Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ниобий коррозия

Ясно, что нагрев до 500—700°С вызывает выделение карбидов лишь у пересыщенного аустенита, т. е. у закаленных аусте-нитны.х сталей (при содержании в них углерода более 0,005%). Склонность к интеркристаллитной коррозии аустенитных нержавеющих сталей можно устранить не только уменьшением содержания углерода, но и введением так называемых элементов-стабилизаторов титана или ниобия, являющихся сильными карбидообразователями. При введении в сталь титана или ниобия образуются соответственно карбиды типа МС. Эти карбиды (фазы внедрения) мало растворимы в аустените. Титан и ниобий, соединяясь с углеродом, препятствуют тем самым образованию хромистых карбидов и проявлению интеркристаллитной коррозии. Разумеется, что титан и ниобий следует вводить в достаточных количествах (чтобы они могли связать весь углерод).  [c.490]


Впрочем, более надежно устраняет процессы, приводящие к развитию интеркристаллитной коррозии, снижение углерода, тогда как так называемые элементы-стабилизаторы (т. е. титан или ниобий) лишь уменьшают ее.  [c.490]

Из данных табл. 66 видно повышение стойкости сталей к точечной коррозии с увеличением содержания в них хрома. Из данных таблицы также следует, что углерод, титан и ниобий снижают стойкость хромоникелевой стали к точечной коррозии, равно как и введение марганца при одновременном снижении содержания хрома и никеля, в то время как Мо значительно повышает стой-  [c.418]

Разновидностью межкристаллитной коррозии металлов является ножевая коррозия (рис. 3. 2з) — коррозия местного вида, возникающая в сварных конструкциях в очень узкой зоне на границе сварной шов — основной металл при сварке хромоникелевых сталей с повышенным содержанием углерода, даже легированных титаном или ниобием. В узкой околошовной зоне перегретого почти до расплавления металла (порядка 1300° С и выше) растворяются карбиды титана или хрома. При последующем быстром охлаждении (при контакте с ненагретым металлом) этой зоны карбиды титана или ниобия не успевают выделиться вновь и углерод остается в твердом растворе. Последующее достаточно длительное пребывание этой зоны при температурах 600—750° С, например, при сварке двухсторонним швом, приводит  [c.424]

Легирование титаном или ниобием. Легирование аустенит-ных сплавов небольшими количествами элементов, обладающих большим сродством к углероду, чем хром, предотвращает диффузию углерода к границам зерен. Уже имеющийся здесь углерод взаимодействует с титаном или ниобием, а не с хромом. Сплавы такого рода называют стабилизированными (например, марки 321, 347, 348). Они не проявляют заметной склонности к межкристаллитной коррозии после сварки или нагрева до температур сенсибилизации. Наилучшей стойкости к межкристаллитной коррозии при нагреве сплава до температур, близких к 675 °С, достигают в результате предварительной стабилизирующей термической обработки в течение нескольких часов при 900 °С [14, 19]. Эта обработка эффективно способствует переходу имеющегося углерода в стабильные карбиды при температурах, при которых растворимость углерода в сплаве ниже, чем при обычно более высокой температуре закалки.  [c.307]

Для устранения склонности сталей i МКК предложены различные способы, которые направлены на изменение их состава и структуры. Склонность к межкристаллитной коррозии снижают уменьшением содержания углерода в стали в процессе выплавки до 0.03 % и менее легированием стабилизирующими элементами, такими как титан и ниобий термической обработкой стали (аустенизация. стабилизирующий отжиг).  [c.87]


Коррозия циркония в воде при повышенных температурах, в атмосфере пара высоких параметров и в расплавленных металлах. Чем выше чистота металла, тем он более стоек (фиг. 21). При 500 час. испытаний при нормальной температуре цирконий оказался более коррозионностоек, чем сталь 18-8, ниобий, бериллий, алюминий.  [c.473]

Коррозия ниобия и тантала на воздухе. Поверхность образца 40 толщина пластинки 0,1 мм длительность испытаний 20 час.  [c.504]

Коррозия никеля и сплавов никеля с ниобием в азотной кислоте  [c.513]

В сталях в качестве легирующего элемента используют преимущественно ниобий. Добавки ниобия в нержавеющие стали устраняют интеркристаллитную коррозию стали. Применяют легирование- ниобием и других сортов стали.  [c.514]

