Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Труба цилиндрическая под действием давления

Труба цилиндрическая под действием давления 114 и д.  [c.323]

В настоящей лекции излагается такая теория для цилиндрических толстостенных труб, находящихся под действием равномерно распределенных давлений по внутренней и внешней поверхности (рис. 67), конечно, в частности, одно из этих давлений может быть равно нулю.  [c.105]

Определение напряженного состояния оболочки много сложнее, чем стержня. Оно основывается на решении системы дифференциальных уравнений в частных производных. В нашем курсе мы рассмотрим только две частные задачи, допускающие большие упрощения. Первая из них — задача Ляме — состоит в определении напряженного состояния прямой толстостенной цилиндрической трубы, находящейся под действием внутреннего и внешнего давлений.  [c.199]


Цилиндрическая труба под действием давления  [c.114]

ЦИЛИНДРИЧЕСКАЯ ТРУБ под ДЕЙСТВИЕМ ДАВЛЕНИЯ 115  [c.115]

ЦИЛИНДРИЧЕСКАЯ ТРУБА ПОД ДЕЙСТВИЕМ ДАВЛЕНИЯ 117  [c.117]

Если замкнутое круговое кольцо (или труба) деформируются под действием равномерного давления, приложенного к его цилиндрическим поверхностям, то очевидно, что возникающие при этом напряжения не будут зависеть от угла 6. И вновь можно использовать типовое решение (45). В качестве граничных условий мы теперь имеем заданные значения  [c.515]

Пример. Хрупкое разрушение толстостенной цилиндрической оболочки, находящейся под действием внутреннего давления. Рассмотрим бесконечно длинную толстостенную цилиндрическую оболочку (трубу), находящуюся под действием постоянного во времени внутреннего давления р. Следуя Л. М. Качанову, решим задачу о ее длительной прочности на основе модели хрупкого разрушения. Обозначим через Ио и внутренний и наружный радиусы трубы в начальный момент времени (рис. 107).  [c.197]

Формулы (7.29) известны под названием котельных формул или формул Мариотта их применяют для вычисления напряжений в цилиндрических котлах, сосудах и тонкостенных трубах, находящихся под действием внутреннего давления.  [c.283]

Французский физик Эдм Мариотт (1620—1684) продолжал изучение изгиба балок, исследовав консольные, шарнирно опертые балки и балки с защемленными концами, и установил, что со стороны выпуклой части изогнутой балки ее продольные волокна растягиваются, а со стороны вогнутой сжимаются. На основании этого положения он усовершенствовал теорию изгиба. Мариотт дал формулу для расчета на прочность цилиндрических труб, находящихся под действием внутреннего давления, и, кроме того, выдвинул вторую теорию прочности (теорию наибольших относительных удлинений).  [c.558]

Решение методом малого параметра определяется вблизи исходного известного невозмущенного состояния. Такими исходными решениями обычно являются хорошо известные точные решения задач равномерно растягиваемые полоса или стержень, цилиндрическая труба, находящаяся под действием равномерного внутреннего и внешнего давления, кольцевая пластина под действием равно.мерно распределенных усилий, полая сфера под действием равномерного внутреннего и внешнего давления и т. п.  [c.126]

Одномерные осесимметричные задачи, для которых напряженно-деформированное состояние зависит лишь от одной независимой переменной — радиуса г, являются относительно простыми (хотя и требуют иногда применения численных методов) и затрагивались уже ранее (полый шар и цилиндрическая труба под действием давления, осесимметричное равновесие тонкой пластинки и т. д.). В этих задачах можно учесть упругие деформации, упрочнение и другие механические свойства.  [c.259]


Рассмотрим течение в основном участке цилиндрической круглой трубы. Выделим в жидкости цилиндр, имеющий длину I и радиус у. В основном участке трубы распределения скоростей в различных сечениях одинаковы, поэтому силы инерции отсутствуют и цилиндр будет находиться в равновесии под действием касательных напряжений, приложенных к его боковой поверхности, и разности давлений pi — р2, действующих на его основания, т. е.  [c.351]

