Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стержни Частота поперечных колебаний Определение

В том случае, если длина волн изгиба соизмерима с размерами поперечного сечения стержня, для определения собственных частот поперечных колебаний стержней следует учитывать инерцию поворота сечения и действие перерезывающих сил. Поскольку действие перерезывающей силы вызывает искривление плоскости поперечного сечения, т. е. деформацию сдвига, то коэффициенты уравнения поперечных колебаний стержня будут зависеть не только от модуля упругости Е, но и от модуля сдвига G.  [c.139]


На этом весьма простом положении построены некоторые методы определения собственной частоты поперечных колебаний стержня. Оказывается, что для определения низших частот собственных колебаний в некоторых случаях достаточно приближенно определить форму колебаний, причем кривая прогибов должна удовлетворять хотя бы наиболее важным граничным условиям. Эти условия бывают двух видов геометрические и динамические. Геометрические условия отражают способы закрепления концов стержня (шарнирное опирание, защемление и т. п.), динамические условия учитывают силы и моменты, которые действуют на концах во время колебаний. Наибольшее значение имеют геометрические условия.  [c.70]

Таким образом, если в стержне возбуждаются поперечные колебания косого изгиба, то при постепенном повышении частоты внешней силы явление протекает следующим образом. Сначала при определенной более низкой частоте возбудятся резонансные колебания в плоскости наименьшей жесткости. При более высокой частоте возникнет резонанс в плоскости наибольшей жесткости. Если главные жесткости стержня значительно различаются между собой, то при каждом из указанных резонансов колебания вдоль другой из главных осей будут незначительны.  [c.339]

Определение частот поперечных колебаний стержней  [c.267]

Стержень (свая) (рис. В.1) внедряется в грунт под действием периодической осевой силы P t). Если частота изменения силы и ее амплитуда взяты произвольно, то могут возникнуть поперечные колебания, которые для нормальной работы (процесса внедрения сваи в грунт) недопустимы. При расчете режимов работы требуется определить такие частоты и амплитуды сил, при которых поперечные колебания возникать не будут, Дело в том, что если рассмотреть уравнение поперечных колебаний сваи, то это будет уравнение с периодически изменяющимися коэффициентами. Такие колебания называются параметрическими, и при определенном сочетании параметров, входящих в уравнения, эти колебания могут быть неустойчивыми, т. е. при малом отклонении стержня от прямолинейной формы амплитуды колебаний непрерывно увеличиваются. Параметрические колебания прямолинейных стержней рассмотрены в 7.7.  [c.4]

Параметрический резонанс. Появление поперечных колебаний стержня при действии на него продольной сжимающей периодически изменяющейся нагрузки называется параметрическим резонансом. Такое состояние возникает при определенных соотношениях частот собственных поперечных колебаний и частоты продольной возмущающей силы и представляет собой динамическую потерю устойчивости прямолинейной формы. Для решения этой задачи обратимся к уравнению (15.16), в котором положим jVi = —Fq — Fi os 0/  [c.349]


Поперечные колебания стержней и критические скорости валов. Определение частот собственных поперечных колебаний стержней и критических скоростей валов производится по одинаковым формулам. Некоторое различие, связанное с действием гироскопических моментов, показано ниже, при рассмотрении влияния различных факторов (стр. 374).  [c.366]

Поперечные колебания стержней и критические скорости валов переменного сечения. Для определения частот собственных колебаний стержней и критических скоростей валов переменного сечения применяется энергетический метод и методы последовательных приближений.  [c.369]

Существует еще одно интересное обстоятельство, которое вытекает из анализа графиков рис. 47. Если определить величину выходного отверстия сопла для определенного значения До, но при различных соотношениях между с и ст (проведя горизонтальную линию для интересующего нас значения До), то оказывается, что с увеличением диаметров сопла и стержня площадь поперечного сечения струи, а значит, и кинетическая энергия струи увеличиваются. Это дает возможность предполагать, что с увеличением с и ст, при неизменной величине До, а следовательно, и частоты колебаний газоструйного излучателя, можно увеличить мощность излучения. С другой стороны, при неизменном расходе воздуха в стержневых системах можно значительно повысить частоту колебаний по сравнению с генератором Гартмана это весьма существенный фактор, если учесть, что для генератора Гартмана мощность резко уменьшается с увеличением частоты [49].  [c.71]

