Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Частота вращения собственная

Расчетные формулы для частот собственных колебаний и критических частот вращения более сложных систем, в том числе многомассовых, см. в справочниках, а такл<е [21.  [c.270]

Как известно из теории колебаний, после перехода через критические частоты вращения наступает динамическое центрирование вала, т. е. центр тяжести несбалансированной массы приближается к геометрической оси вращения. Большинство валов работает в дорезонансной зоне, причем для уменьшения опасности резонанса повышают их жесткость и, следовательно, собственные частоты колебаний. При больших частотах вращения, например, в быстроходных турбинах и центрифугах применяют валы, работающие в зарезонансной зоне. Для того чтобы отойти от области резонанса, валы делают повышенной податливости. При разгоне и торможении проход через критические частоты вращения во избежание аварий осуществляют с возможно большей скоростью применяют специальные ограничители амплитуд  [c.335]


Более точным и перспективным в отношении автоматизации процесса балансировки является способ определения статической неуравновешенности в процессе вращения ротора, т. е. в динамическом режиме. Одним из примеров оборудования, работающего по этому принципу, служит балансировочный станок, изображенный на рис. 6.15. Неуравновешенный ротор /, закрепленный на шпинделе 4, вращается с постоянной скоростью ojr, в подшипниках, смонтированных в плите 2. Эта плита опирается на станину посредством упругих элементов 3. С плитой 2 с помощью мягкой пружины 5 связана масса 6 сейсмического датчика. Собственная частота колебаний массы датчика должна быть значительно ниже частоты вращения ротора. Массе 6 дана свобода прямолинейного перемещения вдоль оси х, проходящей через центр масс S(i плиты.  [c.218]

Вращения у зависит от со, как показано на рис. 7.97. Эта зависимость непрерывная и кусочно-постоянная. Каждому отрезку постоянства числа вращения у соответствует синхронизм порядка piq с некоторой областью захвата (м, 65) по частоте и собственных колебаний автономной системы. Если бы фиксировать частоту ш и менять частоту <щ внешнего воздействия, которая была до этого равна единице, то характер зависимости числа вращения Пуанкаре у от Иц будет такой же, как и от со.  [c.352]

Во сколько раз изменится амплитуда вынужденных колебаний, если частота вращения ротора дви- i а гателя, установленного на балке, возрастет с 50 с" до 200 с Собственная частота упругой системы равна 100 с .  [c.215]

Определить 1) наибольший полный прогиб балки в сечении под центром двигателя и наибольшие полные нормальные напряжения, возникающие в балке 2) частоту вращения вала двигателя, при которой наступит резонанс. Собственный вес балки и силы сопротивления при расчете не учитывать. Дано =2 10 МПа У = 8950 см 1Т=597 смТ  [c.540]

В комплект насосной установки на рн= 14,3 МПа и выше входят, кроме собственно насоса, следующие узлы электродвигатель соединительная муфта обратный клапан с запорным вентилем и дросселирующим устройством для-линии рециркуляции защитная сетка на входном трубопроводе оборудование и арматура масляной установки местные щиты с приборами автоматического управления, контроля, защиты и сигнализации запасные части, а также-гидромуфта (при поставке насоса для работы с регулированием частоты вращения).  [c.221]


Величина оптимального зазора меняется в зависимости от параметра I, называемого коэффициентом расстройки, выражающего отношение частот собственных колебаний о ударной массы на пружинах и вынужденных колебаний с частотой вращения эксцентриков  [c.32]

Собственный момент инерции кривошипа кр. масса ползуна и частота вращения п кривошипа известны.  [c.96]

Различают спусковые регуляторы двух типов а) регуляторы с собственными колебаниями, обеспечивающие высокую точность поддержания заданной частоты вращения (точнее, чем тормозные регуляторы) б) регуляторы без собственных колебаний — более простые, но менее точные.  [c.392]

Жесткость вала агрегата выбирается такой, чтобы частота его собственных колебаний превышала частоту вращения при всех режимах, в том числе и при выходе агрегата в рас-гон. Такой вал называется жестким валом.  [c.201]