Давление жидкости на стенки труб и резервуаров. Наполненные жидкостью трубы и резервуары находятся под действием внутреннего гидростатического давления. Рассмотрим наиболее общий случай, когда трубы и резервуары имеют цилиндрическую форму. Сечение трубы или резервуара с внутренним диаметром О, на которое воздействует внутреннее гидростатическое давление р. Длину рассматриваемого участка трубы или резервуара примем равной I.  [c.25]

Трубы и резервуары, заполненные жидкостью, находятся под действием внутреннего гидростатического давления, которое может разорвать трубу или резервуар, если толщины их стенок будут недостаточны для восприятия растягивающих усилий. Так как наиболее часто трубы бывают круглого сечения, а резервуары цилиндрической формы, то мы ограничимся рассмотрением этих случаев.  [c.55]

Предположим, что труба может разорваться по сечению АВ (рис. 2.31) под действием горизонтальной составляющей силы гидростатического давления Р , действующей на цилиндрическую поверхность аЬс или ad . Согласно зависимости (2.67)  [c.55]

Под действием внутреннего давления р труба может разорваться, например, по плоскости АВ. С тем чтобы рассчитать толщину е стенок трубы, обеспечивающую достаточную прочность трубы, нам необходимо знать силу гидростатического давления, действующего на цилиндрическую поверхность аЬс или на цилиндрическую поверхность ad . Можно показать, что искомая сила Рд. равна давлению на плоскую прямоугольную фигуру ас, являющуюся вертикальной проекцией цилиндрической поверхности аЬс (или ad ).  [c.63]

Рассмотрим круглую цилиндрическую трубу из упругого материала, подчиняющегося закону Гука. Требуется найти напряжения и деформации в стенках трубы при условии, что она находится под действием внутреннего Ра и внешнего рь давлений при постоянной температуре Т = То, соответствующей отсутствию температурных напряжений при отсутствии деформаций, которую назовем равновесной .  [c.332]

На рис. 6.10, б показано тонкое упругое кольцо, сжатое жесткой обоймой (такого типа нагружение может быть вызвано, например, нагревом кольца). На рис. 6.10, в изображено тонкое упругое кольцо, стянутое гибкой нитью. В обоих случаях нагрузка, воспринимаемая кольцом, не гидростатическая, причем поведение колец при потере устойчивости даже качественно отлично от поведения кольца, теряющего устойчивость под действием гидростатической нагрузки [39]. Можно привести и другие примеры, когда по формуле для критической гидростатической нагрузки получается неверный результат. Значительно труднее указать практическую задачу, в которой использование формулы (6.20) строго обосновано. Единственный такой пример — это расчет на устойчивость длинной цилиндрической трубы под действием внешнего давления.  [c.237]

Начнем с простейшей задачи устойчивости длинной цилиндрической оболочки (трубы), нагруженной равномерным внешним гидростатическим давлением (рис. 6.15). Длину оболочки будем считать настолько большой, что характер закрепления ее торцов не влияет на поведение оболочки при потере устойчивости. (Ниже дана оценка длины оболочки, при которой можно пренебречь влиянием закреплений ее торцов на критическое давление). Такая длинная оболочка может деформироваться без удлинений и сдвигов срединной поверхности в частности, каждое сечение оболочки может деформироваться одинаково, как нерастяжимое кольцо. Поэтому для определения критического внешнего давления и формы потери устойчивости такой оболочки можно воспользоваться решением задачи устойчивости кругового кольца под действием равномерной гидростатической нагрузки.  [c.249]


Натяги и посадки. Формула Ляме. Из курса Сопротивление материалов [39] известно решение (формулы Ляме) для напряжений и деформаций толстостенных труб под действием внутреннего и внешнего давлений. Это решение получено в предположении, что длина трубы существенно больше ее радиуса, материал трубы однороден, поверхности контакта идеально гладкие. Применяя это же решение к расчету соединений с натягом цилиндрических деталей, считают, что расчетный (теоретический) натяг N и давление р на стыке деталей связаны зависимостью Ляме, которая является основой для расчетов соединений с натягом при подборе посадки  [c.111]

