Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эйлера интегралы теорема

Соотношение (111.67b) является четвертым алгебраическим интегралом дифференциальных уравнений (III. 12) и (III. 14), не зависящим от времени. По теореме о последнем множителе Якоби задача сводится к квадратурам. Отметим, что задача С. В, Ковалевской приводится к квадратурам гиперэллиптического типа. Характер движения тела в случае Ковалевской гораздо сложнее, чем в случаях Эйлера и Лагранжа. В то время как в упомянутых двух классических случаях общие свойства движения твердого тела исследованы очень подробно, этого нельзя сказать о случае Ковалевской. Трудности, связанные с анализом движения тела в последнем случае, заставляют даже обратиться к экспериментальному изучению проблемы ).  [c.453]


Если свободное твердое тело не является симметричным, то аналитическое решение уравнений Эйлера не может быть получено с помощью элементарных функций. Показать, что, используя теоремы о сохранении энергии и кинетического момента, можно выразить составляющие вектора (о по подвижным осям через эллиптические интегралы.  [c.202]

Теорема импульсов может быть выведена двумя различными путями можно исходить или из теоремы общей механики о количестве движения системы (так называемая теорема о движении центра тяжести системы) — этот вывод имеет за собой преимущество особой наглядности — или из уравнения Эйлера в этом случае приходится преобразовывать объемные интегралы в поверхностные.  [c.204]

Доказательство теоремы 3. Согласно предположений) 1), из уравнений г/,- = иДж , Хг, Хз, 1, 2,0 3) (1 3) можно на-йти (по крайней мере локально) ак как функции от х, у. ак = Рк х,у). Из результатов п. 2 вытекает, что функции Гк — интегралы рассматриваемой гамильтоновой системы. Согласно условию 2), функции 1, 2, Р-з,Н независимы. Остается воспользоваться известной теоремой Эйлера — Якоби об интегрируемости автономной системы п дифференциальных уравнений с инвариантной мерой и п — 2 независимыми интегралами ([174, 12-я лекция]).  [c.73]

Эта теорема показывает, что в некоторых условиях существует эквивалентность между решением дифференциальной задачи второго порядка и отысканием функции, дающей экстремум функционалу (интегралу), когда он является уравнением Эйлера.  [c.16]

Обращаясь к принципу наименьшего действия Мопертюи — Эйлера — Лагранжа (см. 17, гл. IV), Якоби замечает, что почти во всех учебниках, даже и в лучших, как Пуассона, Лагранжа и Лапласа, этот принцип представлен так, что, по моему мнению, его нельзя понять ([38], шестая лекция). Упрек Якоби относится, главным образом, к тому, что в изложении того времени была неясной связь принципа наименьшего действия с теоремой живых сил (с интегралом энергии). Кроме того, Якоби указывает на неудачное название самого принципа и связанное с этим неправильное понимание его сущности.  [c.257]

Действительно, матрица (4.3) кососимметрична и функция Га-лильтона коммутирует со всеми интегралами, поэтому ранг мат-,жцы (4.3) не превосходит 2п-4 = 2(п —2) = 2к. Интегрируемость л квадратурах гамильтоновой системы с п степенями свободы, допускающей 2п — 2 независимых интеграла, установлена Якоби с (юмощью метода интегрирующего множителя Эйлера [174]. Теорема Якоби уже использовалась нами в п. 7 2.  [c.89]


Почти для любого М число интегралов a системы Эйлера, независимых при ограничении на орбиту Од,, равно половине размерности Од,. Так как интегралы а,, находятся в инволюции, то уравнение Эйлера (по теореме Лиувилля) есть вполне интегрируемая гамильторюва система на орбите Од,.  [c.311]

Первые 6 лекций Якоби посвящает изложению основных принципов механики принципу сохранения движения центра тяжести системы, принципу живой силы, принципу площадей и принципу наименьшего действия. С 10-ой лекции Якоби развивает теорию множителя" систем обыкновенных дифференциальных уравнений, являющуюся обобщением теории эйлеров-ского интегрирующего множителя. Якоби показывает каким образом можно в целом ряде случаев построить с помощью последнего множителя" всю систему п независимых интегралов. Изложив подробно теорию этого множителя, Якоби затем применяет ее к решению ряда механических задач. С 19-ой лекции Якоби, исходя из вариационного принципа Гамильтона, излагает тот метод интегрирования уравнения с частными производными первого порядка, который известен под названием метода Якоби-Гамильтона". В следующих лекциях этот метод примендется к ряду задач, взятых главным образом из области небесной механики. В 26 лекции Якоби излагает теорию эллиптических координат и показывает их приложение к разысканию геодезических линий эллипсоида, к задаче построения карт, к выводу основной теоремы Абеля и проч. Наконец, последние лекции Якоби посвящены изложению его классических методов интегрирования нелинейных уравнений в частных производных первого порядка.  [c.4]

