Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нагрузка гидростатическая

Внешняя нагрузка гидростатическая, т. е. при деформации кольца нагрузка остается направленной по нормали к деформированной оси кольца, а ее интенсивность q не меняется.  [c.224]

Расчеты на прочность и устойчивость при определении остаточного ресурса резервуаров должны выполняться с учетом эксплуатационной нагрузки (гидростатическое давление жидкости и избыточное давление газа, аварийный вакуум), концентрации напряжений, вызванных местными дефектами в сварных швах, отклонениями в геометрической форме стенки и другими дефектами, а также остаточной толщины стенки.  [c.268]


В момент времени сразу после начала заливки плоская оболочковая форма имеет прогиб, направленный в сторону отливки, затем выпучивается в противоположном направлении. Первый, отрицательный прогиб связан с термическим воздействием — температурным изгибающим моментом, а второй, положительный — с механической (силовой) нагрузкой — гидростатическим напором расплава.  [c.158]

Ю ,% критическая деформация при вязком разрушении материала у вершины трещины определяется зависимостью Tm(e ) im — гидростатическая компонента тензора напряжений). Следовательно, в случае, если в каждой точке, принадлежащей будущей траектории трещины, нагружение материала при ее росте будет происходить по одной и той же зависимости От(е ), условием продвижения трещины является соблюдение автомодельности локального НДС у вершины движущейся трещины (деформация у вершины движущейся трещины постоянна и равна критической). Поэтому численное моделирование развития вязкой трещины проводилось при соблюдении автомодельности локального НДС у ее вершины, которое обеспечивалось путем подбора соответствующей внешней нагрузки. Зависимости От(ер, полученные в результате расчета для произвольных двух точек, нагружаемых по мере продвижения к ним вершины трещины, представлены на рис. 4.25. Видно, что для этих точек указанные зависимости практически идентичны, что говорит о правильности предположения об автомодельности НДС при росте трещины. Наличие экстремума зависимости Om(ef) обусловлено начальным притуплением трещины, связанным со специ-  [c.256]

Схема гидростатической опоры (подпятник) приведена на рис. 7, а. Масло из насоса через дроссель I поступает в карман 2 с запорной кольцевой кромкой 3. Давление в кармане зависит от соотношения между сечением дросселя и переменным сечением 5 между запорной кромкой и пятой, С увеличением нагрузки это сечение уменьшается и давление в кармане возрастает, становясь в пределе равным давлению, создаваемому насосом. При ударных нагрузках давление в кармане, благодаря закупорке дросселя в результате повышения его гидравлического сопротивления, может значительно превзойти давление, создаваемое насосом.  [c.32]

Несущая способность аэростатических опор, в частности сопротивляемость ударным нагрузкам, значительно ниже, чем гидростатических. Однако, они обладают гораздо меньшим коэффициентом трения и вследствие малой величины зазоров (2 — 10 мкм) обеспечивают высокую точность центрирования. Несущая способность аэростатических опор (в противоположность гидростатическим) возрастает с повышением температуры вследствие увеличения вязкости воздуха с ростом температуры. >  [c.33]


Гидравлические подпятники применяют для валов небольшого диаметра (в среднем до 50 мм), нагруженных силами до 1000 кгс. При больших нагрузках целесообразно применять энергетически более выгодные гидростатические подшипники (см. стр. 443).  [c.423]

В гидростатических подшипниках несущая сила создается при подаче масла из насоса под упорный диск (рис. 431). Масло через дроссель I поступает в карман 2 с запорной кромкой 3. Давление в кармане зависит от соотношения между сечением дросселя и переменным сечением й щели. С увеличением нагрузки щель уменьшается и давление в кармане возрастает до давления, создавае.мого насосом. Это соответствует режиму максимальной несущей способности.  [c.443]

В связи с тем, что в передачах винт — гайка скольжения практически невозможно осуществить гидродинамическую смазку, применяют гидростатические пары винт — гайка (рис. 15.7). На рабочих поверхностях витков гайки посередине их высоты делают выточки, которые не имеют выхода к торцам гаек (перекрываются мастикой или клеем). Ширина выточек составляет 1/3... 1/4 высоты профиля. Через отверстия в выточки подводится масло под давлением. Масло проходит через отдельные дроссели для каждой (правой и левой) стороны витка. Давление масла в выточках меньше, чем в сети оно определяется соотношением гидравлических сопротивлений в дросселях и в зазорах. При действии на пару осевой нагрузки зазоры с одной стороны витков (по направлению силы) уменьшаются, но при этом сопротивление вытеканию масла увеличивается и давление в соответствую-  [c.314]

