Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Моделирование схемы из

Имитационное моделирование узлов или процессов может выполняться как самостоятельный машинный эксперимент. Если имитационное моделирование производится в рамках физического эксперимента, его применяют для формирования программы испытаний, при обработке результатов испытаний и непосредственно в процессе испытаний. В последнем случае ЭВМ встраивают в экспериментальную установку для имитации реальных узлов исследуемого станка. В табл. 15 показано, что испытательная установка кроме узлов Yx и содержит ЭВМ, которая имитирует еще один узел реального объекта испытаний. Узлы Kj и Y осуществляют физическое моделирование составляющих реального объекта испытаний. ЭВМ обеспечивает машинную (программную) имитацию узлов, трудно реализуемых в лабораторных условиях, или в тех случаях, когда необходимо структуру и параметры этих узлов менять в широких пределах. Обычно имитируются отдельные узлы или полностью система управления станком. Например, в процессе испытаний фрезерного станка с импульсно-следящей системой ЧПУ (см. рис. 69) с помощью решающих блоков аналоговой вычислительной машины имитировались корректирующие фильтры следящих приводов по координатам X и F [62]. Эго позволило проверить правильность выбора передаточных функций корректирующих фильтров. Кроме того, исследовали влияние неидентичности параметров коррекции и влияние компенсации скоростной ошибки следящих приводов на контурную точность. Принципиальная схема моделирования одного из вариантов кор-  [c.167]


В книге изложены результаты исследований авторов в области постановки и решения задач оптимизации при схемотехническом проектировании электронных схем. Освещена сущность и основные особенности проектирования электронных схем как в дискретном, так и интегральном исполнении. Проанализированы возможности решения различных задач, возникающих на этапе схемотехнического проектирования электронных схем, с помощью ЦВМ. Описаны различные критерии оптимальности и способы постановок задач оптимизации в электронике. Изложены машинно-ориентированные модели компонентов и наиболее перспективные методы моделирования схем. Даны перспективные методы анализа электронных схем и определены области их предпочтительного применения. Проанализирован ряд методов оптимизации для целевых функций, обладающих гребневым характером. Значительное место уделяется одной из наиболее важных задач схемотехнического проектирования — задаче расчета параметров компонентов, сформулированной в виде задачи нахождения максимума функции минимума. Рассмотрены алгоритмы решения задачи расчета параметров компонентов, основанные на свойстве дифференцируемости функции минимума по направлению. Приводится проекционный алгоритм решения этой задачи, в котором уравнения гребня в виде ограничений типа равенств формируются в процессе поиска. Результаты теоретических исследований иллюстрируются большим количеством примеров и рисунков.  [c.2]

Дедуктивный и конкурентный методы — одни из наиболее эффективных методов анализа тестов. В этих методах для каждого входного набора вместо т-кратного моделирования схемы применяется однократное моделирование, направленное на получение списков неисправностей (СН). Списки неисправностей вычисляются для всех линий схемы. В список для линии х включаются все те неисправности, которые приводят к отклонению значения переменной л от ее значения в исправной схеме. Получив СН для наблюдаемых выходов, можно определить, какие неисправности обнаруживаются на данном входном наборе.  [c.125]

Рис. 2-1У. Схема моделирования пары из двух металлических поверхностей, армированных плексигласом Рис. 2-1У. Схема моделирования пары из двух <a href="/info/298302">металлических поверхностей</a>, армированных плексигласом

После создания схемы из библиотечных элементов, прежде чем запустить процесс моделирования, необходимо произвести три простых действия  [c.182]

Значения параметров каждого элемента изменяются независимо от остальных. Например, если в схеме есть два резистора сопротивлением 10К, а допуск установлен равным 10%, то во время первого прохождения процесса моделирования один из резисторов может получить значение 953 Ом, а другой 1022 Ом. Программа моделирования использует независимые генераторы псевдослучайных чисел для получения значений параметров каждого отдельного элемента.  [c.196]

Большие значения Гм обусловливают применение для анализа тестов наиболее экономичных методов моделирования логических и функциональных схем. Обычно используют параллельное синхронное трехзначное моделирование. Трехзначный алфавит целесообразен для отбраковки входных векторов Xft, приводящих к состязаниям сигналов в блоке, из-за которых результаты применения теста могут стать неопределенными.  [c.259]