Из условий на концах стержня (по два условия на каждом конце) можно найти соотношения между произвольными постоянными j, С ,... и, кроме того, получить трансцендентное уравнение для определения частоты р. Уравнение это будет иметь бесчисленное множество корней. Каждому такому корню Pi будут соответствовать своя функция Xi и свой тип колебаний. Наложением таких колебаний можно получить самый общий вид поперечных колебаний стержня, удовлетворяющий любым начальным обстоятельствам движения.  [c.334]

Влияние поперечных сил. Учет влияния поперечных сил имеет значение для коротких стержней, а для стержней, у которых размеры поперечного сечения малы по сравнению с длиной, — только при определении частот собственных колебаний высших порядков, когда между узловыми поперечными сечениями заключаются сравнительно небольшие участки.  [c.373]

Для определения частот собственных колебаний стержней и критических скоростей валов переменного сечения применяется энергетический метод и ряд методов последовательных приближений. Критическими называются скорости, при которых движение вала становится динамически неустойчивым и возникают большие поперечные отклонения от положения равновесия, как при резонансе. Такие состояния получаются при совпадении угловой скорости вала с угловыми частотами его собственных поперечных колебаний.  [c.269]

В первой и второй работах студенты знакомятся с широко применяемыми на практике методами определения частот свободных колебаний упругих систем в этих работах упругая система состоит из стального стержня с грузом на конце, совершающего поперечные колебания, близкие к колебаниям системы с одной степенью свободы. В первой работе осуществляется запись затухающих колебаний, полу-ченных отклонением стержня из равновесного положения. Для записи применяется индукционный датчик и шлейфовый осциллограф МПО-2. Обработка экспериментальной осциллограммы позволяет определить частоту свободных колебаний и логарифмический декремент коле-баний.  [c.79]

Эффективное применение ультразвуковой защиты, связанной с применением магнитострикционных вибраторов, требует рассмотрения некоторых вопросов из теории продольных и поперечных колебаний стержней. Это необходимо для определения собственных частот колебаний механической системы, служащей для возбуждения колебаний в обшивке корпуса.  [c.398]


Выбор кинематической схемы сверления и частоты вращения заготовки. При сверлении с консольным расположением стержня, т. е. без опоры, поддерживающей стержень, он прогибается и вибрирует, а при достижении определенной глубины сверления соударяется со стеблем. При большой массе стержня его удары по стеблю могут вызвать поломку резцов сверлильной головки. Учитывая, что с увеличением глубины сверления частота собственных поперечных колебаний стержня сос уменьшается и приближается к частоте вращения заготовки сОз, применяемой на практике, возможно возникновение резонансных колебаний стержня. Во избежание этого частоту Шз при йо = 130 -200 мм, В — 30-н42 ми и Ьо = 3- -4 м следует принимать не более 4—  [c.237]

Если консервативные задачи устойчивости могут быть решены статическим методом, то неконсервативные задачи решаются только динамическим методом [69]. Основным элементом динамического метода является решение задачи Коши для поперечных колебаний стержня с учетом продольной силы. В отличие от статического метода, критическая сила в динамическом методе определяется в точке, где становятся равными (сливаются) две соседние частоты собственных колебаний. С этой целью в программу расчета вводится начальное значение сжимающей силы и фиксируются частоты (минимум две) собственных колебаний. Далее значение сжимающей силы увеличивается и отслеживается изменение частот. Процесс продолжается до тех пор, пока с определенной точностью две соседние частоты станут равными. Значение сжимающей силы при этом будет критическим.  [c.137]

Из изложенного следует, что все рассмотренные в предыдущих разделах способы приближенного определения частот и форм поперечных колебаний стержней и балок могут быть использованы без особых изменений в качестве способов расчета критических скоростей в первом приближении ).  [c.209]

