Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

МЕХАНИЗМЫ Схема — Влияние

Если принять во внимание трудности, связанные с надлежащим учетом всех составляющих поверхностной энергии, наличие разных механизмов разрушения, значительное влияние схемы армирования в плоскости и последовательности укладки слоев по толщине на реализацию того или иного механизма разрушения и различия между свойствами компо-  [c.233]

Справочные кинематические диаграммы позволяют производить сравнительную оценку различных вариантов геометрических схем механизмов с учетом влияния параметров механизма на кинематические и динамические характеристики.  [c.167]


О. Фишера [1] построением так называемых главных точек участков кинематической цепи механизмов. Схема механизма дробилки Д-2, схема построения положения центра тяжести механизма для данного положения звеньев его представлены на рис. 1. Для построения траектории центра масс подвижных звеньев использован условный механизм О—А—В—Е—Оь Звено С—Д условно отброшено. Для учета его влияния на положение общего ц. т. механизма масса звена С—Д статически присоединена к массе звена А—В—С (шатун) в точке С и соответственно внесено изменение в координаты ц. т. звена шатуна А—В—С. Координаты центров масс звеньев и ku величины отрезков hi, t,i, определяющих положение ц. т. звена, участка кинематической цепи механизма, вычислены по известным в теории механизмов и машин формулам. Построение ряда точек траектории ц. т. механизма Д-2 без учета противовесов и главного вала с навесными деталями представлено на том же рис. 1, и точки эти обозначены Дь Из построения видно, что центр масс ме-  [c.33]

Схема механизма оказывает существенное влияние на его к. п. д. Рациональная с точки зрения к. п. д. схема должна обеспечивать а) короткие кинематические цепи с малым числом кинематических пар — источников потерь на трение б) полное отключение кинематических цепей, не участвующих в передаче мощности при данных включениях, что важно для быстроходных машин  [c.451]

На выбор схемы механизма подъема оказывают влияние многие факторы, главными из которых являются  [c.259]

Входящие в систему лентопротяжных механизмов ролики монтируются на подшипниках качения и тщательно балансируются относительно оси вращения. Для быстрой и удобной смены абразивной ленты оси роликов закрепляют консольно. Схема лентопротяжного механизма оказывает существенное влияние на конструктивное оформление ленточно-шлифовальных станков, изменение технологических параметров, качество обрабатываемых деталей и тепловые явления процесса шлифования.  [c.37]

Метод с жесткими связями. При кинематических связях устройство правки и механизм подачи бесцентрового круглошлифовального станка связывают жесткой цепью с определенным передаточным отношением. Указанный принцип сложен из-за достаточно большой кинематической цепи, вызывающей ошибки в перемещении алмаза Рис. 7.5. Схема бесконтактного влияния тепловых и силовых деформа- метода контроля положения ций системы и т.д. шлифовального круга  [c.255]


Все проведенные результаты расчетов относились к системе регулирования с безынерционным исполнительным механизмом— приводом. Рассмотрим влияние введения привода с определенными характеристиками на динамику ЖРД. Введем в схему регулирования привод с постоянной скоростью. За исходную примем скорость привода дросселя на тракте горючего газогенератора Unp = 200°/ . Считаем, что полный угол поворота кулачка дросселя равен 200° и привод обеспечивает перевод дросселя от одного упора до другого за 1 с. При  [c.276]

Систематическими называются погрешности, постоянные по величине и направлению или изменяющиеся по определенному закону. Они могут быть вызваны упрощениями кинематических схем передаточных механизмов (например, в результате замены зубчатых механизмов поводковыми механизмами), ошибками настройки станков или приборов, температурными де( рмациями и пр. Влияние этих ошибок на результаты обработки и измерения можно учесть и даже устранить.  [c.32]

Влияние центробежных сил на выбор схемы. Опоры сателлитов воспринимают усилия зацепления и центробежные силы. Влияние последних растет с увеличением ш/, и размеров передачи при больших (0ft рационален вариант 3 при одном механизме А и вариант 5 при двух механизмах А. В последнем случае от центробежных сил разгружены опоры сателлитов быстроходной ступени.  [c.637]

