Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Динамические характеристики элемента

Механические системы характеризуются обычно матрицами обобщенных динамических характеристик. Элементы этих матриц симметричны относительно главной диагонали, т. е.  [c.362]

Предварительно введем некоторые определения. Под элементом ЯЭУ будем понимать отдельный конструкционный узел установки или несколько таких узлов, объединенных функциональным признаком (твэл, кассета, реактор, теплообменник и т. п.). Характеризуя элемент ЯЭУ как динамическую систему, в которой протекают нестационарные физические процессы, будем использовать множества входных Z(t) (возмущения, управления) и выходных (т) (реакции, отклики) переменных. Зависимость между изменениями входных и выходных по отношению к изучаемому процессу переменных называют динамической характеристикой элемента. Уравнения (или системы уравнений), устанавливающие такую зависимость, представляют собой математическую модель динамической характеристики.  [c.166]


Рассмотрим построение ВДЖ и ВДП некоторых типовых кольцевых участков по динамическим характеристикам элементов, из которых они составлены. Динамические характеристики последних полагаем заданными и соответствующими условиями, в которых система находится (повышенная и неравномерная температура, поле центробежных сил и т. п.).  [c.53]

ОБЩИЕ ЗАМЕЧАНИЯ ОБ АЛГОРИТМЕ ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ЭЛЕМЕНТОВ  [c.55]

РАСЧЕТ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ЭЛЕМЕНТОВ ПАРОГЕНЕРАТОРА КАК СИСТЕМ С СОСРЕДОТОЧЕННЫМИ ПАРАМЕТРАМИ  [c.72]

Блок-схема виброизолирующей системы автомобиля приведена на рис. 2.20 и предназначена для расчета динамических характеристик элементов системы, а именно амплитудно-частотной и фазо-частотной характеристик, коэффициентов жесткости и виброизоляции.  [c.47]

Качество работы систем автоматического регулирования при измеиении нагрузки зависит как от динамических характеристик элементов замкнутого контура, так и от передаточной функции объекта по каналу изменения нагрузки. Так как величина гидравлической инерции определяется числом тарелок между точкой отбора импульса и точкой приложения управляющего воздействия, то приближение точки отбора импульса к соответствующему концу колонны приводит к уменьшению критической частоты системы регулирования. Отбор импульса на верхней тарелке при регулировании состава верха изменением расхода орошения или на нижней тарелке при регулировании состава низа изменением расхода пара в кипятильник позволяет работать с более высоким коэффициентом усиления системы в целом,так  [c.396]

Определение статических и динамических характеристик элементов  [c.513]

ОПРЕДЕЛЕНИЕ СТАТИЧЕСКИХ И ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ЭЛЕМЕНТОВ САР  [c.563]

ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЭЛЕМЕНТА  [c.208]

Динамические характеристики ЖРД необходимо знать и для определения продольной устойчивости ракеты в полете. При неблагоприятном сочетании динамических характеристик элементов системы корпус ракеты —топливоподающие магистрали от баков до ЖРД —ЖРД возможна потеря устойчивости, сопровождающаяся продольными колебаниями корпуса, колебаниями давления компонентов топлива на входе в ЖРД и давления в камере сгорания ЖРД. Эти колебания могут привести к разрушению ракеты. Так как ЖРД является одним  [c.6]

При конструировании гироскопических стабилизаторов следует стремиться по возможности увеличивать жесткость элементов конструкции, так как снижение жесткости элементов и люфты в сочленениях карданова подвеса уменьшают частоту нутационных колебаний гироскопа, что затрудняет формирование схем гироскопических стабилизаторов с хорошими динамическими характеристиками.  [c.252]


Системы автоматического регулирования принято оценивать по их статическим и динамическим характеристикам, которые находятся различными путями, но которые являются основой для выбора и построения системы. Поведение всякой САР, ее элементов и звеньев характеризуется зависимостями между выходными и входными величинами в стационарном состоянии и при переходных режимах. Эти зависимости составляются на основе законов сохранения энергии и материи в виде дифференциальных уравнений. Из последних можно получить передаточные функции для исследования свойств системы, ее элементов и звеньев.  [c.414]