Различают нагрузки, или внешние силы, объемные (например, собственный вес, силы инерции), которые распределены по всему объему тела, и поверхностные (давление газа, гидростатическое давление, силовое взаимодействие сопряженных деталей и т. п.,), распределенные по поверхности или по части поверхности тела.  [c.173]

Гидростатические опоры скольжения. В опорах, несущих значительную нагрузку при сравнительно малой скорости скольжения, жидкостный режим трения обеспечивается подачей смазки под давлением. Необходимая величина давления определяется из условия всплывания вала при пуске, начиная от нулевой скорости, и поддержания его в таком состоянии при полной нагрузке. Нагнетаемая насосом смазка разделяет поверхности цапфы и подшипника и обеспечивает длительную работу практически без износа. Одна из конструкций гидростатических  [c.447]

Простое нагружение сопровождается возрастанием всех компонентов напряжений в данной точке пропорционально какому-то параметру, например, времени. Тогда и внешние нагрузки пропорциональны этому параметру (при внутреннем гидростатическом давлении на трубу). Форма тензора напряжений и его главные направления при простом нагружении все время сохраняются. Иногда для определения простого нагружения используют коэффициент Лоде и Надаи Ца, который при этом виде нагружения остается постоянным ( —1 1)  [c.97]

Допустим теперь, что на некотором контуре имеются три участка — на первом участке (от точки /о до Б) нагрузка отсутствует, на втором участке (до точки (2) задано гидростатическое  [c.376]

Конкретизируем теперь граничное условие, считая, что нагрузка состоит лишь из гидростатического давления величины р и, следовательно, согласно (2.25)  [c.401]

Остановимся на одной частной задаче. В случае, когда поверхность 5 есть сфера радиуса Я, удается решить уравнения (2.2) и (2.3) в явном виде. Наиболее просто получить решение, когда нагрузка сводится к гидростатическому давлению Тогда краевые условия таковы  [c.568]

Проиллюстрируем сказанное на примере осесимметричной задачи (внешней и внутренней), когда граничная поверхность образована вращением квадрата со стороной 1 вокруг диагонали. В этом случае имеются и коническая точка и угловая линия. Нагрузка сводилась к гидростатическому давлению р. На образующей задавалось различное количество опорных точек (от 20 до 44), причем дополнительно вводимые точки располагались в непосредственной близости к угловой линии или к конической точке (в зависимости от того, окрестность какой из них изучалась). Дискретизация по углу вращения (непосредственно примыкающая к нулевому меридиану) менялась от 0,000314 до 0,0000314. При этом требовалось, чтобы в окрестности угловой линии элементарные участки имели соизмеримое соотношение сторон.  [c.582]


Наложением тривиального решения легко прийти к задаче, когда на бесконечности приложено гидростатическое напряжение, а полости свободны от нагрузки.  [c.586]

См. [82]. Найти уравнение упругой линии круговой бесшарнирной арки постоянного сечения А, J), нагруженной постоянной гидростатической нагрузкой q (рис. 40).  [c.91]

При расчете прямого заделанного стержня длиной I на гидростатическую нагрузку q = q надо использовать уравнение (3.186). При = т. е. на свободном конце, M = Qi = Ni= 0 н, следовательно, согласно уравнениям (3.184) и (3.185) — Уравнение (3.186) примет вид  [c.107]

В гидростатических подшипниках давление в поддерживающем слое смазочного материала создают насосом, подающим материал в зазор между цапфой и подшипником (рис. 26.8). Вследствие эксцентричного расположения цапфы в подшипнике под нагрузкой торцовые зазоры (зазор) между цапфой и подшипником оказываются снизу меньшими, чем сверху. В результате переменный расход через зазор смазочного материала приводит к появлению требуемого давления и подъемной силы. Давление жидкого смазочного материала (а им может быть и вода) в гидросистеме и его расход определяются зазором между цапфой и подшипником, радиальной силой и вязкостью материала.  [c.440]

Расчет. В жидкостных опорах, учитывая вероятность металлического контакта трущихся поверхностей опор, основные размеры (диаметр цапфы, длина подшипника) определяют расчетом, аналогичным расчету опор с трением скольжения (см. 142). В гидродинамических опорах, кроме этого, расчетом определяют минимальную толщину масляного слоя, зависящую от угловой скорости вращения вала, вязкости масла и удельного давления на опору, и необходимую величину зазора между цапфой и вкладышем. В гидростатических опорах задаются числом капиллярных отверстий и, исходя из нагрузки на опору, определяют необходимое давление д смазки, величину зазора между цапфой и подшипником и расход смазки, по которому подбирают насос.  [c.471]

