Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Амплитуда деформации упругой

Рис. VII.5. Виброизоляция U, обеспечиваемая амортизатором с большой и малой промежуточными массами Mq (или двухкаскадным амортизирующим креплением с разделяющей каскады жесткой конструкцией, имеющей массу Мо), а также амортизатором без промежуточной массы, при отсутствии трения в упругих элементах (тонкие сплошные линии, уходящие в минус бесконечность при резонансах) при малом трении, пропорциональном амплитуде деформации упругих элементов (утолщенные линии) при большом трении того же типа (черно-белые линии). Наклон прямолинейных участков кривых составляет 12 и 24 дБ на октаву Рис. VII.5. Виброизоляция U, обеспечиваемая амортизатором с большой и малой промежуточными массами Mq (или <a href="/info/611589">двухкаскадным амортизирующим креплением</a> с разделяющей каскады жесткой конструкцией, имеющей массу Мо), а также амортизатором без промежуточной массы, при отсутствии трения в упругих элементах (<a href="/info/1021">тонкие сплошные линии</a>, уходящие в минус бесконечность при резонансах) при малом трении, пропорциональном амплитуде деформации упругих элементов (утолщенные линии) при большом трении того же типа (черно-белые линии). Наклон прямолинейных участков кривых составляет 12 и 24 дБ на октаву

При свободных и вынужденных колебаниях амортизированного объекта на амортизаторах с резиновыми упругими элементами эффективными жесткостями амортизаторов являются их так называемые вибрационные жесткости (динамические жесткости в вибрационном режиме). Их зависимостью от амплитуды деформации упругого элемента можно в первом приближении пренебречь, если нелинейность упругой характеристики элемента невелика.  [c.339]

Сопротивление материалов циклическому упруго-пласти-ческому деформированию обычно изучают при однородном напряженном состоянии, используя два основных вида нагружения. При первом в процессе циклического деформирования постоянной сохраняется амплитуда напряжений, при втором — амплитуда деформации. Эти виды соответственно называют мягким и жестким нагружением.  [c.618]

Деформации упругого элемента, представляющего собой упругую связь между корпусом прибора и осью наружной рамки карданова подвеса, не вызывают инерционных моментов, действующих вокруг осей карданова подвеса. При вибрации основания, на котором установлен прибор, упругая связь между корпусом и наружной рамкой карданова подвеса определяет амплитуду колебаний рамок и ротора гироскопа, а следовательно, и перегрузки, сообщаемые этим элементам при вибрации.  [c.241]

Расчет сводится к определению запасов по амплитудам местных упруго-пластических деформаций и по долговечности, а также к сопоставлению действующих амплитуд деформаций при заданном числе циклов с допускаемыми, установленными с введением указанных выше запасов.  [c.190]

Известно, что усталостные свойства коррелируют с формой петли гистерезиса при циклических испытаниях [373, 378]. Это утверждение становится более очевидным, если учесть, что параметр энергии Баушингера связан с упругой энергией, запасаемой в образце во время циклической деформации. Более наглядным является анализ формы петли гистерезиса за цикл испытаний при сравнимых амплитудах деформации. При этом чем выше среднее значение энергетического параметра, тем лучше усталостные свойства.  [c.219]

Таким образом, машина УМ-9 позволяет изучать процесс распространения усталостных трещин несколькими способами микроскопическим, путем измерения электрического сопротивления и по изменению несущей способности образца (осуществляется измерением механических напряжений, действующих в образце при его циклическом нагружении с постоянной амплитудой деформации). Измерение в этом случае может осуществляться как периодически с помощью упругого динамометра и отсчетного микроскопа, так и непрерывно путем тензометрирования. При разработке блока стробоскопического освещения микроскопа МВТ и блока измерения электросопротивления образца были использованы с небольшими изменениями соответствующие схемы, примененные в установке ИМАШ-10-68 [3].  [c.42]


Влияние так называемых упругих несовершенств деформируемых звеньев выражается в различии кривых нагрузки—разгрузки в координатных осях суммарная реактивная сила (момент) — перемещение при циклическом деформировании (рис. 39, а). При циклическом деформировании с различными от цикла к циклу амплитудами деформации (что характерно для нестационарных режимов) в указанной системе осей образуется так называемая гистерезисная спираль [90]. При стационарном режиме, для которого характерна система периодически повторяющихся амплитуд деформации, гистерезисная спираль замыкается в гистерезисную петлю, площадь которой Aw характеризует энергию, рассеиваемую за цикл (рис. 39, б).  [c.160]

Возможность осуществления как жесткого, так и эластичного нагружения образца. Это требование обусловлено особенностями работы деталей, поскольку усталостное разрушение может развиваться при постоянных значениях не только амплитуды усилия, но и амплитуды деформации материала. В этом случае закономерности сопротивления усталости (например, в период развития трещин или при деформировании материала в упруго-пластической области) существенно различны и их следует изучать с учетом особенностей нагружения, имеющих также большое значение при исследовании утомляемости полимерных материалов, механические свойства которых, а следовательно, и силовой режим испытаний изменяются в процессе повторно-переменного деформирования.  [c.53]

Рассмотрим колебания массы, соединенной упругой связью с неподвижной опорой. При движении массы, кроме упругих сил, могут возникать силы вязкого сопротивления, пропорциональные скорости массы или скорости деформации упругой связи. Хотя решение этой задачи излагается во всех курсах теории колебаний, используем его с целью введения основной терминологии и анализа физических закономерностей, присущих также и сложным колебательным системам. Уравнение движения при возбуждении массы гармонической силой с амплитудой имеет вид  [c.18]