Другим способом является получение динамических характеристик, которые отражают поведение объекта или элемента при типовых воздействиях или возмущениях. К ним относятся кривые разгона и частотные характеристики. Первые показывают изменение во времени выходной величины элемента при скачкообразном изменении входного воздействия. Если кривые регулируемого параметра объекта после возмущения с течением времени становятся вновь постоянными (но с новым значением), то элементы называют статическими.  [c.414]

В большинстве случаев зависимость между силой F и упру гой деформацией х в соответствии с законом Гука для метал лов принимается линейной (прямая / на рис. 55, а), т. е. коэффициент жесткости с считается постоянной величиной. Однако для резины коэффициент жесткости возрастает с увеличением силы F, и тогда характеристика F x) называется жесткой (кривая 2 на рис. 55, а). Такую же характеристику имеют упругие силы, действующие на элементы высших пар, так как при точечном или линейном контакте рабочих поверхностей контактная жесткость возрастает с ростом нагрузки. Мягкую характеристику (кривая 3 на рис. 55, а) часто имеют звенья, выполненные из полимеров. Кроме того, иногда для получения требуемых динамических характеристик вводят в состав механизма специальные демпфирующие устройства и конические пружины с нелинейными характеристиками типа кривых 2 я 3.  [c.187]

Рассмотренные выше параметры внешнего воздействия на материал, изменение геометрических характеристик элемента конструкции в отдельности и все вместе оказывают воздействие на материал через изменение условий протекания пластической деформации. Однако во всех ситуациях соблюдается подобие условий страгивания трещины доминирует нормальное раскрытие берегов трещины (тип I) и в ее вершине в срединных слоях образца или элемента конструкции имеет место объемное напряженное состояние. Минимальная работа разрушения будет определяться максимальной величиной предела текучести, как это следует из условия (2.25). Она достигается при идеально хрупком разрушении материала. Такая ситуация может быть реализована в условиях динамического нагружения, когда материал не успевает реализовать пластические свойства, а также за счет снижения температуры окружающей среды до критической температуры хрупкости.  [c.117]

В очередном выпуске приведены результаты исследований накопления повреждений и образования трещин, динамической концентрации напряжений вокруг отверстий, больших прогибов гибких оболочечных элементов и процессов газо- и гидростатического формования. Проанализированы вопросы устойчивости оболочек, включая многослойные оболочечные конструкции, при простом и комбинированном нагружениях. Рассмотрены методы расчета лепестковых упругих муфт, многослойных сосудов давления, динамических характеристик пластинчатых систем, а также другие вопросы прочности как в общей постановке для широкой номенклатуры машиностроительных конструкций, так и в виде конкретных рекомендаций для определенных узлов и деталей машин.  [c.136]


Нагрузки, воздействующие на конструкции, подразделяются на силовые и тепловые. Силовые нагрузки могут приводить к изменению физико-химических свойств материалов, к ползучести и дополнительным температурным деформациям. В ряде случаев этот вид нагрузки может вызвать изменение жесткости отдельных частей, изменение характера распределения внешних поверхностных нагрузок и динамических характеристик самой конструкции. Сравнительно большая тепловая инерция материалов приводит к неравномерному распределению температуры по элементам конструкции. В результате этого возникает неравномерная деформация конструкции, подобная деформация под действием силовых нагрузок. Поэтому обычно и выделяют дополнительные температурные напряжения.  [c.23]

В случае нелинейных систем преобразованные цепи будут по-прежнему линейны [уравнение (6)], однако они будут включать в себя переменные параметры — известные функции времени, полученные по определенным правилам [4,5] из соответствующих динамических характеристик нелинейных элементов системы. В сущности преобразованные цепи при их осуществлении представляют собой счетно-решающие системы для решения дифференциальных уравнений коэффициентов влияния [уравнение (6)], построенные на трансформированных исследуемых цепях.  [c.84]

Развитые в работах [1—3] методы анализа виброударных систем позволяют решить обширный круг задач, связанных с влиянием зазоров на динамические характеристики механизмов. При этом обычно пренебрегают массами упругих элементов, соударяющиеся элементы системы рассматривают как тела с сосредоточенными массами, считают, что время соударения  [c.128]