Проблема разрушения при ползучести толстостенной трубы под действием внутреннего давления при высоких температурах поддается сравнительно простому теоретическому анализу как проблема ползучести осесимметричного тела в условиях сложного напряженного состояния. Экспериментальные исследования в этом случае также можно провести сравнительно просто. Одновременно следует указать, что эта проблема является очень важной с практической точки зрения, так как при исследованиях непосредственно определяется длительная прочность цилиндрических деталей типа котельных труб или сосудов давления. Деформация лол-зучести и распределение напряжений для этого случая описаны в разделе 4.2.2 в данном разделе авторы обсуждают особенности разрушения при ползучести.  [c.144]

В качестве применения метода подобия, основанного на рассмотрении размерностей входящих в данную задачу величин, приведем следующий широко распространенный случай. Жидкость плотности рис коэффициентом динамической вязкости р, течет сквозь горизонтальную цилиндрическую круглую трубу диаметра й под действием постоянного перепада давлений, на участке трубы I равного Ар при этом сквозь трубу проходит также постоянный секундный объемный расход Q. Оставляя в стороне вопрос о деталях движения жидкости по трубе — этот вопрос будет разобран в следующем параграфе для случая ламинарного движения и в гл. IX — для турбулентного,— выясним, какие указания может дать метод подобия относительно общего вида зависимости между перепадом давлений в трубе Ар (обеспечиваемым работой насоса или напором столба жидкости между резервуаром и трубой) и секундным объемным расходом сквозь трубу Q.  [c.372]

Рассмотрим установившуюся ползучесть круглой цилиндрической трубы с внутренним радиусом а и наружным радиусом Ь, находящейся под действием внутреннего давления и внешнего давления и равномерно нагретой до некоторой неизменной во времени температуры. Торцы трубы считаем опертыми на гладкие плиты так, что осевая  [c.242]

ПРОСТЫЕ ТИПЫ НАПРЯЖЕННЫХ СОСТОЯНИЙ ТОНКОСТЕННЫЕ КРУГЛЫЕ ТРУБЫ ПОД ДЕЙСТВИЕМ ВНУТРЕННЕГО ДАВЛЕНИЯ, КРУЧЕНИЕ ТОНКОСТЕННЫХ ТРУБ И КРУГЛЫХ ВАЛОВ, ЧИСТЫЙ ИЗГИБ ЦИЛИНДРИЧЕСКИХ СТЕРЖНЕЙ  [c.192]

Мариотт определил сопротивление разрыву труб, оттом в своих находящихся под действием внутреннего гидро- испытаниях на статического давления. С этой целью он использо- разрыв, вал цилиндрический барабан АВ (рис. 19) с укрепленной на нем длинной вертикальной трубой. Наполняя барабан и трубу водой и увеличивая высоту уровня воды в этой последней ), он смог достигнуть того, что барабан разрывался. Таким путем он нашел,что безопасная толщина трубы должна быть пропорциональна действующему на нее внутреннему давлению и диаметру.  [c.35]

Круговая цилиндрическая оболочка под симметричной относительно оси нагрузкой. В практических применениях мы часто встречаемся с задачами, где круговая цилиндрическая оболочка подвергается действию сил. распределенных симметрично, относительно оси цилиндра. Распределение напряжений в цилиндрических котлах, подвергающихся давлению пара, напряжения в цилиндрических резервуарах с вертикальной осью, подвергающихся действию внутреннего давления жидкости, наконец, напряжения в круглых трубах под равномерным внутренним давлением — все это примеры такого рода задач.  [c.514]

Определенный интерес представляют экспериментальные результаты работы [49], в которой рассматривается разрушение цилиндрических трубок, имеющих дефекты типа трещин, полученных под действием внутреннего давления. Работа заключалась в сопоставлении результатов эксперимента по определению разрушающего давления с результатами приближенного решения, полученного в результате комбинации решения для растягиваемой полосы из идеально пластичного материала и трубы в пределах упругости.  [c.58]