Предварительные замечания. При определении частот колебаний по теории стержней предполагается, что сечение лопатки при колебаниях не деформируется. Если длина и хорда лопатки соизмеримы, то проявляются пластиночные формы колебаний, при которых искажения профиля лопатки в плоскости поперечного сечения достигают значительной величины (рис. 14). Пластиночные формы характерны также для высокочастотных колебаний лопаток с большим удлинением, причем колебательные смещения возникают главным образом возле свободного конца лопатки. Узловые линии при некоторых пластиночных формах колебаний лопаток схематически показаны на  [c.247]

Обычно определяют максимальное значение коэффициента на частоте, при которой резонансные свойства датчика по отношению к поперечному возбуждению не вызывают увеличения этого коэффициента. Измерения производят при одном значении параметра поперечной составляющей движения в отсутствие движения вдоль измерительной оси. Простейший способ определения основан на использовании резонансной виброустановки с малым значением поперечной составляющей воспроизводимого движения, например камертонной, нли системы в виде стержня. Исследуемый преобразователь устанавливают с помощью жесткого приспособления, обеспечивающего перпендикулярность измерительной оси преобразователя направлению колебаний. После измерения выходного сигнала преобразователь поворачивают в приспособлении вокруг измерительной оси на 30° и повторяют измерения. Всего выполняют шесть измерений из результатов измерения берут наибольшее. Основным недостатком методики является нестабильность получаемых результатов вследствие влияния неизбежных при повторных закреплениях изменениях жесткости крепления на результат измерений. Большую точность обеспечивает применение установки [И] для получения непрерывной зависимости коэффициента от ориентации поперечного движения.  [c.310]

Нормальные частоты стержня зависят от его размеров, плотности и упругих свойств материала, из которого он изготовлен. Поэтому для данного стержня его пор.чальные частоты имеют вполне определенные значения. Нормальные частоты поперечных колебаний данной струны зависят, кроме того, еще и от ее силы натяжения. Выбирая соответствующим образом на-чал1)Иые условия в стержне, можно возбудить те или иные свойственные им нормальные колебания. Например, если струну, закрепленную по концам, слегка оттянуть в средней ее точке, а затем отпусппь, то мы возбудим в ней первое нормальное колебание. При этом все точки струны, кроме крайних, колеблются в одинаковых фазах, а отклонения различных точек от по.чожения равновесия находятся в определенном отношении, которое все время сохраняется и равно отношению их амплитуд (рис, 161, а). Такое колебание струны происходит с наиболее низкой нормальной частотой п является основным тоном собственных колебаний струны (см. 49). Как мы видели, второе нормальное колебание связанной системы из трех маятников происходит так, что средний маятник все время остается в покое, а крайние колеб.тются в противоположных фазах. Подобное нормальное колебание (рис. 161, б) можно возбудить и в струпе. Для этого нужно оттянуть средние точки каждой половины струны па одинаковое расстояние, но в противоположные стороны, и затем их одновременно отпустить. Тогда струна начнет колебаться так, что ее средняя точка будет все время находиться в покое, а точки одной половины струны колебаться в противофазе по отношению к точкам другой половины струны.  [c.198]

Определение частот поперечных колебаний стержней. Определение частот собственных колебаний невесо-11ЫХ стержней с одной сосредоточенной массой производится по формулам (5), (32) п (33). Значения жесткостей для стержней постоянного сечепия при различных условиях эакрепления приведены на фиг. 30.  [c.367]


Предложенный метод определения частот поперечных колебаний стержней с отверстиями приемлем для отверстий любой формы. Исследованию таких заДач посвящена работа [И]. В ней изложен универсальный способ решения подобных задач, основанный на представлении конструкции, ослабленной вырезами, сплошной моделью с тем же наружным контуром, но с физико-механическими параметрами, терпящими. разрывы однородности. Решение такой задачи получено ав- тором совместно с Ж- Ш. Шасалимовым. Поведение стержня с отверстиями авторы изучили на сплошной модели-аналоге с леременными параметрами жесткости и массы. После такой замены все соотношения, описывающие колебания стержня, записывались применительно к используемой модели. Наличие вырезов в исходных соотношениях проявлялось в том, что дифференциальные уравнения движения включают в себя изгиб-ную жесткость и массу как переменные функции координат.  [c.288]

Аналогичным образом сдвиги влияют на собственную частоту поперечных колебаний стержня. Поэтому развиваемый подход используется для определения Ех и Охг резонансным методом [142]. Однако в ряде руководств по определению характеристик неразрушающими методами влияние сдвигов не учитывается, хотя во многих случаях это может быть источником сзщественных ошибок [156].  [c.182]