Уравнения гидродинамики и их интегралы. Уравнения гидродинамики в форме Эйлера. Теоремы Бернулли и Лагранжа. Сообщение движения жидкости импульсом. Теорема Томсона. Гельмгольцев принцип сохранения напряжения вихревой нити. Основные принципы динамики, отнесенные к жидкой массе. Определенность гидрокннетической задачи.  [c.322]

Так как задача Эйлера-Пуансо невырождена (теорема 3 гл. II), функция не зависит от р. Согласно лемме Пуанкаре ( 1 гл. I), функции Жо и. о зависимы на множестве С Д° С Д°. Вековое множество не является всюду плотным в Д° (теорема 1). Это обстоятельство не позволило А. Пуанкаре на основании доказанных им общих теорем заключить, что рассматриваемая задача не имеет аналитических интегралов, отличных от классических [1, п. 86].  [c.62]

Вернемся к динамике твердого тела. Теорема С. В. Ковалевской о мероморфных общих решениях была существенно усилена А. М. Ляпуновым [42] и Г. Г. Аппельротом [43], доказавшим, что общее решение уравнений движения тяжелого твердого тела вокруг неподвижной точки представляется однозначными (е частности, мероморфными) функциями времени только в классических случаях Эйлера, Лагранжа и Ковалевской. В этих случаях дополнительные интегралы, как и классические интегралы, являются многочленами, т. е. рассматриваемые как функции многих комплексных переменных, они однозначны в прямом произведении комплексных плоскостей. Эти результаты указывают на целесообразность расширения задачи Пенлеве какова связь между существованием новых однозначных интегралов и однозначностью общего решения  [c.128]

Докшевич A. И. Элементарное доказательство теоремы Лиувилля об алгебраических интегралах системы уравнений Эйлера-Пуассона. Механика твердого тела (респ. межведомств. сборник). Киев Наукова думка, 1974, вып. 6, с. 48-50.  [c.233]

Доказательство теоремы 3 в идейном отношении сходно с доказательством теоремы 4, однако сложнее технически из-за возможной расходимости преобразования Биркгофа. Здесь существенно используется тот факт, что преобразование Биркгофа сходится на асимптотических многообразиях (см. И гл. II). Подробное доказательство теоремы 3 содержится в работе [28]. Там же указан ее автономный вариант. Пусть невозмущенная система с гамильтонианом Но имеет аналитический интеграл Fq, причем все интегральные кривые гамильтонова поля замкнуты (примером может служить квадрат модуля кинетического момента твердого тела в задаче Эйлера). Предположим, что при малых е возмущенная гамильтонова система с гамильтонианом Н = Но + Н + + о е) имеет две гиперболические траектории, и 7I, соединенные двоякоасимптотической траекторией 7e(i), гладко зависящей от е. В [28] доказано, что если несобственный интеграл Jqo (в (1-3) надо положить г = j = 0) отличен от нуля, то при достаточно малых е ф О система с гамильтонианом Н не имеет полного набора инволютивных аналитических интегралов на поверхности уровня = h, где h = Н )е)- Доказательство основано на сведении (при помощи интеграла Fo) гамильтоновой системы к неавтономной с периодическим гамильтонианом. Было бы интересно выяснить, следует ли из условий теоремы 3 несуществование п аналитических коммутирующих векторных полей у возмущенной гамильтоновой системы.  [c.267]


Другой метод вывода уравнения неразрывности. Предыдущий вывод уравнения неразрывности в переменных Эйлера представляет в сущности перефразировку вывода в переменных Лагранжа, так как мы рассматривали изменеиия плотности и объема в некоторой части жидкости, состоящей из одних и тех же частиц, следуя за ней при ее движении. Можно получить уравнение неразрывности в переменных Эйлера и другим методом, оставаясь строго на точке зрения Эйлера. Для этого достаточно рассмотреть поток вектора рг сквозь некоторую неподвижную замкнутую поверхность 5 произвольной формы. Этот поток, на основании теоремы Гаусса, может быть представлен объемным интегралом  [c.25]

При ограничении скобки (1.3) на совместный уровень интегралов Р и Р2 она становится невырожденной и по теореме Дарбу ( 1 гл. 1) в некоторых симплектических координатах может быть представлена в обычной канонической форме. Для различных целей можно использовать как канонические переменные Эйлера в, (р, i>,Pe,Pip,Pi)), так и переменные Андуайе-  [c.86]

Основные результаты по неинтегрируемости уравнений Эйлера-Пуассона принадлежат В. В. Козлову, С. Л. Зиглину, С. В. Болотину. Они обсуждаются в книгах [92, 97] и связаны с расщеплением асимптотических поверхностей, ветвлением решений на комплексной плоскости времени, рождением большого числа невырожденных периодических решений. Вершиной этого направления являлась бы теорема, что общие случаи существования дополнительного вещественно-аналитического интеграла исчерпываются случаями Эйлера, Лагранжа и Ковалевской, а для частных интегралов к ним надо добавить случай Горячева-Чаплыгина. К сожалению, в полном объеме эта гипотеза до сих пор не доказана, несмотря на отдельные и довольно существенные продвижения [97].  [c.90]

