Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кобальта платиной

Для улучшения способности к смачиванию и сцеплению с паяемым металлом—медью в висмутовые припои вводят до 0,5—5% железа, никеля, кобальта, платины, иридия, рутения, осмия, рения, палладия, золота.  [c.78]

Извлечение в концентраты меди достигает 95%, никеля 90% и кобальта 80%. Кобальт, платина и ее спутники преимущественно сопутствуют никелю.  [c.147]

В холодильнике конденсируется жидкая смесь карбонилов никеля и железа, в которой никеля около 80% в бомбе остаются медь, кобальт, платина и примеси. Смесь жидких карбонилов подвергают ректификации, выделяя из нее чистый Ы1(С0)4, который далее в виде паров пропускают через обогреваемую до 320° С особую башню, где он разлагается с выделением чистого никелевого порошка, пригодного для прессования деталей или заготовок — обработкой давлением. Освобожденную окись углерода возвращают в систему циркуляции.  [c.165]


Кобальт— платина (77% Pt) Закалка с 1200° С н отпуск при 650 с 5000 3000  [c.806]

Легирование алюминия кадмием подавляет вредное действие меди. Свинец слабо влияет на стойкость алюминия. Титан в количестве выше 0,01% усиливает коррозию в окислительных средах. Вредное действие оказывают церий, кобальт, платина, серебро, торий, ванадий [137]. Хром, олово, кадмий в ряде случаев не влияет, а в ряде случаев — усиливает коррозию. Сурьма повышает коррозионную стойкость алюминия.  [c.75]

Легирующие элементы образуют с железом твердые растворы и химические соединения. Твердые растворы замещения неограниченной растворимости непосредственно после затвердевания образуют с железом никель и кобальт и металлы группы платины, а с а-железом -только хром и ванадий. Характерная диаграмма для систем Fe - Сг показана на рис. 21.  [c.45]

Физическая сущность методов. Величину, характеризующую способность материала намагничиваться, называют относительной магнитной проницаемостью ц (безразмерная величина). Она представляет собой отношение магнитного поля, создаваемого током в намагниченной среде, к магнитному полю, создаваемому тем же током в вакууме. В количественном плане ц показывает, во сколько раз результирующее магнитное поле в материале сильнее поля, создаваемого в вакууме. В зависимости от значения ц материалы подразделяются на три группы ферромагнитные, у которых ц > 10" (железо, кобальт, никель) парамагнитные, у которых ц на несколько тысячных долей больше единицы (марганец, алюминий, платина) диамагнитные, у которых ц на несколько тысячных долей меньше единицы (медь, цинк, серебро). Магнитными методами можно контролировать только ферромагнитные материалы.  [c.190]

Контакты на основе карбида вольфрама особенно стойки против действия эрозии при образовании вольтовой дуги. Кроме карбида вольфрама, в качестве связующего элемента контакты содержат 1,5—10% кобальта, осмия или другого благородного металла (платины, родня, иридия).  [c.600]

Большинство из полученных к настоящему времени нитевидных металлических кристаллов — усов (медь, серебро, железо, никель, платина, золото, кобальт и др.) выращено методом восстановления химически чистых обезвоженных галоидных солей.  [c.99]

Как и ожидалось из сравнения металлохимических свойств титана и металлов группы платины, в этих системах существуют первичные твердые растворы и интерметаллические соединения. Количество соединений при переходе от рутения к родию и палладию и от осмия к иридию и платине увеличивается. В составе, структуре и свойствах этих соединений при определенном сходстве наблюдается и существенное отличие (рис. 6). Для сравнения рассмотрим также соединения, образующиеся в сплавах титана с железом, кобальтом и никелем [3, 17]. (Диаграммы состояния двойных систем титана с железом, кобальтом и никелем на рис. 6 приведены из справочника Р. П. Эллиота Структуры двойных сплавов , системы с платиной — по данным [22 ).  [c.187]