Но при синтезе механизмов нельзя ограничиваться только структурным синтезом, т. е. исследованием возможных сочетаний кинематических пар, образующих синтезированные цепи, как это было нами частично использовано выше. При синтезе механизмов необходимо учитывать конструктивные параметры, а также функциональное назначение механизма. Вот почему в последние годы были сделаны попытки создать классификации механизмов, структурно-конструктивных и по своему функциональному назначению. Эти классификации еш е далеки от совершенства, но составляют основу современных пособий по проектированию механизмов, а также учебников для высшей школы. В них разумно сочетаются принципы классификации Ассура с особенностями конструктивного оформления элементов кинематических пар, оптимальными габаритами механизмов, требуемыми функциями положений, передаточными функциями или воспроизводимыми траекториями движения, кинематической и динамической точностью, динамическими характеристиками и т. д.  [c.254]

Для муфты с упругим элементом, имеющим предварительный натяг (рис. 58, а), статическая и динамическая характеристики показаны соответственно на рис. 58, бив, причем мо-  [c.222]

Схема моделирования динамической характеристики согласно рис. 92, а показана на рис. 92, б. Коэффициенты передач решающих элементов и масштабы связаны соотношениями  [c.343]

При расчете и выборе основных элементов системы программного управления необходимо учитывать предназначение каждого элемента, а также взаимодействие его с другими элементами, т. е. каждое устройство рассматривать с точки зрения всей системы. Так, электронный усилитель предназначен для увеличения амплитуды сигнала ошибки е, однако величина его коэффициента усиления будет ограничена требованием устойчивости системы в целом. Корректирующее устройство формирует желаемые динамические характеристики всей системы и отфильтровывает помехи.  [c.105]

Таким образом, характеристика двигателя эквивалентна по жесткости такому упругому элементу, который при приложении номинального момента деформируется на (0,05—2) рад. Эта величина обычно существенно больше приведенной к валу двигателя статической деформации остальных упругих элементов привода. Заметим, что большая податливость динамической характеристики позволяет при изучении динамики машинного агрегата исследовать неравномерность вала двигателя с помощью сравнительно простых моделей, считая в первом приближении остальную кинематическую цепь либо абсолютно жесткой, либо ограничиваясь учетом наиболее податливых упругих элементов, связанных, например, с упругими муфтами. При наличии нелинейных элементов привода задача усложняется. Отмеченный круг вопросов подробно освещен в работах [12, 13].  [c.136]

При свободных и вынужденных колебаниях амортизированного объекта на амортизаторах с резиновыми упругими элементами эффективными жесткостями амортизаторов являются их так называемые вибрационные жесткости (динамические жесткости в вибрационном режиме). Их зависимостью от амплитуды деформации упругого элемента можно в первом приближении пренебречь, если нелинейность упругой характеристики элемента невелика.  [c.339]

Симметрия элементов матриц является следствием выполнения принципа взаимности в механических системах, что обычно имеет место. Этот принцип имеет очень важное значение особенно при экспериментальном определении динамических характеристик си-  [c.362]

Действительно, в этом случае динамические характеристики двигателя и фундамента (фюзеляжа, корпуса и т. п.) следует определять только в направлении осей стержней. Динамические характеристики блока изоляции (подвески) будут представлять собой соответствуюш,ие диагональные матрицы, элементы которых легко определяются расчетом или экспериментально.  [c.372]


Изложенная выше методика оптимизации параметров обладает тем недостатком, что она не всегда может использоваться в процессе проектирования для подбора параметров виброизоляции для упругих объектов, так как необходимые для этого обобщенные динамические характеристики в точках крепления виброизолирующих элементов не определяются расчетным путем, теоретически. Их можно получить только экспериментально, когда уже построены объект и фундамент. Изложенная выше методика должна быть использована в дальнейшем для уточнения оптимальных параметров виброзащитной системы в процессе доводки объекта. В настоящий момент даже для существенно упругих объектов известны по паспорту машины только виброперегрузки или амплитуда колебаний в некоторых точках на периферии объекта, причем эти точки могут быть расположены даже не в местах крепления виброизолирующих узлов.  [c.380]

Определение динамических характеристик механических систем. Задачи акустической диагностики этого класса заключаются в нахождении на основе анализа акустических сигналов динамических характеристик элементов механических систем, в частности машинных и присоединенных конструкций, или характеристик их шумового или вибрационного ноля. Одна задача этого класса рассматривается в главе 3 соотношения (3.31) и (3.36) представляют собой уравнения относительно неизвестной импульсной переходной функции или частотной характеристики линейной системы. Отметим такнсе задачи, состоящие в определении на основе спектрально-корреляционного анализа вибрационных сигналов затухания в сложных инженерных конструкциях, коэффициентов отражения волн от препятствий, характеристик звукового излучения и др. [242]. Мы не будем подробно останавливаться на задачах этого класса. Многие из них непосредственно примыкают к задачам идентификации динамических систем и получили достаточное освеш,ение в литературе [103, 242, 257, 336].  [c.19]