Стойкость нержавеющих сталей в азотной кислоте определяется не только их Химическим составом, но и металлургическими и технологическими факторами. Для повышения коррозионной стойкости сталей следует стремиться к возможно более низкому содержанию углерода (не более 0,03%, а лучше - 0,02%), кремния (не более 0,40%), фосфора и серы (способствует селективной коррозии). Введение в качестве легирующих элементов стабилизаторов (титана и ниобия) не всегда оправдано, поскольку из- за образования карбидов и карбонитридов, легко растворяющихся под воздействием азотной кислоты, стойкость сталей может резко снижаться. Благоприятно влияют на стойкость сталей в азот-8626 КЗК 45 6 21  [c.21]

Для защиты ниобия от высокотемпературной коррозии наиболее широкое применение получили диффузионные покрытия [2], и все же продолжающаяся миграция насыщающих элементов в условиях эксплуатации ограничивает возможности их применения.  [c.69]

В отличие от сталей имеются цветные металлы, в которых опасность коррозии при выделении водорода вызывается внутренним образованием гидридов. К этим металлам относятся, например, титан, цирконий, ниобий и тантал. Эти металлы могут представить интерес как вентильные при защите анодами с наложением тока от постороннего источника (см. 8.2.2.) и как материалы для химического аппаратостроения (см. 20.3.2).  [c.76]

Данные по стойкости тугоплавких металлов в азотной кислоте представлены на рис. 47. Критическая концентрация азотной кислоты для Ti, который совершенно нестоек даже в слабых кипящих растворах серной и соляной кислот, 30%. В азотной кислоте с концентрацией 25% тантал, ниобий и цирконий абсолютно стойки. Если коррозионную стойкость оценивать не по уменьшению массы металла в зависимости от концентрации кислоты, а за критерий коррозионной стойкости принять глубину коррозии 0,25 мм/год, то в этом случае коррозионная стойкость того или иного металла будет характеризоваться одной цифрой — критической концентрацией кислоты.  [c.55]

Испытания в кипящей серной кислоте показали, что качественное влияние легирующих элементов на коррозионную стойкость ниобия в этой среде такое же (рис. 68), как и при испытаниях в соляной кислоте, однако количественное влияние элементов неодинаково (рис. 69). Ti, V и Zr, уменьшают стойкость ниобия в кипящей серной кислоте, хотя начальные присадки V и Zr (до 5 ат.%) и Ti (до 10 ат.%) еще не оказывают влияния на стойкость ниобия. Это имеет значение как средство удешевления сплава без понижения его коррозионной стойкости (например, введение Ti в количестве 10 ат.% 18% по массе). Та, как и Мо, уменьшает скорость коррозии ниобия, причем Та более интенсивно, чем Мо.  [c.69]

Стойкость против коррозии ниобия и его сплавов определяется не столько свойствами самого металла, сколько свойствами его окисла, в данном случае Nb О s.  [c.73]

Результаты большинства исследований подтверждают, что в средах, в которых тантал абсолютно стоек (скорость коррозии менее 0,01 мм/год), сплавы, с содержанием ниобия до 50 мас.% также устойчивы против коррозии. Их коррозионная стойкость соответствует нормам 1 балла (скорость коррозии менее 0,1 мм/год). К таким средам относятся кипящие растворы серной, азотной, соляной и фосфорной кислот, растворы щелочей, влажный хлор и его соединения и другие агрессивные среды.  [c.78]

Кремний при содержании его более 2% в аустенитной хромоникелевой стали значительно увеличивает ее коррозионную стойкость в сильноокислительных средах, возможно, вследствие улучшения защитных свойств окисной пленки соединениями типа ЗЮа (рис. 20). Однако установлено, что в сварных соединениях стали, легированной 4—6% 51, происходит избирательная коррозия металла околошовной зоны в окислительных средах в области, ограниченной изотермами 600—900°С. Причем с ростом концентрации кремния и ниобия коррозия возрастает. Установлено, что коррозионное разрушение распространяется по межзеренным границам в результате растворения избыточной фазы, имевшей повышенное содержание кремния, никеля, марганца и пониженное по сравнению с исходным материалом содержание хрома и железа. При содержании кремния в стали менее 1 % он не оказывает влияния на коррозию металла. В целом, в настоящее время, влияние 51 на коррозию коррозионно-стойких сталей в азотной кислоте окончательно не выяснено.  [c.37]