Момент Ми усиливает переменную нагрузку на опоры вращающегося звена и вибрацию всей системы. При большой частоте вращения силы инерции достигают значительных числовых значений и нередко превосходят внешние силы. Это особенно опасно в тех случаях, когда частота вибрации, вызванная силами инерции, совпадает с частотой собственных колебаний конструкции, т. е. при наличии резонанса.  [c.188]

Расчет валов с учетом колебаний. Оценка соответствия принятой ж-есткости вала также производится упругими колебаниями. Эта проверка сводится к определению критической частоты вращения вала, т. е. такой частоты вращения, при которой наступает резонанс. Явление резонанса наступает при условии совпадения собственных колебаний упругого вала с периодом действующей силы. Необходимо принять такие конструктивные формы вала, при которых исключалось бы явление резонанса.  [c.391]

Применение изложенной выше методики рассмотрим на примере турбогенератора с трехопорным ротором, имеющим раму длиной порядка 5,5 м. Масса ротора генератора 2,5 т, турбины — 1,1 т, частота вращения ротора 3000 об/мин. Рама закрепляется на фундаменте с помощью резинометаллических амортизаторов, обеспечивающих минимальную собственную частоту системы примерно 20 Гц.  [c.116]

Проблеме устойчивости движения ротора, вращающегося в подшипниках скольжения, посвящена обширная литература. Наиболее полное изложение результатов приведено в [15, 113]. Основная суть этих результатов заключается в том, что при определенных скоростях вращения роторов возникают само-возбуждающиеся колебания ротора, происходящие либо с частотой, равной примерно половине частоты вращения, либо с собственной частотой роторной системы. Эти колебания имеют место наряду с вынужденными колебаниями ротора, обусловленными неуравновешенностью ротора, и могут быть чрезвычайно интенсивными.  [c.162]

Это обстоятельство особенно проявляется у подшипников качения (см. гл. V). Подшипники скольжения при малых нагрузках или при очень больших скоростях могут явиться причиной автоколебаний с половинной частотой вращения или с собственной частотой [100, 149].  [c.176]

В настоящее время обычно определяются только резонансные частоты амортизированного насоса и первая собственная частота ротора. Исследования показывают, что в ряде случаев, особенно в многоступенчатых центробежных насосах, расчеты графо-ана-литическим методом [89] приводят к существенно завышенным значениям собственных частот. В связи с этим рекомендуется использовать более точные методы [19, 94]. При этом целесообразно рассчитывать несколько первых собственных частот ротора и не допускать их близости как к частоте вращения, так и к лопастной частоте. На практике наблюдались случаи усиленной вибрации роторов с лопастной частотой при невыполнении этого условия. Наиболее полные методы расчета системы ротор—корпус на свободные и вынужденные колебания изложены в работах [128, 1291.  [c.177]


Контактное движение зубьев включает в себя движения скольжения и качения, из которых движение скольжения занимает большую часть времени контакта. В этом случае трение становится эффективной возбуждающей силой, вызывающей вибрацию упругих элементов на их собственных частотах. Остаточные дисбалансы зубчатого колеса и шестерни вызывают вибрацию на частоте вращения. Интенсивность вибрации зубчатой передачи существенно зависит от окружной скорости колес, качества их изготовления и сборки, а также от нагрузки. Уменьшение вибрации зубчатых колес достигается повышением точности изготовления профиля зуба и качественной сборкой. Для улучшения плавности зацепления вместо прямых зубьев применяют шестерни с косыми и шевронными зубьями.  [c.197]

Зависимость частоты X собственных колебаний вала в неподвижной системе координат от угловой скорости со можно представить в виде графика, изображенного на фиг. 3. 5, где по горизонтальной оси откладывается со, а по вертикальной оси X, а функция X = А (со) изображается рядом ветвей кривой, расположенных косо-симметрично относительно осей 01 и Я. Точки пересечения ветвей кривой с осью А соответствуют частотам собственных колебаний вала при отсутствии вращения. Точки пересечения ветвей кривой с лучом Я, = со соответствуют значениям критических скоростей прямой прецессии точки пересечения кривых с лучом А, = —со — значениям критических скоростей обратной прецессии. Кривая, как правило, состоит не менее, чем из одной пары ветвей число пар может быть неограниченным. Ветви располагаются косо-симметрично относительно осей (при замене со на —со прямая прецессия становится обратной и наоборот). Ввиду этого можно рассматривать либо правую, либо верхнюю полуплоскость (последнее несколько удобнее).  [c.117]