В патенте [137] предлагается пневматическая машина, особенностью которой является наличие съемного магазина с автоматической подачей винтов в рабочее положение. Машина имеет форму пистолета, в горизонтальной части корпуса которой расположены пневмомотор, магазины, подающее и завертывающее устройства, а в ручке — пусковое устройство. Поворотный цилиндрический магазин, ось которого параллельна оси пневмомотора, расположен в задней части, над его ручкой, и может быть легко снят для перезарядки. Винты закладываются вручную или на специальной машине в отверстия плоской резиновой диафрагмы магазина, расположенные по окружности его периферии и удерживаются в них благодаря упругости резины. Отверстия в диафрагме имеют радиальные надрезы, и под действием усилия, создаваемого толкателем, сидящие в нем винты выталкиваются в трубку, по которой они давлением сжатого воздуха, подаваемого по каналу толкателя, досылаются в воронку приемника подвижной насадки, укрепленной на передней части машины. Насадка перемещается вдоль оси корпуса, и каждый раз при упоре в деталь при завертывании очередного винта отходит назад и через систему, состоящую из толкателя, шариков в изогнутой трубе и храпового механизма, производит необходимый поворот магазина на заданный угол.  [c.255]


Расчет на прочность элементов котла, работающих под давлением рабочей среды, имеет целью определить необ ходимую толщину стенки элемента или допускаемое в нем давление в зависимости от температуры. Элементы котла, работающие под давлением рабочего тела, — барабаны, коллекторы, поверхности нагрева — выполняют в виде цилиндрических конструкций и из труб. В этих элементах имеют место внутренние напряжения — остаточные, и температурные и внешние, возникающие под действием дав-  [c.436]

Рассмотрим распространенный случай применения цилиндрических труб для трубопроводов и определим напряжения в их стенках. Под действием внутреннего давления р труба может разорваться, например, по диаметральной плоскости АС (рис. 18), Определим силу гидростатического давления, действующую на цилиндрическую поверхность ab (или ad ). Сила Р равна силе давления, действующего на вертикальную проекцию цилиндрической поверхности ab (или ad ), являющуюся диаметральным сечением трубы Р = pdL.  [c.23]

Подобно предыдущему случаю, установившееся ламинарное течение в круглой трубе, происходящее под действием продольного перепада давления, также называется пуазейлевским течением. Распределение скоростей для такого течения в трубе радиуса Го может быть получено из уравнений движения в цилиндрических координатах. Если мы направим ось z вдоль оси трубы, при параллельноструйном движении ug и Vr будут всюду равны нулю. Скорость и ее производные не зависят от г (согласно уравнению неразрывности при параллельноструйном течении) и от 0 (в силу симметрии). В рассматриваемом случае ось z, совпадающая с осью трубы, может иметь произвольное направление и ее не следует смешивать с вертикальным направлением h. Из уравнений (6-29) для 2-компоненты скорости получим  [c.127]

Кроме того,, в сварном шве возникают напряжения среза вследствие радиального перемещения стенок трубы под действием давления в поршневой полости гидроцилиндра. При этом принимают, что днище цилиндра нерастяжимое. Сварной шов препятствует перемещению стенок трубы, следовательно, в нем возникают равномерно распределенные перерезывающие усилия Ро, которые можно определить по схеме для расчета, показанной на рис. 26, б. Труба корпуса является как бы цилиндрической оболочкрй, шарнирно опертой по краям и нагруженной равномерно распределенным внутренним давлением.  [c.47]

Рассмотрим установившееся ламинарное течение вязкой несжимаемой жидкости в цилиндрической трубе, поперечное сечение которой совпадает с поперечным сечением стержня. Как известно (см. 20 гл. VIII), если направить ось z вдоль оси трубы и обозначить через w скорость установившегося течения жидкости в трубе под действием постоянного заданного перепада давлений dpidz, то из уравнений Навье — Стокса получается следующее уравнение для определения скорости  [c.372]

Сравнивая (7.25) и (7.36) и граничные условия (7.26) и (7.37), видим, что математические задачи об определении функции напряжений при кручении цилиндрического стержня и скорости течения ламинарного установившегося движения вязкой несжимаемой жидкости в бесконечно длинной трубе, поперечное сечение которой одинаково с поперечным сечением стержня, под действием постоянного перепада давлений dpldz совпадают, когда  [c.372]