Магнитные сплавы платины принадлежат к системе платина—железо и системе платина—кобальт. Оба сплава обладают очень большой коэрцитивной силой по намагниченности Нсм= = 520 кА м и сравнительно большой остаточной индукцией. Поэтому у них коэрцитивная сила по индукции Нсв н энергетическое произведение (ВН)тах достигают больших значений. Высокое значение объясняют наличием в сплавах платины однодоменных частиц Ре—Р( и Со—Р(, рассеянных в маломагнитной матрице. Оба сплава платины пластичны и легко поддаются всем видам механической обработки, однако из-за высокой стоимости их применение ограничено только микроминиатюрными магнитами.  [c.117]

Рис. 75, Кривые размагничивания сплавов платина —кобальт Рис. 75, <a href="/info/228058">Кривые размагничивания</a> <a href="/info/64012">сплавов платина</a> —кобальт
Кобальт применяют для легирования сплавов палладия и платины и в металлокерамических композициях как связующий материал.  [c.304]

Золото, серебро, платина, медь, олово, никель,кобальт Тантал, ниобий, титан, торий, церий.ва надий, уран  [c.529]

Алюмин пй Вольфрам Железо Золото Кобальт Магний Медь Молибден Никель Ниобий Олово Платина Свинец Серебро Титан Хром Цинк Чугун  [c.189]

Золото, серебро, платина, олово, никель, кобальт Тантал, ниобий, титан, торий, церий, ванадий, уран  [c.369]

Платина — кобальт. Платина с кобальтом образует непрерывный ряд твердых растворов. Минимум кривой плавкости соответствует примерно 50% Со при 1450° С (фиг. 26). При охлаждении неупорядоченного твердого раствора с кубической гранецентрированной решеткой в области 10—30% весовых Со наблюдается образование неупорядоченной фазы с тетрагональной гранецентрированной решеткой.. Максимум температуры перехода 825° С соответствует составу соединения Pt o (23,18% Со). При дальнейшем охлаждении ниже 510° С происходит упорядочение этой фазы. В сплавах, содержащих более 70% весовых Со, при охлаждении ниже 600—400° С образуется твердый раствор с гексагональной плотиоупакованной решеткой на основе а-кобальта. Температура магнитного превращения кобальта 1115° С плавно падает с увеличением содержания платины. Сплав с 23,2% Со, закале1И1ый с 1000°С, имеет коэрцитивную силу 0,5 э и является магнитномягким материалом. После отпуска в течение 30 мин. при 650° С коэрцитивная сила возрастает до 2000 э, а после отпуска при 700° С — до 3700 э. Сплав с 23,2% Со применяется для постоянных магнитов малогабаритных инструментов. Сплавы, содержащие малые количества Со и Rh, применяются в качестве катализатора при окислении аммиака.  [c.415]

При испытании металлов и сплавов в ртути добавление к ним титана и магния увеличивает коррозионную стойкость первых [1,61], [1,65]. Предполагается, что окислы, образующиеся в результате взаимодействия титана и магния с кислородом, препятствуют взаимодействию металлов с ртутью. При температуре 600° С в ртути, ингибированной титаном и магнием, достаточной стойкостью обладают низкоуглеродистая сталь сталь, легированная 20% молибдена сталь, легированная 8% хрома, 0,5% алюминия и 0,3% молибдена сталь, легированная 5% хрома, 0,5% молибдена и 1,5% кремния а также вольфрам и молибден. При температуре 500°,С можно применять стали легированную 1) 5% хрома 2) 1,5% хрома и 1,3% алюминия 3) 5% хрома, 1,2% меди или 4,5% молибдена ферритные хромистые стали. Нестойки в ртути аустенитные нержавеющиестали, бериллий (при температуре300°С), тантал, ниобий, кремний, титан, ванадий, никель, хром и их сплавы, кобальт, платина, марганец, цирконий, алюминий, золото и серебро. Чтобы ингибировать ртуть, в нее достаточно ввести 10 мг1кг титана. Менее экономически выгодным ингибитором является цирконий [1,65].  [c.53]

Термоэлектрические свойства кобальта исследовались по отношению к платине[27, 44, 47, 57, 621, никелю 18, 23, 45], железу [81 и меди [45, 471. В табл. 7 приведены наиболее надежные значения для пары кобальт — платина, вычисленные Егером, Розенбомом и Цитгофом [23] по экспериментальным данным Шульце для температурного коэффициента при бо лее высоких температурах. Бриджмен 131 определил эффекты Пельтье и Томсона.  [c.296]