Представляет интерес исследовать почти периодические колебания ротора при случайном изменении частоты его оборотов. Подобная задача была рассмотрена в [1], где разыскивались математические ожидания и дисперсии амплитуд и фаз составляющих исследуемого режима. Для характеристики случайных колебаний названных выше величин явно недостаточно. Для хотя бы приближенного представления о характере случайного процесса необходимо разыскать также собственные и взаимные корреляционные функции параметров почти периодического режима. При этом для характеристики частоты вращения ротора, когда процесс полагаем узкополосным нормальным случайным, помимо математического ожидания и дисперсии ст должна быть известна автокорреляционная функция ( 1, 4).  [c.18]

Достоинства турбонасосов (рис. 2.11)—небольшие габариты привода и отсутствие каких-либо вспомогательных контуров, поскольку при использовании в кипящих реакторах они могут устанавливаться непосредственно внутри сепаратора насыщенного пара. Основными узлами турбонасоса являются проточная часть 1 собственно насоса, приводная турбина 6 и подшипниковые узлы. 2, 9 и 10. В качестве подшипниковых опор в турбонасосе применяются гидростатические или гидродинамические подшипники, работающие на перекачиваемой среде. Особенностью такого насоса является возможность работы в широком диапазоне частот вращения ротора например, от 1000 до 8000 об/мин), при поддержании подачи, оптимальной для данного режима работы ЯЭУ. Однако обеспечение устойчивой работы во всем диапазоне частот вращения накладывает дополнительные требования на конструкцию.  [c.35]

Очевидно, что настроенный на одну определенную частоту дополнительный упруго прикрепленный диск окажется гасителем колебаний только этой частоты, а при других частотах возбуждения может оказаться неэффективным или даже стать причиной резонанса. Это особенно важно для валов двигателей внутреннего сгорания, поскольку с изменением частоты вращения пропорционально меняется и частота возбуждения. Поэтому в подобных случаях желательно обеспечить гаситель следящей настройкой, чтобы при изменении частоты возбуждения соответственно менялась и собственная частота гасителя. Так как упругое крепление дополнительного диска не в состоянии обеспечить следящую настройку, то для гашения колебаний вращающихся валов применяют маятниковые гасители.  [c.261]

Эквивалентная добротность электродинамического прибора, являющаяся мерой его частотной избирательности к помехам в районе частоты вращения ротора (/в), определяется отношением частоты опорного сигнала if on = /в) к частоте собственных колебаний (/есо) подвижной системы прибора [8] ( акв = 0,778 /оп//соб-  [c.134]

Ваттметры и векторметры современной конструкции, разработанные, например, фирмой Шенк (ФРГ) специально для использования их в балансировочном оборудовании, при частоте собственных колебаний подвижной системы приборов различной модификации 0,3 и 1,0 и степени успокоения 0,8, позволяют получить эквивалентную добротность измерительного устройства, равную 0,8 и 2,6 от частоты вращения балансируемого ротора.  [c.134]

Здесь a — угол контакта (рис. 4) h — коэффициент вязкого трения а = (мп/шд) озп — собственная круговая частота осевых колебаний упругой системы, состоящей из массы жесткого ротора и упругости шарикоподшипников в осевом направлении а>в — угловая частота вращения шариков, равная произведению угловой скорости сепаратора на число шариков 2аУ = 2q хв = т = со со — угловая скорость внутреннего кольца.  [c.10]


Низкочастотные машины с периодическим, установившимся режимом работы (поршневые горизонтальные компрессоры, поршневые паровые машины, лесопильные рамы, двигатели Дизеля) нередко вызывают значительные вибрации сооружений, находящихся иногда на расстоянии десятков метров от колеблющегося фундамента. Машины с числом оборотов более 200 250 в мин. не опасны для сооружений. По данным наблюдений, особенно часто вибрации сооружений вызываются машинами, имеющими 90—160 об/мин. Указанное объясняется тем, что собственные основные частоты колебаний сооружений сравнительно низки и приближаются к частотам вращения тихоходных машин. Вследствие этого возможно совпадение частоты вращения машины с одной из основных собственных частот колебаний сооружения, т. е. резонанс, при котором амплитуды колебаний сооружения могут достигнуть значительной величины, иногда опасной для прочности сооружения.  [c.538]