При автоматизированном проектировании имитационные модели предназначены для изучения особенностей функционирования проектируемых структур, состоящих из разнообразных элементов (дискретных и непрерывных, детерминированных и стохастических и т.д.). Имитационные программы строят по модульному принципу, при котором все элементы системы описываются единообразно в виде некоторой стандартной математической схемы — модуля. Схемы и операторы сопряжения модулей друг с другом позволяют строить универсальные программы имитации, которые должны осуществлять ввод и формирование массива исходных данных для моделирования, преобразования элементов системы и схем сопряжения к стандартному виду, имитацию модуля и взаимодействия элементов системы, обработку и анализ результатов моделирования,  [c.351]

Технология разработки ПП АВЧ рабочей КД. Последовательность стадий и этапов разработки ПП АВЧ, а также методы и средства, применяемые при этом, называют компьютерной технологией или технологией разработки ПП АВЧ. Одна из возможных схем такой технологии, много лет применяемая на кафедре ИГ МАИ, показана на рис. 12.3. Основными стадиями технологии разработки ПП АВЧ являются моделирование, проектирование, программирование и использование ПП. Каждая из этих стадий имеет несколько этапов.  [c.354]

На рис. 1, с, 2, а и 3, и представлены проекционные чертежи пересекающихся цилиндров, на рис. 1, б. 2, б и 3, б — кинематические схемы соответствующих механизмов, точка К каждого из которых описывает линию пересечения цилиндров. Схемы основаны на совместном моделировании кинематического образования цилиндров, как поверхностей вращения, что определяет общность конструктивных схем для всех случаев пересечения цилиндров. Каждая из схем включает составное жесткое звено со сторонами КС и КВ, соответствующими образующим пересекающихся цилиндров. Сторона КС вращается около оси О, — 0 , параллельной оси 0[ — 0 цилиндра  [c.41]

Топологические уравнения подсистем записываются для узлов и контуров эквивалентной схемы, поэтому получение эквивалентной схемы — необходимый этап подготовки технического объекта к моделированию. Поскольку существующие методы получения топологических уравнений основаны на применении графов, рассмотрим основные определения и понятия из их теории.  [c.109]

Сущность указанного метода испытаний состоит в определении вероятностного распределения значений рабочих Показателей только некоторой выборки объема п из всей партии N изделий. В данном случае расчет параметров распределения у. проводится по общей схеме статистических испытаний, когда каждый экземпляр изделия из выборки и подвергается только эксплуатационным воздействиям. Схема алгоритма моделирования выборочных испытаний представлена на рис. 6,41 Здесь Л/экспл обозначает объем статистических испытаний, которые проводятся с каждым вариантом объекта из выборки п. Л экспл можно определить из рис. 5.7, задавшись необходимыми уровнями точности и доверительной вероятности. По результатам проверки выборки принимается решение о качестве всей партии изделий, а именно партия удовлетворяет предъявляемым требованиям, если  [c.260]

Имея в виду приведенные пояснения, вопросы моделирования (рассмотренные вьппе) можно представить схемой на рис. 16-1. Из этой схемы, в частности, видно следующее  [c.522]

Процесс решения уравнений, описывающих поведение механизма на АВМ, называют моделированием, а схемы, составленные из блоков АВМ для решения записанных уравнений, носят название их аналоговых моделей.  [c.10]


Постоянные коэффициенты при машинных переменных или машинные коэффициенты являются коэффициентами усиления решающих блоков в схеме моделирования. Эти коэффициенты рассчитываются, исходя из значений коэффициентов физических уравне-  [c.16]

Схема моделирования уравнений (И.1.10) —(II.1.18), приведенная на рис. II. 1.2, включает девять решающих блоков (но числу уравнений), из которых два интегратора 6 и 7), пять сумматоров (2—5, 9) и два нелинейных блока БИ-1 воспроизводит возведение в квадрат 1у, Eli-2 — извлечение квадратного корня. Усилители / и 8 выполняют необходимые операции перемены знака. На схеме показано, какие переменные отображают напряжения на выходах решающих блоков.  [c.18]

В таких схемах протекание многомерного физического процесса на каждом временном шаге представляется как результат последовательной реализации соответствующих одномерных процессов, каждый из которых начинается от распределения поля, возникшего после окончания предыдущего одномерного процесса. На основе такого представления, называемого расщеплением задачи по пространственным переменным, моделирование одномерных процессов проводится с помощью неявных схем, а последовательное действие процессов учитывается по существу явным образом, т. е. решение многомерной задачи сводится к расчету на каждом шаге по времени набора одномерных задач, решаемых в случае уравнения теплопроводности методом прогонки. Применение неявной аппроксимации одномерных задач обеспечивает устойчивость схемы, а общее число арифметических действий оказывается пропорционально числу  [c.118]