Замечание 2. Для интегрируемости системы (1.1) по теории последнего множителя (теория Эйлера-Якоби см. 7 гл. 1) также не хватает еще одного дополнительного первого интеграла. Действительно, исследуемая система (1.1) обладает тремя первыми интегралами и стандартной инвариантной мерой р = onst. Заметим, однако, что естественные обобщения уравнений (1.1) (см. 4 гл. 3) уже не могут быть проинтегрированы этим методом. Для таких систем интегрируемость устанавливают с помощью гамильтонового формализма и теоремы Лиувилля ( 7 гл. 1).  [c.91]

Теорема 4. Пусть М — связное, компактное, ориентируемое четномерное многообразие. Еслн гамильтонова натуральная система на Т М имеет к (А тМ)12 независимых линейных интегралов в ниволюцин, то характеристика Эйлера — Пуанкаре  [c.93]

Причина вырождения может быть в том, что число первых интегралов, определенных во всем фазовом пространстве, больше п (но не все они, разумеется, находятся в инволюции). Так, например, в задаче Эйлера о вращении твердого тела по инерции, имеющей три степени свс ды, существует четыре независимых первых интеграла. Их совместные уровни расслаивают трехмерные инвариантные торы на друмерные торы. Эта ситуация описывается обобщением теоремы 8. Обозначим Fu...,Fn+k независимые первые интегралы гамильтоновой системы с гамильтонианом Н и пусть по-прежнему М,= = хбЛ1 Fi x)=fi, Считаем Mf связным н ком-  [c.131]

Для систем на плоскости плотность интегрального инварианта р названа Эйлером интегрирующем множителем. Якоби распространил наблюдение Эйлера на систему п дифференциальных уравнений, допускающих п — 2 независимых интегралов и инвариантную меру. Обсуждение строения потоков на интегральных поверхностях таких систем можно найти в книге [31]. Рассуждения п.3° соответствуют в гидродинамике известной теореме Клебша о том, что если для  [c.216]

Как уже отмечалось в гл. III ( 3), правые сдвиги включаются в фазовые потоки левоинвариантных полей. Левоинвариантные поля на группе SDiff М — это соленоидальные поля на М, удовлетворяющие уравнению Эйлера (6). Следовательно, по теореме Нетер уравнения геодезических на группе SDiff М допускают бесконечную серию линейных интегралов (8) w,v) = onst.  [c.221]

Интегрирование по движущейся поверхности 8 г, /) в (1.10) заменено здесь интегрированием по неподвижной поверхности 5, а оставшаяся разность интегралов по поверхностям 5 (г, /) и 5 превращена, согласно теореме Гаусса, в объемный интеграл. При малой амплитуде колебаний точек граничной поверхности объем V, заключенный между поверхностями 8 г, 1) и 5, может быть приближенно записан как йУх% й8 здесь при переходе считается, что й8 от времени не зависит. При этом (1У/сИ= Ш (18, где Ш==% — колебательная скорость поверхности тела. Воспользовавшись далее уравнением движе1П1я Эйлера и совершив несложные преобразо-  [c.121]

Первые общие теоремы касаются движения центра массы н были даны Ньютоном в Началах . Десять интегралов н теоремы, к которым онн приводят, были известны Эйлеру. Следующим общим резуль ятом было доказательство существования и рассмотрение свойств неизменной плоскости Лапласом в 1784 г. В зимнем семестре 1842 4i г. Якоби прочел курс лекций по дишмнке в Кенигсбергском университете. В этом курсе он привел результаты некоторых очень важных исследований интегрирования диференциальных уравнений механики. Во всех случаях, когда силы завися г от одних координат и когда существует потенциальная функция (условия, выполненные в задаче я тел), он доказал, что если все интегралы, кроме двух, найдены, то последние два могут быть всегда найдены. Он также показал, развивая некоторые исследования В. Гамильтона, что задача может быть приведена к решению диференциального уравнения с частными производными, порядок которого в два ряза меньше порядка первоначальной системы. Лекции Якоби опубликованы в дополнительном томе к собранию его сочинени.1. Они очень важны сами по себе, а также абсолютно необходимы как вступление к чтению составивших эпоху мемуаров Пуанкаре и должны быть доступны для каждого изучающего небесную механику.  [c.246]



Смотреть страницы где упоминается термин Эйлера интегралы теорема : [c.400]    [c.499]    [c.291]    [c.21]    [c.11]    [c.542]    [c.289]    [c.50]    [c.237]    [c.71]    [c.116]   
Справочник машиностроителя Том 1 Изд.3 (1963) -- [ c.398 ]

Справочник машиностроителя Том 1 Изд.2 (1956) -- [ c.389 ]

Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.2 , c.389 ]



ПОИСК



Теорема Эйлера

Эйлер

Эйлера интегралы

Эйлера эйлеров



© 2025 Mash-xxl.info Реклама на сайте