В варианте 6 ог центробежных сил разгружены опоры тихоходной ступени. Это имеет значение в весьма быстроходных приводах, когда угловая скорость и передаваемый момент тихоходного вала значительны. В этом варианте водило hj вращается со скоростью тихоходного вала. Но УИда Mhv и поэтому размеры механизма Л с основными звеньями значительно меньше, чем другого механизма А, а поэтому влияние центробежных сил в нем (в известном диапазоне исходных параметров) невелико. Помимо отмеченных достоинств, в отдельных случаях передачи, выполненные по схеме варианта 6, имеют конструктивные преимущества по сравнению с вариантами 4 и 5.  [c.637]

СОВ, сопровождающих работу системы, анализа динамики их работы и оценки влияния различных параметров системы на работу всего механизма в целом. В лабораторной работе исследование динамики вибромолота сведено к изучению одномассовой виброударной системы с одним ограничителем, расчетная схема которой показана на рнс. И.3.3.  [c.30]

Получить высокую точность механизма можно либо за счет повышения точности изготовления его деталей (что иногда экономически невыгодно стоимость деталей связана степенной зависимостью с точностью их изготовления), либо применением ряда специальных мероприятий, снижающих влияние погрешностей изготовления деталей и погрешностей схемы на точность механизма. Последний метод называется методом компенсации. Он широко применяется в точном машиностроении.  [c.120]

Всякое отклонение действительной схемы от теоретической вызывает неточное движение механизма. Поэтому необходимо учитывать влияние отклонений, или ошибок, механизма на точность движения его. Ошибкой механизма называют отклонение действительных параметров от теоретических. Учет всех возможных ошибок, происходящих от действия указанных факторов, влияющих на точность работы механизма, — сложная задача. Поэтому рассмотрим только некоторые методы определения основных возможных ошибок для простейших механизмов. В большинстве случаев точность механизма характеризуется ошибками положения и ошибками перемещения его ведомых звеньев.  [c.217]

Таким образом, зная С и Сд, можно определить Rug через t/вн и /. Стабилизация параметра х при изменении и а осуществляется изменением частоты f до установления фиксированного значения аргумента вектора t/вн-Способ вариации условий контроля основан на том, что мешающий фактор. (например, зазор) принудительно изменяется в широких пределах, перекрывающих возможный диапазон изменений в процессе контроля. При достижении номинальных условий контроля (номинальный зазор) производится отсчет контролируемых параметров. Структурная схема прибора, действие которого основано на использовании способа вариации для устранения мешающего влияния изменений зазора, приведена на рис. 71. Механизм перемещения 1 приводит в возвратно-поступательное движение блок ВТП 3 по направлению нормали к поверхности объекта. Генератор 2 обе-  [c.135]


Дефектоскоп ВД-40Н состоит из сканирующего механизма с ВТП и стационарной электронной стойки (рис. 74). При осевом перемещении объекта контроля преобразователя описывают винтовую линию вокруг его поверхности. Скорость перемещения объекта определяется скоростью вращения ВТП, их числом и шириной зоны контроля каждого из них. В приборе используются два ВТП и два измерительных канала соответственно. Структурная схема каждого из каналов отличается от схемы каналов дефектоскопа ВД-ЗОП тем, что здесь способ проекции используется для уменьшения влияния зазора. Кроме того, имеется дополнительный канал измерения расстояния между преобразователем и поверхностью детали. Сигнал, полученный от одной из измерительных обмоток и несущий информацию, в основном о величине зазора, обрабатывается в этом канале и служит для управления коэффициентом передачи основного измерительного канала. Таким образом, сохраняется неизменной чувствительность дефектоскопа при изменениях зазора, что позволяет вы-  [c.144]

На рис. 111, б показана схема изменения работоспособности механизма. Пока суммарный износ находится в пределах значений е, его влияние компенсируется и изменения работоспособности не происходит, хотя периодически должна осуществляться регу-  [c.338]