В маршрутах проектирования БИС и СБИС к числу основных проектных процедур относятся верификация логических и функциональных схем, синтез и анализ тестов. В этих процедурах требуется многократное выполнение моделирования логических схем. Однако высокая размерность задач логического моделирования (СБИС насчитывают.десятки—сотни тысяч вентилей) существенно ограничивает возможности многовариантного анализа. Так, современные программы анализа логических схем на универсальных ЭВМ могут обеспечить скорость моделирования приблизительно 10 вентилей в секунду (т. е. на анализ реакции схемы из 10 вентилей на один набор входных воздействий затрачивается 1 с машинного времени), что значительно ниже требуемого уровня. Преодоление затруднений, обусловливаемых чрезмерной трудоемкостью вычислений, происходит в двух направлениях. Первое из них основано на использовании общих положений блочно-иерархического подхода и выражается в переходе к представлениям подуровня регистровых передач, рассмотренным в 4.7. Второе направление основано на применении специализированных вычислительных средств логического моделирования, называемых спецпроцессорами или машинами логического моделирования (МЛМ), Важно отметить, что появление СБИС не только порождает потребности в таких спецпроцессорах, но и обусловливает возможности их создания с приемлемыми затратами. Разработанные к настоящему времени МЛМ функционируют совместно с универсальными ЭВМ и обеспечивают скорость моделирования 10 —10 вентилей в секунду.  [c.254]

Advan ed S hemati - графический редактор многостраничных и иерархических принципиальных схем, из которого вызываются программы моделирования аналого-цифровых устройств и программы синтеза и моделирования ПЛИС  [c.143]

После составления схемы моделирования, схем аппроксимации временных и функциональных зависимостей, расчета начальных условий вычисляют масштабы по переменным и рассчитывают машинные коэффициенты. Масштабы по переменным выбирают исходя из условия ограничения максимального напряжения i/max в АВМ. В зависимости от типа АВМ Umax равно 10, 25, 50 или 100 В. Таким образом, масштаб по переменной у  [c.96]

МОДЕЛИРОВАНИЕ ПРОЦЕССА ИЗНАШИВАНИЯ ЛЕЗВИЙ. Чтобы вычислить значение износостойкости В, необходимо знать силу трения на контактных поверхностях взаимодействующей пары тел. Непосредственно измерить силу на поверхностях лезвия в процессе резания весьма затруднительно. Поэтому, чтобы определить закономерности изменения силы трения Г-, и массы Шу продуктов износа в зависимости от давления и скорости взаимного скольжения, используют метод физического моделирования. Схема моделирования трения и износа для условий, приближенных к процессу резания, аналогична схеме, использованной для изучения закономерностей наростообразования (см. рис. 6.8). В данном случае индентор изготовлен из инструментального материала и является изнашиваемым телом пары. Цилиндрический образец, зажатый в патроне токарного станка, изготовлен из конструкционного металла и является истирающим телом пары. До начала эксперимента на рабочем торце индентора подготавливается плоская контактная поверхность площадью Аг = 1 мм . Индентор своей контактной поверхностью прижимается к свежеобработанной поверхности цилиндра с нормальной силой р = рА . Давление р устанавливается в пределах 0,05... 0,6 ГПа, что соответствует средним значениям давления на контактных поверхностях режущих лезвий.  [c.131]

Анализ электрических процессов в схеме в заданной отображающей точке назовем одновариантньш анализом. Одновариантный анализ может выполняться экспериментальными или расчетными методами. Экспериментальный анализ при проектировании предполагает построение экспериментального макета и сводится к измерению токов п напряжений в схеме с помощью измерительных приборов. Использование расчетных методов подразумевает замену экспериментального макета (физической модели) математической моделью схемы М.Ь С). Математической моделью схемы называется система уравнений, отображающая электрические процессы в схеме и представленная в форме, допускающей непосредственное применение какого-либо из известных методов для ее решения. Процесс получения ММС будем называть моделированием схемы . ММС формируется на основе математических моделей отдельных компонентов. Ма тематическая модель компонента (ММК) есть система уравнений, отображающая электрические процессы в компоненте и представленная в форме, допускающей непосредственное применение какого-либо из известных методов моделирования схем для объединения данной ММК с математическими моделями других компонентов. Процесс получения ММК называется моделированием компонента.  [c.22]