Селен Титан, ванадий, марганец, никель, медь, цинк, алюминий, олово, иттрий, цирконий, молиб- ден, железо, палладий, серебро, кадмий, скандий, лантан, гафний, торий, уран, кобальт, платина, серебро, золото, ртуть, галлий, индий, таллий, сурьма, свинец, висмут (10 5) Экстракция примесей в виде оксихинолинатов и дитизонатов То же 45  [c.15]

Наконец, перечислим металлы, которые не перешлп в сверхпроводящее состояние вплоть до указанных в скобках температур. Золото (0,05° К), медь (0,05° К), висмут (0,05° К), магнии (0,05° К) и германий (0,05° К) были исследоваиы Кюрти и Симоном [260] кремний (0,073° К), хром (0,082° К), сурьма (0,152° К), вольфрам (0,070° К), бериллий (0,064° К) и родий (0,086° К) исследовались Алексеевским и Мигуновым [315] литий (0,08° К), натрий (0,09° К), калий (0,08° К), барий (0,15° К), иттрий (0,10° К), церий (0,25° К), празеодим (0,25° К), неодим (0,25°К), марганец (0,15° К), палладий (0,10° К), иридий (0,10° К) и платина (0,10° К) изучались Гудменом [316] кобальт (0,06° К), молибден (0,05° К) и серебро (0,05° К) были исследованы Томасом и Мендозой [317].  [c.589]

Фиг. 4R. Изменение термоэлектродиижутей силы кобальта в паре с платиной в заиисимости от температуры. Фиг. 4R. Изменение термоэлектродиижутей силы кобальта в паре с платиной в заиисимости от температуры.
Платина имеет структуру кри сталлической решетки куба с центрированными гранями. С железом, кобальтом, никелем, родием, палладием, иридием и медью, имеющими такую же структуру решетки, платина образует непрерывные ряды твердых растворов. Исключение представляют серебро и золото, которые ограниченно растворимы в платине. Влияние небольших добавок различных элементов на твердость плагины показано на фиг. 1.3. Наиболее эффективно увеличивают твердость нлатины добавки никеля, осмия и рутения. Легирование платинн  [c.406]

Фиг. 26. Диаграмма состояния и свойства сплавов системы платина—кобальт /- закаленные 2 — отожженные 5 —магнитные превращения — нагревание п -- охлажление. Фиг. 26. <a href="/info/1489">Диаграмма состояния</a> и <a href="/info/57775">свойства сплавов</a> системы платина—кобальт /- закаленные 2 — отожженные 5 —<a href="/info/319251">магнитные превращения</a> — нагревание п -- охлажление.
Радиоактивная защита основана на использовании в составе необрастающих ЛКП радиоактивных изотопов углерода, кобальта, меди, таллия, иттрия, технеция с добавкой их по массе 0,1...1,5 %. Радиоактивный технеций Тс с периодом полураспада 2,1-10 лет и его соединения применяют для защиты гидротехнических сооружений, корпусов судов, поверхностей резервуаров, трубопроводов, теплообменников, КИП и другой аппаратуры, эскплуатирующихся в морской или речной воде от обрастаний микроорганизмами. Эффект достигается при нанесении соединений Тс на металлы, древесину, оргстекло, стеклоткань, полимеры и другие соединения. Например, металлический Тс осаждали на аустенитные стали из электролита на основе пертехната аммония (рЯ=1) при плотности тока 1,3 А/дм2 (аноды — платина), толщина слоя до 1,6 мкм.  [c.93]

Соединения Ti Me образуются в системах с кобальтом, родием, никелем и палладием. При переходе от металлов группы железа к металлам группы платины ГЦК-структура типа TijNi этих соединений сменяется тетрагональной типа Zr u. При этом сами соединения TijRh и TijPd возникают в результате упорядочения -твер-дого раствора.  [c.187]