Ножевая коррозия имеет сосродоточенпый характер (рис. 142, в) и поражает основной металл. Этот вид коррозии развивается в сталях, стабилизироват[иых титаном и ниобием, обычно в участках, которые нагревались до темиератур вьине 1250° С. При этом карбиды титана и ниобия растворяются в аустеиите. Повторное тепловое воздействие на этот металл критических температур 500—800° С (наирнг.гер, при многослойной сварке) приведет к сохранению титана и ниобия в твердом растворе и выделению карбидов хрома.  [c.291]

Из диаграмм, приведенных на рис. 364, видно, что в стали 18-9 без тн-т на и н,юбия выдержка в течение 10 мин, при 650—700°С приводит металл и состояние склоипостп к иитеркристаллитной коррозии (рис. 364, а). Сталь 18-10 с титаном и ниобием значительно более устойчива (рис. 364, б, а).  [c.491]

Межкристаллитная коррозия зависит от содержания углерода, а также от наличия элементов — стабилизаторов. Весьма стойки к межкристаллитной коррозии стали с пониженным содержанием углерода (<0,03% С) и стали с титаном или ниобием. В этих сталях межкристаллитная коррозия может быть вызвана отпуском при 600—700°С с выдержкой более часа. В сталях, не содержащих этих элементов или содержащих более 0,03% С, после отпуска продолжительностью менее часа примерно при бОО С появляется склонность к межкрпсталлпт-ной коррозии.  [c.496]

В последнее время в условиях газовой коррозии находят при-менешк новые конструкционные металлы и сплавы, такие, как титан, цирконий, молибден, ниобий и др.  [c.143]

Полагают, что причиной ножевой коррозии является то, что основной металл в участках, непосредственно прилегающих к сварному шву, подвергается при лаложепии первого сварного шва нагреву до 1200—1300° С. При этом происходит переход карбидов титана и ниобия в твердый раствор. При охлаждении стали с температуры, превышающей предел растворимости этих карбидов, фиксируется структура аустенита, содержащего в твердом растворе титан и ниобий. При наложении  [c.167]

Методом борьбы с ножевой коррозией сварных соединении хромоникелевых сталей является легирование их титаном и ниобием в количествах, превышающих известные соотноиычшя. А. И. Акулов рекомендует следующие соотношения  [c.168]

В описанных выше малоуглеродистых нержавеющих хромо-молибденистых сталях концентрация углерода в некоторых случаях превышает 0,01 %, однако они не подвержены межкристаллитной коррозии благодаря присутствию молибдена, который замедляет диффузию углерода и азота, а также влиянию титана и ниобия, которые (если они входят в состав стали) реагируют предпочтительно с углеродом и азотом.  [c.310]

К конструкционным материалам в реакторах предъявляется дополнительное требование радиационной стойкости, т. е. длительного сохранения физических и химических свойств в условиях интенсивнейшего нейтронного облучения. Особенно опасны коррозия и падение механической прочности. Так, коррозия оболочек твэлов и теплоносителей может привести к нарушению герметичности и тем самым к радиоактивному заражению теплоносителя, а иногда и к аварии. Для изготовления конструктивных элементов применяются алюминий, его сплавы с магнием или бериллием, цирконий, керамические материалы, нержавеющая сталь, графит, покрытия из ниобия, молибдена, никеля и некоторые другие материалы.  [c.582]

Имплантация ионов Nb с энергией 30 кэВ при дозах 5 10 и 5 -10 ион/см в поверхность стали марки Х18Н9Т позволила получить легированный поверхностный сплав на глубине 20 нм. Увеличение концентрации ниобия не меняет относительного содержания железа, хрома и никеля в поверхностном слое стали, но существенно повышает его коррозионную стойкость в 20 %-ной серной кислоте после предварительной катодной обработки в течение 15 мин, смещая потенциал коррозии в положительную сторону. Однако максимальная концентрация ниобия в стали марки Х18Н9Т при этом ограничена 20 % в связи с распылением поверхности при дозе 5 10 ион/см .  [c.76]

Наличие примесей, а следовательно, и способ получения сказываются на стойкости циркония против коррозии. Так, содержание углерода всего 0,077% очень заметно снижает стойкость против коррозии как в кислотах, так и в воде при высоких температурах и давлении (фиг. 20). Заметно сказывается и примесь азота. Добавка около 3,5% ниобия в некоторой степеии нейтрализует вредное действие углерода. Наиболее стоек цирконий, получаемый методом диссоциации йодида.  [c.473]