Очевидно, что на точность получаемых результатов будут влиять такие факторы, как схема интегрирования, величина шага интегрирования Ат,-, количество КЭ в проскоке, число подынтервалов времени k, на которые разбит интервал Атс. Из рис. 4.20 видно, что при использовании уравнения (1.47) при k = 4 11 18 (кривые 1, 2, 3, 4) отличие результатов расчета от приближенной аналитической зависимости (4.79) составляет соответственно 0,19 0,14 0,08 0,01G (0) (при v = r). Таким образом, использование условия < 10 приводит к существенной погрешности расчетной схемы, что, в свою очередь, в задаче об определении СРТ приводит к необоснованному завышению скорости трещины, особенно в области ее высоких значений (o r). Следует отметить, что значению k = при v = r соответствует шаг интегрирования Ат, равный времени прохождения волны расширения через наименьший КЭ в вершине трещины. Попытки более адекватного описания зависимости G (y) с помощью более точного моделирования раскрытия трещины путем увеличения количества КЭ в проскоке не дали существенного изменения зависимости G (o) (кривая 6). При использовании уравнения (1.41) зависимость G v) отличается от аналитической (4.79) менее чем на 1 % (кривая 5). В то же время следует отметить, что ограничение на шаг интегрирования, обусловленное устойчивостью решения уравнения (1.41), делает применение данной схемы при и < Сд неэффективным, поскольку резко возрастает количество шагов Ат (при v = r /г = 18 при v = rI2 fe = 36 и т. д.).  [c.250]

Схема моделирования пары, составленной из двух металлических поверхностей, приведена на рис. 228. Зазор создается между поверхностями двух металлических образцов, армированных н плексигласовые патроны, которые крепятся один против другого при помопги трех планок, изготовленных из нержавеющей стали. Ширина зазора регулируется прокладками известной толщины, которые удаляются по-  [c.350]

Учет латентности фрагментов. Локальные погрешности интегрирования зависят от значения шага интегрирования А и от характера переходных процессов. Если фазовые переменные претерпевают быстрые изменения, то погрешность не выше заданной обеспечивается при малых h. Если же фазовые переменные меняются медленно, то значения Л при тех же погрешностях могут быть существенно больше. В сложных схемах ЭВА, как правило, большинство фрагментов в любой момент времени относится к неактивным (латентным), т. е. к таким, в которых не происходит изменений фазовых переменных, причем отрезки латентности Т лат могут быть ДОВОЛЬНО продолжительными. в латентных фрагментах допустимо увеличивать шаг интегрирования вплоть до значения Глат, что эквивалентно исключению уравнений фрагментов из процесса интегрирования на период их латентности. Такое исключение выполняется в алгоритмах учета латентности, относящихся к алгоритмам событийного моделирования. Основу этих алгоритмов составляет проверка условий латентности. Примером таких условий может служить  [c.248]

Повышение эффективности моделирования логических и функциональных схем. Для повышения эффективности решения уравнений методом Зейделя целесообразно использовать диакоптический подход, в рамках которого итерации выполняются отдельно по фрагментам логической схемы. Введем следующие понятия составной элемент — множество контуров обратной связи, имеющих попарно общие связи фрагмент логической схемы — составной элемент или комбинационная схема, состоящая из взаимосвязанных логических элементов, не вошедших в составные элементы.  [c.252]

Возможность эффективной тепловой зашиты корпусных элементов от больших тепловых потоков успешно используется и при создании экспериментальных СВЧ плазмотронов [64]. Схемы СВЧ плазмотронов с предполагаемыми картинами течений при прямоточно-вихревой и возвратно-вихревой стабилизации плазмы показаны на рис. 7.30, а на рис. 7.31 показана зависимость мощности плазменного СВЧ излучения поглощаемого разрядом, и тепловой мощности fV , вьшеляюшейся в контуре охлаждения плазмотрона. Результаты опытов приведены в виде зависимости доли тепловых потерь WJW от удельного вклада энергии в разряд У = WJG, где G — расход плазмообразуюшего газа — азота. Результаты численного моделирования показаны на рис. 7.32,а — для традиционной прямоточно вихревой стабилизации и на рис. 7.32,6 — для случая с возвратно-вихревой стабилизацией. В первом случае рабочее тело — плазмообразующий газ — азот в виде закрученного потока подается в разрядную камеру, а во втором случае он подается в дополнительную вихревую камеру со скоростями 100 м/с ((7= 1 г/с) и 225 м/с ((7= 1,5 г/с), соответственно. По мнению автора работы [64] возвратный вихрь сжимает зону нагрева, предохраняя стенки камеры плазмотрона от перегрева. Основная часть газа проходит через разрядную зону, а размер зоны рециркуляции незначителен. В традиционной схеме (см. рис. 7.32,а) входящий газ смешивается с циркулирующим потоком плазмы и основная часть газа проходит мимо разряда вдоль стенок кварцевой трубки. Судя по приведенным модельным расчетам, схема с возвратно-вихревой стабилизацией позволяет снизить максимально достижимую температуру нагрева корпусных элементов примерно в 2,5 раза. Наиболее нагретая часть область диафрагмы, непосредственно примыкающая к отверстию имеет температуру 1400 К. Таким образом, использование возвратно-вихревой стабилизации плазмы позволяет изготовить СВЧ плазмотрон неохлаж-даемым из кварцевого стекла. Дальнейшее моделирование течения  [c.356]