Динамический расчёт фундамента производится обязательно для одно- и двухцилиндровых машин, т. е. машин с основными гармониками возмущающих сил и моментов. Вторые гармоники возмущающих сил и моментов малы по сравнению с первыми гармониками, поэтому если даже одна из собственных частот колебаний фундамента близка ко второй гармонике неуравновешенных сил или моментов кривошипно-шатунных механизмов машины, то и в этом случае амплитуды колебаний фундамента, вызванные вторыми гармониками, вследствие демпфирующих реакций, малы. Обычно виброграммы показывают колебания с частотой, равной основной частоте вращения машины (фиг. 1, а). Иногда влияние вторых гар-  [c.538]

Наиболее распроетранен способ определения Предела вьгаосливости при циклическом симметричном изгибе по Велеру. Консольный или двухопорный образец, вращающийся вокруг собственной оси с постоянной частотой, нагружают постоянной по направлению силой. За каждый оборот все точки поверхности образца в опаснохг сечении один раз проходят через зону максимального напряжения растяжения и один раз — через зону максимального напряжения сжатия, проделывая полный цикл знакопеременного симметричного изгиба. Частота циклов равна частоте вращения образца в единицу времени число оборотов до разрушения равно разрушающему числу циклов. Такой вид изгибнОго нагружения (круговой изгиб) свойственен многим машиностроительным деталям (например, валам зубчатых колес, ременных и цепных передач).  [c.280]

У быстроходных машин появляются колебания валов и осей при нед6ст т6 чнбй балансировке насаженных на них деталей (рис. 283). Если частота возмущающих сил совпадает или кратна частоте собственных колебаний вала (оси), то при критической частоте вращения ( ,< ) возникает резонанс. Различают несколько разновидностей колебаний валов и осей поперечные (изгибные) колебания, угловые (крутильные) и изгибно-крутильные. Последние две разновидности колебаний характерны для специальных устройств (турбины, буровые станки и др.) и рассмотрены в особых курсах.  [c.425]

Все изложенные выше примеры, анализ доступных литературных данных позволяют сделать вывод о том, что вихревые трубы использовались лишь в условиях отсутствия вторичного центробежного поля сил, накладываемого на основное, создаваемое закручивающим устройством. Поэтому отсутствуют исследования характеристик процесса энергоразделения в вихревых трубах в условиях воздействия на них вторичного поля инерционных сил. Тем не менее, очевидно, что оно определенным образом искажает обычную картину течения в камере энергоразделения вихревых труб. Такое воздействие должно сопровождаться не только изменением характеристик макроструктуры потока, но и характеристик его микроструктуры. На каждый турбулентный микро-или макровихрь в зависимости от его расположения в объеме камеры энергоразделения и собственных размеров действует своя дополнительная сила инерции, зависящая от частоты вращения ротора и радиуса от центра элемента вихря до оси.  [c.379]

Спусковые регуляторы действуют периодически и применяются при малой частоте вращения оси, угловая скорость которой регулируется. На рис. 31.12 показан спусковой регулятор с автоколебательной системой, состоящий из маятника-регулятора 7 и жестко связанного с ним анкера 3. Анкер вместе с маятником совершает колебания вокруг неподвижной оси 2. На анкере укреплены палетты I 4, которые удерживают ходовое колесо 5 от вращения. Движущий мо.мент на валу 6 колеса создается силой тяжести О гири. При переходе через среднее положение палетты позволяют колесу повернуться на один зуб. При повороте зуб толкает анкер и сообщает колебательной системе импульс, необходимый для поддержания ее непрерывных колебаний, затем в крайнем положении маятника происходит остановка ходового колеса, после чего этот процесс повторяется. Период собственных колебаний маятника Гм связан с параметрами регулятора формулой  [c.399]

Спусковые регуляторы без собственных колебаний применяются в приборах, работающих небольшие промежутки времени (десятки секунд), и в случаях, когда не требуется высокой точности поддержания заданной частоты вращения рабочей оси. Такие регуляторы применяются в реле времени, во взрывателях, в парашютных часах, в автоспусках фотоаппаратов, в пожарных изве-щателях и др.  [c.393]

