- [ c.77 ]



ПОИСК



Геометрический смысл энергетического условия пластичности

Пластичность Энергетическое условие начала

Условие начала пластичности Графики энергетическое

Условие пластичности энергетическое

Энергетическое условие пластичности Губера—Миэеса



© 2025 Mash-xxl.info Реклама на сайте