Вопросы распределения напряжений в трубе, изготовленной из материала, обладающего цилиндрической анизотропией, рассмотрены еще в работах Сен-Венана и Фойгта. С. Г. Лехницкий [25] рещил задачу о распределении напряжений в неортоторпной трубе под действием внутреннего и наружного давления. В работах С. А. Амбарцумяна изложены методы расчета слоистых анизотропных оболочек с учетом межслоевых сдвигов.  [c.39]

На рис. 5.17 показано, что окружная деформация при разрушении толстостенных цилиндрических образцов под действием внутреннего давления несколько меньше, чем удлинение при разрушении круглых образцов при одноосном растяжении. На рис. 5.23 приведены данные, характеризующие сужение и удлинение при разрушении тонкостенных и толстостенных цилиндрических образцов с различной толщиной стенки из стали 2,25Сг — 1Мо. Окружные деформации при разрушении тонкостенных и толстостенных цилиндрических образцов почти не отличаются, однако удлинение при разрушении на внутренней поверхности толстостенных цилиндрических образцов выше у образцов с Did = 1,961 указанное удлинение достигает 100 %. Сужение при разрушении, определенное по толщине стенки трубы в зоне разрыва, также больше у толстостенных цилиндрических образцов, но меньше, чем у круглых образцов при растяжении.  [c.152]

Еще в работах Генки [15], А. А. Ильюшина [40] и А. Ю. Иш-линского [43] было рассмотрено влияние вязкости на формообразование металлов. В [15] разобраны вращение прокатного валка в пластическом материале, продавливание пластической массы через цилиндрическую полость и локализация деформаций при растяжении стержня. В [40] выведены основные уравнения вязкопластического течения и рассмотрены вращение цилиндра в вязкопластической среде, расширение полого цилиндра под действием внутреннего давления, волочение круглого прутка через жесткую коническую матрицу, движение вязкопластического материала в круглой трубе. В [43] решена задача прокатки и волочения полосы в условиях плоской деформации. При этом в [40 и 43] принято, что максимальное касательное напряжение является линейной функцией максимальной скорости угловой деформации.  [c.5]

В качестве другого примера рассмотрим случай нестационарного движения вязкой несжимаемой жидкости, физические свойства которой характеризуются константами р и р, по бесконечно длинной круглой цилиндрической трубе диаметра й под действием перепада давления Ар, представляющего некоторую гармоническую функцию с периодом Т (или частотой N = ИТ) и амплитудой Р. В этом случае (опускаем действие объемных сил) никакой характерной скорости не задается и, таким образом, ни одно из чисел подобия ЗЬ, Ей и Ре не может быть критерием. Как и в предыдущем случае, поскольку задается перепад давления (за масштаб давлений можно принять, например, амплитуду колебаний давления Р) и частота N нестационарного движения (для простоты рассмотрим только установившиеся вынужденные колебания жидкости), то критерии подобия составим, комбинируя числа ЗН и Ей с числом Рейнольдса Ре так, чтобы скорость V исключилась. Будем иметь следующие два критерия подобия-.  [c.374]

Решение задачи о приведении в движение покояш ейся в круглой цилиндрической трубе вязкой жидкости под действием внезапно приложенного заданного постоянного перепада давления можно найти в монографии Н. А. Слезкина ).  [c.403]

Густав Гаспар Кориолис в 1830 г., исследуя влияние окисления на деформирование свинца, заметил, что дес] рмации могут расти при постоянном напряжении. Хотя в течение предыдущего десятилетия большое количество инженеров в Англии и на континенте в беседах обсуждали и интересовались долговременной устойчивостью железной проволоки и цепей, использовавшихся в конструкциях висячих мостов, экспериментального исследования явления ползучести фактически не производилось. Навье (Navier [1826, 1]) за четыре года до Вика в серии из двадцати семи экспериментов с металлическими листами, цилиндрическими трубами, сферическими сосудами под действием внутреннего давления наблюдал, что свинец, медь и железо продолжают деформироваться вплоть до разрушения, если к ним приложена постоянная нагрузка, составляющая достаточно большую часть той, какая необходима для мгновенного разрушения. Однако Навье не произвел измерений, связанных с таким поведением, так как он был почти полностью поглощен табулированием обычных данных по разрушению этих конструкций.  [c.64]