Этот способ использован Релеем ) при приближенном определении самой низкой частоты поперечных колебаний стержня. Он исходил при этом из общей теоремы о том, 410 частота колебания динамической системы при смещениях частного вида пе может быть меньше, чем наиболее низкая частота нормальных колебаний системы. Он показал, что для стержня, закрепленного на одном конце и свободного на другом, пол/чается хорошее приближенное значение частоты прн следующем допущении при колебании смещение стержня будет таким же, как при статическом прогибе под действием поперечной силы, приложенной со стороны свободного конца на расстоянии, равном 1/4 длины стержня. Этот метод недавно был предметом некоторой дискуссии ). Была показана его применимость к определению низшей частоты поперечных колебаний стержня неодинакового сечения ). Далее, было показано, что при применении метода последовательных приближений для определения собственных функций и соответствующих частот в задачах о стержнях переменного сечения можно пользоваться решением Релея, как первым приближением ).  [c.461]

Чусленные методы определения частот поперечных колебаний.—замечания. Мы вядели, что определение собственных частот поперечных колебаний стержней с переменным поперечным сечением требует решения дифференциального уравнения  [c.383]

Все, что ЛИ)1 можем сказать относительно колебаний большого числа масс, связанных пружинами, в равной мере относится и к колебаниям стержня пли струмы. Стержень и струна обладают множеством нормальных частот. Подобно тому как частоты рюрмальных колебаний системы, состоящей из отдельных масс, зависят от числа и величин этих масс и упругости пружин, нормальные частоты сплошной системы зависят от размеров сплошного тела, его плотности п упругости. В стержне упругие свойства определяются упругостью самого материала, При поперечных колебаниях струны зависимость возникающей силы от величины отклонения определяется натяжением струны. Поэтому для данного стержня нормальные частоты имеют определенные фиксированпые значения.  [c.652]

В. А. Барвинок и Г. М. Козлов определяли коэффициент Пуассона плазменных покрытий звуковым методом, путем возбуждения в образце стоячей волны первого тона [89]. Этот динамический способ выгодно отличается от статических испытаний, так как усиление переменного сигнала от тензорезисторов не составляет особых затруднений. В основе метода лежит особенность деформации стержня постоянного поперечного сечения при возбуждении в нем стоячей волны первого тона. Периодические продольные деформации растяжения я сжатия с частотой собственных колебаний стержня вызывают поперечные сокращения слоев материала, величина которых зависит от коэффициента Пуассона. Эти деформации измеряются тензорезисто-рами типа 2ФКПА с базой 5 мм и сопротивлением 200 Ом, которые наклеиваются на образец прямоугольного сечения. Схема для измерения коэффициента Пуассона состоит из двух мостов Уитстона, один из которых служит для определения продольной деформации, другой — для измерения поперечной деформации. Коэффициент Пуассона находится по формуле  [c.53]

Прямолинейный трубопровод. Определение частоты свободных поперечных колебаний прямолинейного однопролетного трубопровода может быть выполнено так же, как для стержня постоянного поперечного сечения, по формуле  [c.175]

При определении частот и форм низших тонов свободных колебаний больших ракет-носителей применяют балочную схематизацию. Корпус представляется в виде прямой неоднородной балки (стержня) с упругоподвешенными грузами, колебания которых имитируют колебания жидкости в баках. Для расчета частот свободных колебаний жидкости в баках ракеты при поперечных движениях стенки бака обычно принимают жесткими, а при продольных движениях — упругими, поскольку в этом случае деформации стенок бака оказываются существенными.  [c.15]

Более точные исследования [23] показывают, что рассмотрение эквивалентного бруса вместо винтового стержня для продольных, крутильных и поперечных колебаний при целом числе полувитков дает погрешность порядка tg г з при определении собственных функций и порядка tg ijj при определении собственных частот для дробного числа полувитков погрешность частоты имеет порядок tgxjj. Вынужденные колебания под действием продольной или поперечной периодических сил, а также крутящего момента, взаимосвязаны и обнаруживают резонансные свойства в любом направлении, независимо от вида возмущения. При несовпадении направлений возмущения и движения порядок амплитуды колебаний равен tg г з.  [c.58]