РАСЧЕТ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ЭЛЕМЕНТОВ ПАРОГЕНЕРАТОРА СО СЛАБОСЖИМАЕМЫМ ПОТОКОМ РАБОЧЕГО ТЕЛА КАК СИСТЕМ С РАСПРЕДЕЛЕННЫМИ ПАРАМЕТРАМИ  [c.126]

Может оказаться, что интенсивность сил, воспринимаемых фундаментом, не превышает некоторого допустимого уровня. Такая ситуация характерна для динамически малоактивных машин, проблема виброизоляции которых, следовательно, не возникает. Более интересен, однако, противоположный случай, когда защита фундамента необходима. Практически эта задача решается установкой источника возмущений - машины - на объект защиты - фундамент - с помощью виброизоляторов - упругих или упругодем-пфированных элементов. Ослабляя (по сравнению с жестким креплением) связь между источником и объектом, виброизолирующий подвес, представляющий собой всю совокупность виброизоляторов, преобразует динамическую модель машина - фундамент в модель машина -подвес - фундамент (или источник - подвес -объекту и тем самым изменяет переменные силы, возникающие в местах 1фепления источника и объекта. Задача виброизоляции (виброзащиты) состоит здесь в нахождении динамических и геометрических характеристик подвеса, обеспечивающих заданную степень снижения уровня переменных сил, передаваемых подвесом на фундамент. Решение этой задачи существенным образом зависит от динамических характеристик элементов модели виброзащиты - источника, подвеса, объекта, а также от характеристик внешнего возмущения и требований к защите.  [c.422]

Автоколебания системы. Особенностью самовозбуждаемых вибраций является то, что их частота совпадает с одной из собственных частот системы станок—инструмент—заготовка. Это вытекает из ранее рассмотренной модели самовозбуждаемой вибрации, как колебаний с отрицательным коэффициентом демпфирования. Следовательно, любой анализ динамики процесса резания в условиях автоклебаний должен включать в себя динамические характеристики элементов конструкции станка, а также характеристики процесса резания.  [c.239]

Элементы режима резания назначают в определенной последовательности, Сначала назначают глубину резания. При этом стремятся весь ирипуск на обработку срезать за один рабочий ход инструмента. Если по технологическим причинам необходимо делать два рабочих хода, то при первом ходе снимают —80 % припуска, при ьтором (чистовом) 20 % припуска. Затем выбирают величину подачи. Рекомендуют назначагь наибольшую допустимую неличину подачи, учитывая требования точности и допустимой шероховатости обработанной поверхности, а также мощность станка, режущие свойства материала инструмента, жесткость и динамическую характеристику системы СПИД. Наконец, определяют скорость резания, исходи  [c.275]

Упругие постоянные муфты применяют для уменьшения динамических нагрузок, а также некоторой компенсации неточностей взаимного расположения соединяемых валов. Эти муфты влияют на оСщую динамическую характеристику системы и могут изменять ее в нужном направлении. Кроме того, упругие муфты способствуют гашению колебаний и являются поэтому виброизолирующими элементами машин.  [c.455]

В и б р о и 3 о л я т о р, или ам(5ртизатор, — элемент виброзащит-ной системы, наиболее существенная часть которого — упругий элемент. В результате внутреннего трения в упругом элементе происходит демпфирование колебаний. Кроме того, в ряде конструкций амортизаторов применяют специальные демпфирующие устройства для рассеяния энергии колебаний. Динамические характеристики амортизатора существенно зависят от его статических характеристик, причем и те и другие являются нелинейными. Нелинейность характеристик амортизатора определяется рядом причин нелинейными свойствами упругого элемента (например, резины), внутренним трением в упругом элементе, наличием конструктивных особенностей амортизатора типа ограничительных упоров, демпферов сухого трения, нелинейных пружин и т. д. На  [c.275]

Пусть, например, динамическая характеристика упругодиссипативного элемента имеет вид  [c.280]