Обратные клапаны уел. № 155 и 155А (рис. 63, а) устанавливаются на нагнетательной трубе между главным резервуаром и компрессором. В корпус 2 вставлен клапан 1, который опускается под действием собственного веса на седло. Цилиндрическая часть кла-, пана вставлена в корпус с небольшим зазором по диаметру. Между клапаном и крышкой 3 имеется полость 4, давление в которой изменяется медленно.  [c.92]

Переходя к обзору результатов исследований поведения многосвязных оболочек, остановимся прежде всего на работах, посвященных изучению влияния трещин различного типа на напряженно-деформированное состояние цилиндрических труб. Димарогонас [78] рассмотрел задачу об устойчивости длинной трубы (кольца), находящейся под действием внешнего давления. Считалось, что труба имеет продольную щель с глубиной,, не пр-ёвышающей толщину стенки. В работе получено трансцендентное уравнение для критического давления, решение которого представлено в функции от глубины трещины. Автором получены также формы потери устойчивости трубы с внутренними и наружными трещинами. На основе проведенной работы делается вывод о том, что трещины приводят к значительному понижению устойчивости труб. Следует отметить, что сегодня весьма актуальной является пробл ема влияния трещин на динамические параметры элементов несущих конструкций. Исследованию такой задачи посвящена работа Дитриха [79]. В ней приведены результаты исследования изменения собственных частот и форм колебаний труб при появлении различных трещин в сварных щвах. Теоретический анализ выполнен с помощью метода конечных элементов. В работе приведены полученные с помощью ЭВМ графики изменения частот восьми низших тонов изгибных колебаний трубы в зависимости от длины трещины. Соответствующие этим частотам формы колебаний представ- лены в трехмерной форме.  [c.301]

Оба изложенных подхода кажутся допустимыми с точки зрения логики. Имеющиеся экспериментальные данные не позволяют отдать предпочтение тому или другому из них разница в предсказываемых ими результатах слишком мала по сравнению с неопределенностью црочих возможных факторов. Следует указать на возможности практического использования этих подходов (с помощью ЭВМ) можно рассмотреть с позиций теории ползучести ряд важных технических проблем (цилиндрическая труба под действием внешнего и внутреннего давлений диски и турбины, и т. п.). Это привлекло многих исследователей к данной теории.  [c.36]

Кнэпп провел также динамические испытания [34], в которых он пытался определить кавитационные характеристики опрессованной воды в условиях реальных течений. Для этих опытов он использовал прецизионные стеклянные трубки Вентури, изготовленные с высокой точностью путем обжатия разогретого стекла на оправке из нержавеющей стали. Форма сопла и диффузора была выбрана из условия обеспечения монотонного понижения давления на участке до критического сечения сопла и безотрывного расширения в остальной части сопла. Эта форма геометрически подобна обводам соответствующих участков высокоскоростной гидродинамической трубы Калифорнийского технологического института. На фиг. 3.6 показана фотография одной из таких стеклянных трубок. В процессе эксперимента проба жидкости, заключенная в широкой цилиндрической части трубки, выдавливалась через калиброванное отверстие под действием внезапно приложенного перепада давления. Эксперимент обычно продолжался не более 1 с. При определении давления в самом узком сечении трубки учитывались гидравлические потери с помощью измеренной тарировочной зависимости.  [c.96]


Смотреть страницы где упоминается термин Труба цилиндрическая под действием давления : [c.35]    [c.192]   
Основы теории пластичности (1956) -- [ c.114 ]



ПОИСК



Простые типы напряженных состояний тонкостенные круглые трубы под действием внутреннего давления, кручение тонкостенных труб и круглых валов, чистый изгиб цилиндрических стержней

Труба цилиндрическая

Труба цилиндрическая под давление

Трубы под давлением



© 2025 Mash-xxl.info Реклама на сайте