В электронных схемах используется большое число различных типов приборов, причем наиболее часто они строятся на основе магнитоэлектрического принципа. Широко используются также приборы, основанные на электромагнитном и термоэлектрическом принципах, на принципе нагревания рабочего элемента и т. д. Несмотря на множество типов и разновидностей механизмов, изучение влияния на наиболее ответственные детали приборов может указать пути устранения потенциальных причин  [c.414]

Придерживаясь ранее рассмотренной схемы механизма образования наклепа поверхностного слоя с учетом роли и значения температурно-силового фактора в нем, можно объяснить влияние изменения условий обработки на глубину и степень наклепа.  [c.99]

При расчете пневматических механизмов в связи с определением законов их движения и времени срабатывания необходимо знать скорости движения воздуха в трубах и его расходы. Для установления этих зависимостей обратимся к схеме, приведенной на рис. Х.5. Предположим, происходит наполнение рабочего цилиндра 1 из ресивера 2 достаточно больших размеров, чтобы можно было пренебречь изменением давления и скоростью в нем. Пренебрегая влиянием инерционных сил и коэффициентами, учитывающими неравномерность распределения скоростей по сечению потока, можно записать уравнение Бернулли для сечения О—О и /—I следующим образом  [c.178]

В соответствии с рассматриваемой схемой обратное (холостое) движение поршня совершается за счет упругости пружины. Кран или золотник управления при этом находится в таком положении, что открыт доступ жидкости из-под поршня в рабочем цилиндре в сливной патрубок б. Поршень под действием пружины будет создавать напор жидкости в цилиндре, и она начнет вытекать, освобождая цилиндр. На процесс срабатывания гидравлического механизма при холостом движении будут оказывать влияние те же факторы, что и при рабочем движении.  [c.206]

Оценка влияния упругих свойств соединений, связывающих центральные колеса планетарных рядов многорядного редуктора с опорным звеном, производится так же, как для одно- и двухступенчатых планетарных передач. Если для какого-либо планетарного ряда редуктора удовлетворяется условие (4.80), то этот,ряд может быть представлен в общей динамической схеме одним из своих редуцированных графов (рис. 68,6). При определении схемных передаточных отношений учитываются кинематические свойства лишь тех планетарных рядов многорядного редуктора, которые представляются в общей динамической схеме редуцированными графами. Планетарные ряды, характеризуемые полными динамическими графами, рассматриваются как механизмы без редукции.  [c.153]

Для более полного исследования динамических свойств приводов с самотормозящимися механизмами рассмотрим режимы выбега в упрощенных предположениях. Выбор этих режимов обусловлен тем, что именно в них наиболее четко проявляются специфические динамические свойства самотормозящихся механизмов. Рассмотрим наиболее простые схемы приводов, полагая, что выбег осуществляется при выключенном двигателе. Будем также пренебрегать влиянием зазоров в кинематических парах, а также сил внутреннего сопротивления деформируемых звеньев.  [c.285]

Рассмотрим схему привода с самотормозящимся механизмом (рис. 97), полагая звенья механизма жесткими, динамическую характеристику двигателя заданной уравнением (1.49), а момент сопротивления — периодической функцией времени в соответствии с (12.1). Влиянием зазоров в кинематических парах вначале будем пренебрегать, считая все параметры привода приведенными к валу двигателя.  [c.302]

В отличие от описанного механизма переноса под влиянием избыточного давления сушка наиболее тонких образцов (5=1—2 мм) протекает, как об этом сказано было выше, по схеме мягкого процесса. Лишь при весьма высоких температурах воздуха (выше 200° С) на температурных кривых имеют место краткие периоды постоянной температуры на уровне 100°С, следующие за периодом /= M = onst. Однако по длительности для материала такой толщины они имеют второстепенное значение. Вместе с тем необходимо отметить, что из всех опытов по сушке шпона 5 = 1-=-2 мм лишь в опытах с образцами 5 = = 2 мм при (г с= 80° С и м = 33°С обнаружены градиенты температуры на первой стадии процесса при замедленном, но непрерывном нарастании температуры поверхности. Период постоянной температуры древесины на уровне t = tw в чистом виде здесь на обнаружен. Вместе с тем при этой же температуре воздуха, но более высоких = г м, а также при всех других более высоких температурах среды (120, 160, 205 и 245° С) и /m = 50h-95° сушка протекала при наличии периода постоянной скорости температуры на уровне / = /м-  [c.189]