В заключение необходимо упомянуть и о статье Кирхгоффа, в которой дается исследование колебаний стержней переменного поперечцого сечения ). Общее уравнение поперечных колебаний таких стержней было уже известно, и Кирхгофф показывает, что в определенных случаях оно поддается точному интегрированию. В частности, он рассматривает стержень, имеющий форму тонкого клина или весьма острого конуса, и вычисляет для обоих этих случаев частоты основной формы колебаний.  [c.308]

Для этого необходимо было исследовать собственные частоты рамных конструкций. После того как впервые Гейгером были опубликованы формулы для собственных частот поперечных рам фундаментов, расчеты подобных рам были выполнены Элерсом и распространены также на случай стержней переменного сечения. Одновременно ряд статей и книга по общим вопросам колебаний стержневых систем были опубликованы Прагером. Автором настоящей книги были проведены исследования по выяснению сил, действующих на фундамент, с тем чтобы более точно установить расчетные нагрузки им было предложено рассматривать момент короткого замыкания как внезапно прикладываемую нагрузку, вводя в расчет соответственно его двойную величину. Далее было предложено величину центробежной силы считать равной утроенному весу вращающихся частей и статическую силу, эквивалентную ей, получать умножением этой величины на динамический коэффициент (зависящий от частоты) и на коэффициент усталости 2. Автором впервые было отмечено, что при определении частот собственных колебаний рам фундаментов, имеющих относительно короткие элементы со значительными размерами поперечных сечений, нельзя ограничиваться Зачетом только изгибных деформаций, а необходимо учитывать также сжатие колонн, так как при этом значения частот уменьшаются, как правило, на 20—30%-  [c.233]


Способ Релея — Ритца в применении к поперечным колебаниям стержня. Способ Релея, изложенный в применении к системам с конечным числом степеней свободы, находит применение и для приближенного определения частоты основного тона свободных колебаний балки. Пусть V [z) — прогиб балки под действием нагрузки q (z)i Составим выражение  [c.391]

ГРАФИЧЕСКАЯ ФОРМА МЕТОДА ПОСЛЕДОВАТЕЛЬНЫХ ПРИБЛ] ЖЕНИЙ ФОРМАМИ КОЛЕБАНИЙ — МЕТОД СТОДОЛЫ [82]. Примен ние метода итераций к определению основной частоты в изложев ной аналитической форме предполагает известными числовы значения коэффициентов уравнений (4.1). Для крутильных кс лебаний приведенного вала или поперечных колебаний прямы стержней постоянного сечения вычисление этих коэффициенте особых затруднений не представляет. Однако большинство праи тических задач на поперечные колебания относится к стержня) переменного сечения. Вычисление коэффициентов влияния, вх( дящих в состав для таких стержней, особенно многопркхл ных, представляет большие трудности и обычно в практически  [c.182]

Колебания волочимого изделия. При изучении колебаний изделия на станах бухтового волочения рассмотрены его перемещения в продольном и поперечном направлениях, вызванные тем, что фактическая форма тянущего барабана отклоняется от цилиндрической, а при рассмотрении колебаний изделия на цепных станах изучены лишь продольные колебания (1, 2]. Волочимое и.чделие представлено в виде стержня, имеющего закрепление концевых сечений, определяемое особенностями рассматриваемого случая. Так, при изучении продольных колебаний рассмотрен стержень, имеющий кинематическое перемещение, определяемое тянущим органом стана. При определении собственных частот колебаний использовали волновое уравнение, применили разложение по собственным формам колебаний и из граничных условий нашли час-  [c.132]

При определении частот и форм собственных колебаний элементов трубопроводных систем в практике проектирования обычно применяют результаты линейной теории колебаний стержней постоянного сечения [1]. Более полные данные могут быть получены с исполь-вованием теории оболочек. Исследование [2], выполненное с применением полубезмоментной теории оболочек, показало, что при некотором предельном значении относительной длины Иг (I — длина пролета, г — радиус поперечного сечения трубы) частота колебаний трубы по балочной форме (с числом окружных волн и = 1) совпадает с частотой колебаний, при которой п — 2 ( овализация ). При большей длине низшей частоте колебаний соответствует балочная форма, при меньшей — колебания по форме с п = 2. Эксперименты, выполненные на однопролетном многослойном трубопроводе, показали, что фактически колебания трубы как балки сопровождаются ова-лизацией, т. е. имеют место связанные колебания. Решение задачи  [c.226]