Основная идея метода. Имитация является одной из разновидностей метода Монте-Карло. Общую идею и схему применения этого метода несколько упрощенно можно сформулировать следующим образом. Для решаемой задачи, котор- - схзстоит в определении некоторого параметра, конструируется случайная величина, распределение которой зависит от этого искомого параметра. С помощью ЭВМ проводится моделирование построенной случайной величины, в результате которого находится набор ее реализаций. Далее по этому набору вычисляется статистическая оценка искомого параметра, которая и принимается за решение исходной задачи.  [c.189]

В качестве примера, демонстрирующего особенности использования программного комплекса, остановимся на задаче моделирования динамики системы автоматического регулирования ядер-ной паропроизводящей установки (ЯППУ) малой мощности с реактором интегрального типа. В процессе проектирования системы автоматического регулирования исследовались проблемы расчетного обоснования ядерной безопасности ЯППУ в переходных режимах и в проектных аварийных ситуациях (обесточивание, стоп-вода , стоп-пар , отключение главного циркуляционного насоса и секций парогенератора и др.). Структурная схема моделируемой системы (см. рис. 11 на вклейке) скомпонована с помощью элементов каталога Реакторные блоки , а субмодели Кинетика нейтронов , Система управления , Теплофизические параметры АЗ и т.д., представляющие собой сложные многоуровневые структуры, набраны из каталогов общетехнической библиотеки типовых блоков. Общее число элементов в схеме - более 370, функциональных переменньгх - около 3000. На этом же рисунке размещены окна визуализации поведения физических параметров системы автоматического регулирования в процесее моделирования.  [c.77]


Смотреть страницы где упоминается термин Моделирование схемы из : [c.124]    [c.124]    [c.92]    [c.13]    [c.64]    [c.121]    [c.4]    [c.8]    [c.61]    [c.96]    [c.289]    [c.180]    [c.257]    [c.310]    [c.7]    [c.249]    [c.41]    [c.104]    [c.95]    [c.139]    [c.305]   
Смотреть главы в:

OrCAD моделирование  -> Моделирование схемы из

OrCAD моделирование  -> Моделирование схемы из



ПОИСК



320 PSPICE. Моделирование работы электронных схем

Автоматизация моделирования динамических процессов в металлургических машинах 352 - Принцип уровень автоматизации 158 - Посты управления 158 Структурная схема управления МНЛЗ 155 - Функциональный состав технологического автоматизирования 157 - Характеристики некоторых систем

Математическое моделирование тепловых схем ПТУ

Машины ИМ-58 — Схема 225 — Моделирование

Метод комбинированных схем Моделирование нелинейных граничных условий

Моделирование и измерение схем

Моделирование на стадии разработки технического задания на проектирование 120 — Вероятность отказа 120 — Время восстановления 121 — Исходные данные для моделирования 124 — Основа математической модели 120 — Схема процесса вероятностного

Моделирование поликристаллических кремниевых структур для процессов производства интегральных схем. Л. Мей, Р. Даттон, С. Хансен

Моделирование работы электронных схем Коэффициенты в качестве глобальных параметров

Моделирование работы электронных схем Урок

Моделирование цифровые схемы

Моделирование — Анализ существующих моделирования 122„ 124 — Схема состояния одной элементарной структуры линии

Объединение диаграмм, созданных на основе результатов моделирования разных схем

Ошибки при моделировании схем

Схемы для моделирования гистерезиса

Схемы моделирования линейных звеньев систем автоматического управления из стандартных блоков АВМ

Схемы моделирования некоторых функциональных зависимостей и выполнения математических операций

Упражнение на цифровое моделирование схемы

Функциональная схема объектно-ориентированного ПМО для математического моделирования интегрированных систем навигации и наведения беспилотных маневренных ЛА

Электрическое моделирование тепловых процессов на Л-сеточных моделях по неявной схеме



© 2025 Mash-xxl.info Реклама на сайте