Согласно этой теории, при контакте коррозионной среды и коррозионностойкой стали, имеющей на границах зерен карбиды, образуется микроэлемент. Этот микроэлемент локализуется около карбида, который, как правило, является катодом, а прилегающие к нему пограничные участки — анодами, подвергающимися сильной коррозии. Развитие МКК по этому механизму связано G образованием сплошных или слаборазобщенных карбидных выделений. По аналогичной схеме объяснено влияние сред разной агрессивности на МКК стали одного состава.  [c.55]

На рис. 68 показана сетка влияния, построенная для центрального кривошипно-шатунносо механизма, схема которого помещена на этом же рисунке слева внизу. Справа внизу приведены выражения для КО механизма, в которых аргументом является положение ведущего звена механизма, в данном случае угол а.  [c.139]

Большое влияние на надежность фрикционной муфты оказьшают нажимные механизмы. На рис. 20.29, а, б приведены широко распространенные схемы нажимных рычажно-кулачковых механизмов. Вьшгрьпп в силе здесь получают, как обычно, выбором плеч рычагов и угла конуса нажимной втулки. При включенном положении концы рычагов находятся на цилиндрических поверхностях втулок. В этом случае сила сжатия дисков на опоры вала не передается. Нажимной механизм получается самотормозящимся. Однако при работе машины в результате неизбежных вибраций нажимная втулка может сместиться (по рисунку вправо), что вызовет выключение муфты. Для предупреждения этого рычаги, управляющие нажимными втулками, должны быть зафиксированы в конечных положениях.  [c.322]

Рассмотрим результаты экспериментов, характеризующие влияние скорости деформирования на критические параметры, контролирующие предельное состояние материала, и сопоставим их с механизмами накопления повреждений и разрушения. Основная закономерность, которая наблюдается при различных схемах деформирования в условиях, когда скоростные параметры нагружения влияют на характеристики разрушения, состоит в уменьшении критических значений этих характеристик при снижении эффективной скорости деформирования. Так, при испытании на ползучесть в определенном температурном интервале снижение скорости установившейся ползучести, вызванное уменьшением приложенных напряжений, может приводить к уменьшению деформации ef, соответствующей разрушению образца. В качествее примера на рис. 3.1, а приведены результаты опытов на ползучесть для ферритной стали, содержащей 0,5% Сг, 0,25% Мо, 0,25% V, при 7 = 550°С и напряжении а =150- 350 МПа [342]. При скорости установившейся ползучести порядка 10 3 с деформация до разрушения образца составляет всего несколько процентов.  [c.151]

Описанный механизм является развитием схемы, предложенной Финком [87]. Некоторые авторы полагают, что в процессе истирания от поверхности отделяются только мелкие частицы металла, которые впоследствии окисляются на воздухе [88]. Однако влияние возрастания частоты на снижение разрушения, уменьшение разрушения в атмосфере азота, даже если изначально поверхность покрыта оксидом [841, а также отсутствие самопроизвольного окисления на воздухе частиц, полученных при истирании в азоте, говорит о несостоятельности такой точки зрения.  [c.168]

При синтезе механизма с оптимальной структурой учитывают, что стойка, которая обычно рассматривается как жесткое неподвижное звено, в реальных машинах под действием приложенных нагрузок испытывает деформации. Эти деформации могут оказывать влияние на относительное положение элементов кинематических пар не только в пределах одной кинематической пары, как это было рассмотрено в 2.6, но и в пределах замкнутых кинематических цепей механизма. При неправильном выборе структурной схемы (например, в предположении движения звеньев по схеме плоского механизма) в процессе эксплуатации возможны заклинивание ( заш,емление ) некоторых элементов кинематических пар, появление значительных дополнительных нагрузок из-за перекоса, изгиба, растяжения звеньев, чрезмерного изнашивания элементов кинематических пар, низкая надежность и частые отказы конструкции. Подобные явления могут иметь место, например, в тяжелонагруженных механизмах технологического оборудования (прессы, прокатные станы, литейные машины и т. п.), в сельскохозяйственных и транспортных машинах.  [c.50]