Таким образом, все металлы VHI группы образуют с титаном фазы на основе эквиатомных соединений с кристаллической структурой типа s l. Эта структура в системах с железом, рутением, осмием и кобальтом устойчива вплоть до комнатной температуры во всей области гомогенности этих фаз. В системах с родием и иридием существует узкий интервал ее устойчивого состояния при сравнительно низких температурах за счет стабилизации избыточным, по сравнению с эквиатомным составом, содержанием титана. В сплавах близких к эквиатомному, а в системах с никелем, палладием и платиной — во всей области гомогенности — с понижением температуры  [c.187]

Химическое осаждение можно получить автокаталитически, когда металлическое покрытие осаждается на металлической или активированной металлом поверхности, а его толщина увеличивается более или менее линейно до тех пор, пока поддерживается равновесное по составу состояние раствора. Растворы этого вида обычно называют растворами химического восстановления. К металлам, которые могут осаждаться автокаталитически, относятся медь, никель, железо, кобальт, серебро, золото, платина и палладий. Из этих металлов наиболее широкое распространение (в технике и электронике или для металлизации пластмасс при подготовке к электроосаждению) получили, пожалуй, медь и никель. Серебро и золото имеют более ограниченное применение и используются в некоторых электронных приборах.  [c.83]

Износостойкие сплавы. Для изготовления коррозионно-стойких сплавов для игл компасов, оиор игл, осей и других малогабаритных деталей, работающих на износ и истирание, а также наконечников перьев авторучек применяют спланы с осмием, иридием и рутением осмистый иридий (природный или сплав), спланы осмия с вольфрамом и кобальтол , осмия с вольфрамом и никелем, рутения с вольфрамом и никелем, рутения с вольфрамом и кобальтом, а также платины с иридием и вольфрамом или другими тугоплавкими металлами.  [c.283]

Промышленное осуществление каталитического окисления аммиака для получения азотной кислоты связано с именем В. Оствальда. Начиная с 1900 г. В. Оствальд и его сотрудник Э. Брауер исследовали каталитическое окисление аммиака. Они считали этот процесс состоящим из двух реакций. В 1902 г. Оствальд взял несколько патентов на получение азотной кислоты каталитическим окислением аммиака [52]. Катализаторами служили платина, оксиды свинца, марганца, серебра, меди, железа, хрома, никеля и кобальта. Была также разработана установка для каталитического окисления аммиака, в которой поступающий газ предварительно подогревался теплом отходящих газов. При пуске установки катализатор доводили до температуры, необходимой для начала реакции (чуть выше 300°), затем температура поддерживалась высокой из-за теплоты самой реакции. Первая промышленная установка была пущена в Лотрингене в 1908 г. Катализатором была платиновая сетка. Уже в 1908 г. новым методом было произведено 695 т нитрата аммония, в 1909 г.— 1081 т, в 1910 г. — 1237 т, в  [c.169]


К парамагнетикам относятся платина, палладий, редкие земли, натрий, калий, рубидий, литий, соли железа кобальта и никеля, соединения марганца МпО MnS соединения хрома Ni r СГ2О3 сульфат гадолиния [ dj (864)3 8Н2О] кислород, окись азота — N0, и другие вещества,  [c.129]

Олово обладает значительно меиьшей агрессивностью, чем галлий,, но большей, нежели висмут и тем более чем остальные жидко(Металличеокие теплоносители, Исключается применение в нагревательных установках, работающих на жидком олове, следующих металлов и их сплавов цинка, сурьмы, свинца, алюминия, меди, магния, кадмия, никеля, кобальта, селена, платины, серебра, индия и золота. Ограниченно устойчивы против жидкого олова углеродистые стали, чугун, цирконий (до 500° С), аустен итные и ферритиые нержавеющие стал и (до 400° С), достаточно устойчив ири температурах до 500° С бериллий, а в статических условиях (ио данным Рида [Л. 65]) — вольфрам и стеклю в икор (до  [c.118]


Смотреть страницы где упоминается термин Кобальта платиной : [c.835]    [c.226]    [c.67]    [c.54]    [c.364]    [c.311]    [c.309]    [c.613]    [c.48]    [c.644]    [c.44]    [c.14]    [c.189]    [c.74]    [c.205]    [c.271]    [c.267]    [c.95]   
Гальванотехника справочник (1987) -- [ c.342 ]



ПОИСК



Кобальт

Кобальтит

Платина

Платинит



© 2025 Mash-xxl.info Реклама на сайте