В главе 9 рассмотрены экспериментальные методы исследования характеристик композиционных материалов и изготовленных из них элементов. Большое внимание уделено статическим испытаниям при одноосном растяжении, сжатии, изгибе и сдвиге, многоосному нагружению, систематизации программ испытаний, обеспечивающих полное описание свойств композиционных материалов, экспериментальным методам исследования динамических характеристик. В связи с ограниченным объемом книги стандартные экспериментальные методы и соответствующие результаты подробно не проанализированы, однако указана многочисленная литература, содержащая такую йнформацию.  [c.11]

После окончания войны были начаты интенсивные исследования ферромагнитных элементов. В первых работах было определено влияние геометрии и магнитных характеристик сердечников, различных видов обратной связи, характера нагрузки и других факторов на статические и динамические характеристики магнитных усилителей. Полученные результаты были положены в основу двух первых серий универсальных магритных усилителей общепромышленного назначения для частот питания 50 и 400—500 гц. В каждую серию вошли высокочувствительные реверсивные усилители с порогом чувствительности порядка вт, магнитные модуляторы с порогом чув-  [c.247]

Из выражения (45.41) следует, что с ростом отношения величина коэффициента z ,n уменьшается, т. е. влияние раскручивания системы, приводящее к ослаблению момента зажима, усиливается. Следовательно, при проектировании электромеханических зажимных устройств необходимо стремиться к возможно большей жесткости первого участка валопровода сравнительно с жесткостью второго участка. При —> оо получим М зост МЦ, т. е. в этом случае раскручивание отсутствует, и движение машинного агрегата происходит в два этапа. Однако реализовать указанный случай при одной самотормозяш,ейся паре практически невозможно. Чтобы обеспечить высокую м<есткость закрепления изделия или приводного узла, самотормозящуюся передачу стремятся располагать в конце кинематической цепи, возможно ближе к зажимным элементам. Применение двух самотормозя-щихся пар обычного типа резко понижает к. п. д. механизма. Таким образом, при проектировании электромеханических устройств приходится удовлетворять ряду противоречащих друг другу требований. Воспользовавшись полученными выше зависимостями, можно осуществить синтез машинного агрегата по заданным динамическим характеристикам.  [c.299]


Рассмотрим практически ван ный случай, когда источником регулярных и нерегулярных возмущений является двигатель. Положим, что при проектировании и доводке двигателя обеспечены его динамические характеристики, как независимой системы, удовлетворяющие заданным техническим требованиям, которые предусматривают регламентированное влияние динамических процессов на эксплуатационные характеристики и долговечность элементов. В этом случае при формировании составного машинного агрегата по схеме двигатель — рабочая машина целесообразно стремиться к тому, чтобы присоединение машины несущест-ьенно влияло на локальные динамические процессы в двигателе, динамическое взаимодействие двигателя и машины не порождало активных процессов в силовой цепи машины и машинного агрегата в целом для рабочего скоростного диапазона двигателя [40].  [c.279]

Например, при определении неравномерности вращения ведущих звеньев можно воспользоваться динамической моделью машинного агрегдта (рис. 18), представленной в виде совокупности элемента Д, отображающего динамическую характеристику двигателя и приведенного момента инерции машины. При рассмотрении этого вопроса обычно могут быть либо совсем исключены из рассмотрения упругодиссипативные свойства звеньев механизмов, либо учтены наиболее податливые элементы привода, например ременные передачи, длинные трансмиссии и т. п. (рис. 18, б). Результаты анализа такой модели дают возможность выявить координату Фо (t), определяющую в первом приближении движение ведущего звена механизма. Заметим, что нередко при малом коэффициенте неравномерности можно даже принять Фо (Од , где о — угловая скорость. При таком подходе из общей системы машинного агрегата могут быть выделены некоторые типовые динамические модели цикловых механизмов, приведенные в табл. 6. При построении этих моделей помимо опыта  [c.48]


Смотреть страницы где упоминается термин Динамические характеристики элемента : [c.474]    [c.573]    [c.104]    [c.288]   
Смотреть главы в:

Стержневые системы как системы конечных элементов  -> Динамические характеристики элемента



ПОИСК



НДС и динамических характеристик

Элементы Характеристика



© 2025 Mash-xxl.info Реклама на сайте