Развитие теории механизмов и машин связано с прогрессом техники. По мере повышения уровня машиностроения получали развитие и различные разделы теории механизмов. Развитие машиностроения в начале нашего столетия привело к разработке теории структуры механизмов и машин. Усложнение кинематических схем машинных агрегатов обусловило необходимость в разработке методов кинематического расчета механизмов. Совершенствование дви-гателестроения вызвало увс личение скоростей работы машин, что потребовало развития методов динамических расчетов. В теории механизмов и машин развились методы расчетов отдельных типов механизмов (рычажных, зубчатых, кулачковых и др.), учитывающих взаимное влияние геометрических, кинематических и динамических факторов на качественные показатели работы механизмов. Г0 привело к созданию теорий зацепления, колебаний и др.  [c.4]

При решении задач анализа (см. гл. 16...19) и синтеза механизмов (см. гл. 7...15) были приняты допущения, идеализирующие условия их изготовления и работы звенья — абсолютно жесткие, кинематические пары — без за.зоров, законы движения входных звеньев — совпадающие с принятыми в исходных данных и т. д. При этих допущениях получены зависимости, опред дяющие перемещения, скорости, ускорения, сил.ы и т. п. для различных типов механизмов. Но в реальных механизмах эти закономерности точно не выполняются, так как всегда имеют место отклонения действительных параметров звеньев и кинематических пар от принятых при расчете. Это объясняется неизбежными погрешностями при изготовлении звеньев и сборке механизма, изнашивании элементов кинематических пар и т. п., что приводит к отклонению положения звенье.д от предусмотренных на схеме механизма. Чем больше значения отклонений соизмеримы с линейными размерами звеньев, тем сильнее их влияние на работу механизма. Это проявляется в отклонении законов движения реального механизма от предусмотренных при проектировании.  [c.332]

Затраты на повышение надежности можно распределить так, чтобы получить наибольший эффект, а во многих случаях добиться повышения надежности не за счет дополнительных затрат, а путем применения рациональных конструктивных решений. Так, например, выбор оптимальных размеров узла трения обеспечит более длительное сохранение им точности (см. гл. 7, п. 5), выбор схемы механизма и допусков на сопряженные поверхности сократит период макроприработки (см. гл. 8, п. 3), рациональный выбор типа механизма и расчет его на износ позволит при прочих равных условиях добиться более равномерного износа и меньшего его влияния на выходные параметры изделия (см. гл. 6) и т. п.  [c.567]

Изучив различные процессы, одновременно протекающие при облучении селеновых и меднозакисных кристаллов, можно выявить некоторые механизмы нарушений. К таким процессам относятся ядерные превращения, искажения кристаллической решетки и отжиг. Ядерные превращения вызываются захватом тепловых нейтронов, а последующий радиоактивный распад приводит к образованию химических примесей в кристаллической решетке. Разупо-рядочение кристаллической решетки является результатом упругого рассеяния нейтронов, обладающих высокой энергией. При температурах выше 130° К существенную роль начинает играть процесс отжига. Кроме того, комптоновское рассеяние у-квантов приводит к образованию электронов с высокой энергией, которые в свою очередь могут вызвать разунорядочение кристаллической решетки при упругом рассеянии. В одном или более барьерах могут наблюдаться фотоэлектрические эффекты, причем фотонапряжения оказывают во многих случаях влияние на работу электронных схем, даже если после облучения необратимые изменения отсутствуют.  [c.358]


Интересно сопоставить, как влияет скорость нагружения на характер взаимодействия усталостной трещины с включением. Установлено, что при частоте нагружения 33 Гц бороздки усталости огибают включения, которые задерживают трещину. При частоте нагружения 10 кГц трещина разрушает включения по механизму скола. Эти результаты свидетельствуют о некотором охрупчнвающем влиянии более высокой частоты, что согласуется с известными схемами вяакохрупког о перехода в металлах-  [c.367]