Гидростатические подшипники жидкостного трения. Для того чтобы подшипник мог работать при жидкостном трении, необходимо заставить цапфу всплыть . При этом гидродинамическое давление смазочного слоя должно преодолеть нагрузку, приходящуюся на цапфу. Существует два способа создания этого гидродинамического давления гидростатический и гидродинамический, в соответствии с чем и подшипники могут быть гидростатическими и гидродинамическими.  [c.330]

Изучение деформации в области задиров при абразивном износе пластичных материалов позволило выяснить, что под поверхностью задира и перед ней расположены зоны больших деформаций на глубину до 10 мкм. Эти зоны находятся при обработке под гидростатическим давлением, которое препятствует образованию и росту пор и повышает разрушающее локальное напряжение. Знакопеременная нагрузка на поверхность, даже достаточно малая, может привести к усталостному разрушению.  [c.16]

В таком случае приложение нагрузки т (меньшей предела текучести) к металлу, имеющему несовершенства кристаллического строения, вызовет неоднородное распределение внутренних напряжений в очагах локального плавления приложенное напряжение преобразуется в гидростатическое давление (фазовое состояние близко к жидкому, дальний порядок отсутствует) а в остальной части кристалла напряжение в элементарных объемах подчиняется законам упругости твердого тела. Таким образом, в местах дефектов структуры типа дислокаций возможно равенство т = Р. Например, в работе [16] при вычислении свободной энергии вакансий постулируется справедливость этого соотношения для некоторых областей материалов .  [c.28]

При сложном напряженном состоянии материала связь напряжений и деформаций в теории пластичности определяется связью эквивалентных напряжений и деформаций — их интенсивностей. Такой подход используется и при высокоскоростной деформации. Действие интенсивных упруго-пластических и ударных волн характеризуется включением дополнительного параметра — высокого уровня среднего напряжения, которое может оказать влияние на кривую связи интенсивностей напряжений и деформаций. В связи с этим экспериментальное определение влияния величины гидростатического давления на кривую деформирования является необходимым для построения уравнения состояния материала, описывающего его упруго-пласти-ческое деформирование при импульсных нагрузках типа удара и взрыва.  [c.201]

Результаты статических испытаний [285, 336, 420] противоречивы для одинаковых материалов в различных исследованиях получено как повышение сопротивления с ростом гидростатического давления, так и его постоянство, что может быть связано с ограниченным диапазоном изменения давления, недостаточным для выяснения тенденции при слабом влиянии величины давления на сопротивление пластической деформации. Сопротивление материала сдвигу за фронтом интенсивных волн нагрузки исследовалось в ряде работ путем анализа процесса затухания волны нагрузки, вызванного действием догоняющей волны разгрузки [14, 187]. На основании этих исследований делается вывод о значительном влиянии сопротивления сдвигу за фронтом волны на процесс ее затухания. Сопротивление сдвигу растет с ростом интенсивности волны до некоторого ее предельного значения, соответствующего плавлению материала при сжатии, после чего понижается.  [c.201]


Фиг. 4.04. Прибор для нагрузки гидростатическим давлением внутренней н виешией поверхности кольца. Фиг. 4.04. Прибор для нагрузки гидростатическим <a href="/info/103615">давлением внутренней</a> н виешией поверхности кольца.
Остановимся на некоторых особенностях механического поведения аморфных полимеров. В зависимости от внешних условий (температуры, величины и скорости приложения нагрузки, гидростатического давления и т. п.) один и тот же аморфный полимер может находиться в стеклообразном (подсостояниях хрупкости и вынужденной эластичности), высокоэластическом и вязкотекучем состояниях. Термомеханическая кривая для типичного аморфного полимера, показанная на рис. 1.5, представляет собой удачный пример для характеристики различия между основными состояниями аморфных полимеров. Со стеклованием связывается прекращение сегментальной подвижности. При достижении температуры стеклования происходит смена механизмов молекулярной подвижности, при которых резко меняются механические свойства. Эта температура характеризует теплостойкость аморфных полимеров, работающих в застеклованном состоянии, или морозостойкость полимеров, эксплуатирующихся в высокоэластн-ческом состоянии.  [c.16]

Жесткость гидростатических подшипников можно повысить, вводя золотниковые и клапанные регуляторы давления, автоматически устанавливающие в кармане давление, пропорциональное рабочей нагрузке. Лучшие конструкции этого типа обеспечивают неизменное положение опорного диска в пшроком диапазоне колебаний нагрузки, т. е. практически придают подшншшку бесконечно большую жесткость.  [c.450]

В случае р авномерно распределенной нагрузки (рис. 36, а) эпюра q прямоугольная (рис. 36, б). При действии гидростатического давления эпюра нагрузки q треугольная (рис. 37). Встречаются эпюры q и более сложного вида трапециевидная, синусоидальная и т. д.  [c.43]