Крутильные колебания вала возникают из-за наличия неуравновешенных маховых масс и моментов на роторе генератора, гидродинамических сил и масс на рабочем колесе и нарастают вплоть до резонансных при совпадении собственной частоты колебаний системы с частотой вращения вала или других вынужденных частот. Baj[ является упругим звеном, связывающим ротор генератора с рабочим колесом, и, как при поперечных колебаниях, в значительной мере опредёляет собственную частоту этой системы.  [c.203]

Топливный насос-регуля7 ор служит для подачи топлива к форсункам двигателя и одновременно для поддержания постоянной частоты вращения двигателя на каждом заданном режиме работы. В состав насоса-регулятора входят собственно насос, дроссельный кран, автоматический всережимный регулятор частоты вращения двигателя, гидрозамедлитель, клапан постоянного давления, клапан постоянного перепада.  [c.63]

Беспредельная возможность дробимости по мощности электродвигателя с сохранением высокого собственного к. п. д. позволила перейти на установку в одной машине (станке, агрегате) не одного, а нескольких электроприводов, имеющих различные мощность, частоту вращения и характеристики. Электропривод позволил упростить механическую передачу мощности внутри самой машины за счет ликвидации многоступенчатых, цилиндрических, конических и других передач. В результате этого появились многоприводные станки и механизмы, в которых потери на механическую передачу мощности были сведены к минимуму, а производительность агрегата резко возросла.  [c.12]


Надежность осевого компрессора определяется главным образом лопаточным аппаратом, нагрузку которого обеспечивают динамические усилия со стороны потока циклового воздуха и центробежные силы от собственного веса. Из-за низкой вибронастройки в наибольшей степени динамические усилия опасны для первых ступеней рабочих лопаток. При частоте вращения ротора ОК 2800—4200 об/мин наблюдается резонансный режим рабочих лопаток первых ступеней, поэтому допустимое время работы ГПА должно быть не более 2 мин.  [c.86]

Частоты собственных колебаний и критические скорости. Вращающийся вал, как упругий стержень, может совершать собственные и вынужденные колебания. Частота его собственных колебаний может, вообще говоря, зависеть от скорости вращения поэтому частоты собственных колебаний вращающегося и невращающегося вала различны.  [c.116]

Данные рекомендации обеспечивают снижение уровней вибрации, особенно существенное при распределении исходного дисбаланса, близком к линейному. Окончательное подавление первой собственной формы происходит на втором этапе уравновешивания, выполняемом на рабочих скоростях с использованием самоуравновешенных блоков из трех грузов, укрепленных в тех же сечениях по длине вала. При этом нужно найти три груза (статические моменты крайних грузов равны половине статического момента среднего и направлены в противоположную сторону), которые, не нарушая полученной ранее уравновешенности в зоне низких оборотов, минимизировали бы опорные реакции на верхней балансировочной скорости. Искомые величины и угловое положение грузов соответствуют устранению векторной суммы амплитуд реакций или перемещений опор (замеренных в выбранном неподвижном направлении) в координатах, связанных с вращающимся валом. Задача решается с помощью динамических коэффициентов влияния, представляющих в данном случае векторную сумму амплитуд перемещений или реакций опор в тех же координатах от единичной самоуравновешенной системы трех грузов при заданной скорости. В машинах с большими отклонениями от линейных зависимостей придется прибегать к методу последовательных приближений и выделять колебания с частотой вращения вала.  [c.89]


Смотреть страницы где упоминается термин Частота вращения собственная : [c.419]    [c.96]    [c.335]    [c.291]    [c.127]    [c.250]    [c.439]    [c.158]    [c.620]    [c.47]    [c.95]    [c.42]    [c.539]   
Теория механизмов и машин (1987) -- [ c.263 , c.266 , c.274 , c.277 , c.281 ]



ПОИСК



Влияние формы лонжерона на собственные частоты колебаний лопасти в плоскости взмаха и вращения

Вращение собственное

Кажущееся и действительно возможное падение собственных частот рабочего колеса с увеличением частоты вращения

Критнческие частоты вращения и собственные частоты колебаний

О расчетной оценке влияния вращения рабочих колес на их собственные частоты

Частота вращения

Частота собственная



© 2025 Mash-xxl.info Реклама на сайте