Тантал и ниобии устойчивы на возду.хе при обычной температуре. Некоторое окисление (пленки побежалости) наблюдается при нагрованни металлов д.-> 200—300 С. Выше 500" С происходит быстрое окисление с образованием окислов ЫЬгОб и Ta Os. Данные коррозии тантала и ниобия иа ноздухе при повышен-ны.х температурах приведены в табл. 72.  [c.504]

Результаты анализа жаростойких материалов, пригодных защитить ниобиевые сплавы в интервалах рабочих температур 1200— 1300° С, позволяют сделать заключение, что покрытия из дисилицида молибдена могут рассматриваться как вполне перспективные. Нам представлялось целесообразным изыскание путей создания защитных покрытий из Мо312 на ниобий и его сплавы методом плазменного напыления. Проведенные предварительно эксперименты показали, что нанесенные обычным образом покрытия из дисилицида молибдена не способны защищать ниобий и его сплавы от газовой коррозии при температуре 1300° С из-за большой пористости покрытия.  [c.108]

Стеклообразные составляющие в размягченном состоянии быстро свариваются друг с другом, и таким образом формируется плотное покрытие из Мо312—В, способное защитить ниобий от газовой коррозии. Покрытия, полученные вышеуказанным методом, имеют гетерогенную структуру. Частицы из Мо312, легированные бором, равномерно распределены в стеклообразной боросиликатной матрице.  [c.111]

Для выяснения глубины окисления ниобия были проведены измерения микротвердостп приповерхностного слоя ниобия па микротвердомере МТМ-3 (рис. 2). Результаты измерения указывают на интенсивную коррозию ниобия только в приповерхностном слое глубиной 10—15 мкм. Во время длительной эксплуатации изделий на воздухе при температуре 800 °С этот слой не увеличивается (рис. 2, кривые 5 и ), из чего следует, что кислород проникает в ниобий только в процессе оплавления стеклообразного покрытия.  [c.69]


Диффузионные слои, содержащие алюминий, эффективно повышают сопротивление сталей против газовой коррозии, однако при длительном высокотемпературном воздействии концентрация алюминия в поверхностных зонах слоев снижается из-за его диффузии в основной металл и образования оксидов. Указанные процессы приводят к изменению структуры диффузионных слоев, их физикохимических и прочностных свойств. Увеличить стабильность диффузионных слоев на алитированной углеродистой стали можно путем легирования формирующихся в слоях ннтерметаллидов металлами V группы, в частности ниобием.  [c.191]

Рво. 304. Коррозия ниобия высокой чистоты (0,001% С 0,0083% 0> 0,005% Н, 0,03% Nj) в еолявой кислоте в течение 30 суч1. Цифры у кривых — екорость коррозии, мкм/год 11511  [c.228]

Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам.  [c.198]

Рис. 74. Скорость коррозии танталовых сплавов в зависимости от концентрации кипящей Н, SO4 [54] а - сплавы с ниобием б - с титаном в - с ванадием г — с молибденом, вольфрамом и сшрко-нием Рис. 74. <a href="/info/39683">Скорость коррозии</a> <a href="/info/165437">танталовых сплавов</a> в зависимости от концентрации кипящей Н, SO4 [54] а - сплавы с ниобием б - с титаном в - с ванадием г — с молибденом, вольфрамом и сшрко-нием

Смотреть страницы где упоминается термин Ниобий коррозия : [c.1236]    [c.584]    [c.290]    [c.291]    [c.295]    [c.216]    [c.224]    [c.291]    [c.310]    [c.321]    [c.20]    [c.69]    [c.76]    [c.79]    [c.356]   
Конструкционные материалы Энциклопедия (1965) -- [ c.2 , c.28 ]



ПОИСК



Коррозия бериллия ниобия

Коррозия металлов например: Вольфрам Молибден Ниобий Тантал

Коррозия рения и сплавов на основе ниобия Томашов, Т. В. Матвеева. Коррозионное и электрохимическое поведение рения

Ниобий

Ниобий Коррозия в водных растворах

Ниобий коррозия, влияние глубины

Ниобит 558, XIV

Стойкость хромоникелевых сталей с ниобием против межкристаллитной коррозии



© 2025 Mash-xxl.info Реклама на сайте