Система напряжений, состоящая из поперечного гидростатического давления а и растягиваюш,его напряжения Ор, идентична двум одновременно приложенным системам напряжений всестороннего гидростатического сжатия а и одноосного растяжения СТод=с7р—а. Действующая на образец нагрузка P= ap—a)F F=Fole — площадь поперечного сечения образца при деформации е=1п Fo/P, Fq — начальная площадь поперечного сечения образца) и величина условного напряжения Oy = =Р1Ро= (Ур—(у)1е достигают максимального значения, равного пределу прочности (Стус, тах=Ов) в месте начала образования шейки при г=г (в данном случае Р =  [c.439]

К тиглю предъявляются высокие требования он должен выдерживать большие температурные напряжения (градиент температуры в стенке тигля достигает 200 К/см), а также гидростатическое давление столба расплава и механические нагрузки, возникающие при загрузке и осаживании шихты. Кроме того, тигель должен быть химически стоек по отнопюнию к расплавленному металлу и шлаку и меэлектропроводеи при рабочей температуре. Стойкостью тигля определяется продолжительность эксплуатации печи, т. е. суммарное время плавок между сменами футеровки.  [c.230]

В жидкостных опорах необходимо обеспечить стабильную масляную пленку между трущимися поверхностями, способную выдержать нагрузку, действующую на вал. Существует два способа получения такой пленки. В первом случае масляная пленка создается гидродинамическим эффектом при движении жидкости (масла), затягиваемой в клиновую щель благодаря адгезии (прилипанию к поверхности цапфы) (рис. 4.69, а). Давление, возникающее в масляном слое, зависит от величины зазора, вязкости масла и относительной скорости вращения. Наибольшее давление <7макс. как видно из эпюры (рис. 4.69, а), имеет место вблизи наименьшего зазора Амин- Во втором случае (гидростатические опоры) масло подается  [c.469]

Метод максимальных деформаций (тензометрический) разработан в Институте механики АН УССР [28]. Сущность метода заключается в том, что в трубах, подвергающихся такой технологической операции как опрессовка, определяют в различных сечениях трубы деформации, которые развиваются при действии внутренней осесимметричной гидростатической нагрузки, равной величине опрессовки. Сравнивая деформации в контролируемой трубе с деформациями в эталонной трубе, в которой известно значение разрушающей нагрузки, определяют прочность в контролируемой трубе по формуле  [c.75]

За исключением частных случаев (например, продольного соударения тонких стержней), воздействие импульсной нагрузки создает в материале напряженное состояние, характеризующееся высоким уровнем средних напряжений сжатия или растяжения (последнее во взаимодействующих волнах разгрузки). Можно пренебречь сопротивлением материала сдвигу при высоких давлениях и принять систему напряжений эквивалентной гидростатическому сжатию, что допускает решение ряда задач (например, задачи расчета начальной стадии высокоскоростного взаимодействия твердых тел [252—255]) методами гидродинамики. Для таких расчетов достаточно использовать уравнение состояния вида F p, гу, Т)=0, однозначно связывающее среднее напряжение (давление), объемную деформацию ev и температуру Т. Это уравнение пригодно для описания поведен ия жеталлических твгатерй лев, - ъемиая- -деформация-которых является упругой и, следовательно, не зависит от режима нагружения и его истории.  [c.10]


Смотреть страницы где упоминается термин Нагрузка гидростатическая : [c.535]    [c.633]    [c.84]    [c.323]    [c.35]    [c.137]    [c.27]    [c.33]    [c.105]    [c.252]    [c.76]    [c.8]    [c.94]    [c.223]   
История науки о сопротивлении материалов (1957) -- [ c.47 ]

Пластинки и оболочки (1966) -- [ c.32 , c.37 , c.145 , c.216 , c.221 , c.229 , c.352 ]

Сопротивление материалов Издание 13 (1962) -- [ c.617 ]



ПОИСК



В В гидростатическое

Нагрузка гидростатическая в вершинах углов

Нагрузка гидростатическая в центре

Нагрузка гидростатическая круга

Нагрузка гидростатическая по закону треугольника

Нагрузка гидростатическая по закону треугольной призмы

Нагрузка гидростатическая по краям

Нагрузка гидростатическая по площади

Нагрузка гидростатическая по произвольной площади

Нагрузка гидростатическая по прямоугольной площади

Нагрузка гидростатическая равномерно

Нагрузка гидростатическая эллипса

Пластинка полубесконечная под гидростатической нагрузкой

Равновесие нити (цилиндрической гибкой оболочки), находящейся под действием гидростатической нагрузки

Схемы Нагрузка суммарная гидростатическая



© 2025 Mash-xxl.info Реклама на сайте