Резонансный метод определения модулей упругости широко распространен при исследованиях температурных зависимостей модулей упругости Цоликристаллических металлов. Собственную частоту колебаний измеряют обычно на стержневых образцах постоянного сечения. Модуль упругости определяют как при продольных, так и при изгибных колебаниях. В случае продольных колебаний поперечные сечения стержня остаются плоскими, перпендикулярными его оси и смещаются вдоль оси стержня. Скорость распространения продольной упругой волны в стержне, поперечные размеры которого малы по сравнению с длиной волны X, связана с модулем упругости формулой  [c.207]

ДЛЯ всех известных твердых материалов. Подавляющее большинство экспериментальных исследований на эту тему посвящено определению или модуля Е (последние 150 лет исторически несправедливо связанного с именем Юнга), или же модуля fi, называвшегося до 1850 г. модулем скольжения , для материалов, которые, как мы можем предполагать, были изотропными. Значения этих величин определялись с помощью прямого измерения деформаций при квазистати-ческом нагружении, измерения продолжительности прохождения одномерных волн в экспериментах на сравнительно больших образцах, измерения частот продольных, поперечных или крутильных колебаний стержней, а также в последнее время с помощью методики, основанной на распространении ультразвуковых волн.  [c.218]

До работ Дюло 1812 г. и Дюпена 1811 г. все экспериментальные определения -модуля Джордано Риккати, Хладни, Юнгом и Био, а также модуля [х Кулоном были динамическими, основанными на определении частоты колебаний или, в единственном случае, Био, на измерении скорости распространения волн. Эксперименты Дюло и Дюпена были первыми квазистатическими в области подлинно малых деформаций. Исчерпывающее исследование Дюло призматических стержней с различной формой поперечного сечения, подвергнутых нагружению, изменяющемуся в широких пределах, представляет собой веху не только в историческом развитии экспериментальной механики твердого тела, но также в теоретическом обосновании линейной теории упругости, которая стала быстро развиваться в последующие годы.  [c.278]

На преобразователь подается с электрической стороны переменное напряжение такой частоты, что длина волны механических колебаний кристалла на этой частоте сравнима с длиной стержня (размер /1) или меньше ее, но много больше двух других размеров. Естественно ожидать появления механических волн сжатия—растяжения в пьезоэлектрическом стержне вдоль ребра /1 на этой частоте и, следовательно, появления инерционных напряжений в кристалле. В этом случае для определения смещений поперечных сечений стержня 2, /з придется к местным ур-ниям (3.101а) присоединить еще динамические уравнения движения стержня. Задача упрощена благодаря тому, что ребра /2 и 4 настолько малы, что в направлении их все рассматриваемые величины Л ( , а, не меняются. Так как, кроме тою, все размеры стержня (в том числе и 1 ) столь малы, что выравнивание электрического потенциала вдоль обкладок можно считать происходящим мгновенно, то напряженность поля ( не зависит от кооодинаты л , отсчитываемой вдоль ребра /1. Остальные величины будут функциями координат х 0 = 0(х), о=о(х), 1 = 1(х).  [c.80]


Смотреть страницы где упоминается термин Стержни Частота поперечных колебаний Определение : [c.128]    [c.61]    [c.184]    [c.503]    [c.29]    [c.54]   
Справочник машиностроителя Том 3 Изд.2 (1956) -- [ c.367 ]

Справочник машиностроителя Том 3 Издание 2 (1955) -- [ c.367 ]



ПОИСК



Колебания поперечные

Стержни Колебания поперечные

Стержни Определение

Стержни Частота колебаний

Частота - Определение

Частота антирезоиансная поперечных колебаний стержней Определение

Частота антирезонансная поперечных колебаний стержней Определение

Частота колебаний

Частота колебаний (частота)



© 2025 Mash-xxl.info Реклама на сайте