На фиг. 357, а показана схема установки термопар на колодочном тормозе конструкции ВНИИПТМАШа. Термопары 5—12 были установлены на поверхности трения накладки и показывали ее температуру в различных точках. Термопары I—4 и 13—17 размещались на тормозных рычагах и колодках термопары 18—19 устанавливались непосредственно на якоре тормозного электромагнита. При работе механизма и тормоза электромагнит (типов МО, МОБ или МП), укрепленный на тормозном рычаге, нагреваясь до 60—80° С, отдавал тепло тормозному рычагу и увеличивал температуру поверхности трения на 3—4° при 150 включениях в час и на 4—6° при 300 включениях в час. Этот нагрев лежит в пределах допускаемой неточности измерений и может при обработке результатов не учитываться. Столь малое влияние нагрева электромагнита на увеличение температуры поверхности трения обусловливается теплоизолирующей способностью фрикционной накладки на асбестовой основе. Если электромагнит располагается отдельно от тормозного рычага, то его нагрев вообще не влияет на температуру рычага и накладок. Расположение термопар в ленте ленточного тормоза показано на фиг. 357, б. Тепло, выделявшееся электромагнитом, не оказывало влияния на температуру поверхности трения, так как электромагнит во всех случаях удален от тормозной ленты. При испытаниях максимум температуры во всех случаях был зафиксирован на расстоянии 35—40° от сбегающего конца ленты в точках 7 и 8. Расположение термопар во фрикционных (невращающихся) дисках дискового тормоза показано на фиг. 357, в.  [c.626]

Приведенные допущения не накладывают сколько-нибудь существенных ограничений на общность полученных результатов. При необходимости влияние каждого из допущений может быть строго оценено при помощи общих методов, разработанных выше. Введем следующие условные обозначения для наиболее часто встречающейся схемы механизма с самотормозящейся червячной передачей (рис. 78) М- — вращающий шмент двигателя — момент сопротивления на валу червяка M i = к У гМ.а — момент сопротивления на валу червячного колеса, приведенный к двигателю, при установившемся холостом ходе s — жесткости участков валопровода между двигателем и червяком, червячным колесом и зажимными элементами т) , — приведенные к. п. д. в тяговом режиме и коэффициент оттормаживания самотормозящейся передачи Фх — угол поворота ротора двигателя  [c.286]

Указанные выше предположения приводят к известным упрощениям схем действительных механизмов и в некоторых случаях (например, при исследовании вынужденных колебаний под действием внешних периодических моментов) могут явиться причиной значительных погрешностей. Однако для режимов выбега, как показывает анализ, эти упрощения обычно не вызывают существенных погрешностей. Динамические характеристики приводов машин с са-мотормозящимися механизмами, найденные на основе упрощенных схем, как правило, сохраняют силу и при уточненном учете их свойств с необходимой полнотой [29]. Степень влияния каждого из упрощений может быть оценена в случае необходимости методами, разработанными в п. 8.  [c.286]

Первый член в выражении (11.22) совпадает с выражением (11.2) для Mk, ft+i, полученным в предположении, что звенья механизма являются жесткими. Учет влияния внутреннего сопротивления по схеме рис. 89 приведет к затуханию колебаний, однако выражение для установившегося значения момента и в этом случае сохраняется. Для скоростей вращения звеньев, учитывая, что (Од. = ф, = фА+1 и Фа — фй+1 = J ( oft — oft+i) di, получим на основе системы уравнений (11.18) выражения  [c.290]


Смотреть страницы где упоминается термин МЕХАНИЗМЫ Схема — Влияние : [c.56]    [c.17]    [c.26]    [c.414]    [c.85]    [c.35]    [c.407]    [c.23]    [c.368]   
Справочник машиностроителя Том 1 Изд.3 (1963) -- [ c.451 ]



ПОИСК



220. 226, 318 — Механизмы влияния

Механизм Влияние без избыточных связей — 6, 7 — Достоинства 9 — Конструирование 10 — Примеры 9 - Схемы структурные

Механизм Схема



© 2025 Mash-xxl.info Реклама на сайте