Амплитуды относительных перемещений (деформаций упругих элементов) между массами ij находят по формуле (1. 18)  [c.40]

При малых частотах значения амплитуд возрастают, стремясь при сй = О к бесконечности, что соответствует случаю равномерного раскручивания системы под воздействием постоянного приложенного момента, уравновешивающего при этом только силы внешнего трения ( нулевой резонанс ). Несмотря на неопределенность перемещений, статические деформации упругих участков 12 и 23 имеют конечные значения, соответствующие  [c.61]

Выражения соответствующих расчетных членов для демпфирующих определителей по формулам (1. 19) (относительное демпфирование упругих участков), а также рассеяния й и АЛ по формулам (2. 6) и (2. 7) окажутся независящими от частоты и зависящими только от амплитуд деформации.  [c.95]

Максимальная абсолютная деформация упругих элементов зависит от знака и амплитуды перемещений сосредоточенных масс, соединенных с ними.  [c.39]

Ниже рассматриваются крутильные системы, представленные в виде механических ценен с сосредоточенными постоянными массами и деформируемыми звеньями, упруго-диссипативные свойства которых заданы гистерезисной петлей произвольного вида, полученной при моногармонических колебаниях (рис. 1,а,б). Основываясь на результатах ряда исследований и современных представлениях о природе внутреннего сопротивления, можно принять, что гистерезисные потери в значительной степени зависят от амплитуды деформации и незначительно — от частоты циклического деформирования [1], [2].  [c.70]

Другое направление учитывает роль пластических деформаций в механизме демпфирования энергии при колебаниях. Отметим здесь две гипотезы. Это прежде всего гипотеза упругого гистерезиса, предложенная Н. Н. Давиденковым зависимость напряжения от деформации при повторном нагружении является степенной функцией, определяемой амплитудой деформации, а не скоростью. Гипотеза Н, Н. Давиденкова нашла многих сторонников, она получила подтверждение опытными данными для многих конструкционных материалов. Упомянем также комплексное представление Е. С. Сорокина для связи между напряжением и деформацией при циклическом нагружении, когда неупругая циклическая деформация отстает по фазе от упругой на 90°. Для петли гистерезиса гипотеза Е. С. Сорокина дает эллиптическую зависимость, что удобно при расчетах.  [c.6]


Рнс. 3.6. Зависимости действительной части модуля упругости Е и коэффициента потерь Т1 от амплитуды деформации е.  [c.111]

Рис. 3.7. Зависимость действительной части модуля упругости Е натурального каучука от амплитуды деформации е и содержания сажи (верхним кривым соответствует большее содержание сажи). Рис. 3.7. Зависимость действительной части <a href="/info/487">модуля упругости</a> Е <a href="/info/63866">натурального каучука</a> от <a href="/info/28707">амплитуды деформации</a> е и содержания сажи (верхним кривым соответствует большее содержание сажи).
И частоты колебаний. Благодаря сходству эффектов, обусловленных температурой и амплитудами динамических деформаций (см. рис. 3.2 и 3.6), подход, основанный на построении зависимостей, показанных на рис. 3.15 и 3.10, можно использовать для перенесения всех данных на один график. На рис. 3.15 представлены зависимости модуля упругости и коэффициента потерь от частоты колебаний для пяти значений амплитуды деформаций в типичной резине с наполнителем при температуре,.  [c.123]

Оа — амплитуда условных упругих напряжений, равная произведению амплитуды упругопластических деформаций на модуль упругости, МПа, кг/мм  [c.218]

Гарантированные значения коэффициента снижения усталостной прочности металла сварных соединений срс представляют по результатам испытаний при симметричном цикле заданных деформаций в упругопластической области и заданных напряжений в упругой области в интервале температур и чисел циклов, указанных в п. 6.1. Результаты обрабатывают методом наименьших квадратов в полулогарифмических координатах <рс — логарифм амплитуды деформации.  [c.244]

В У. в. механич. напряжения пропорц. деформациям (Гука закон). Если амплитуда деформации в твёрдом теле превосходит предел упругости материала, в волне появляются пластич. деформации и её наз. упругопластической волной. Аналогом таких волн в жидкостях и газах являются волны т. н. конечной амплитуды. Скорость их распространения зависит от величины деформации.  [c.234]

Измерения отдельных параметров. При исггытаниях деталей машин по большинству критериев приходится измерять перемещения и деформации (упругие и пластические, линейный износ, толщины масляных слоев, амплитуды колебаний, точные делительные перемещения) скорости вращательных и поступательных движений силы и крутящие моменты.  [c.475]

Долговечность в обласчи малоцикловой усталости при нагружении с постоянной общей амплитудой деформации за цикл зависит от упругой и пластической составляющих, которые определяются из параметров петли механического гистерезиса (рис. 5)  [c.11]

Эти стадии хорошо выявляются в условиях нагружения с постоянной общей (упругой и пластической) амплитудой деформации за цикл. В случае испытаггий только с постоянной амплитудой пластической деформации за цикл металлических материалов, не имеющих физического предела текучести, период зарождения усталостных трещин может сразу начинаться со стадии деформационного упрочнения или разупрочнения. Кроме того, для выяв-  [c.19]

Как уже указывалось, весьма распространенным методом изучения сопротивления материалов циклическому упруго-пластическому деформированию являются испытания при постоянных амплитудах деформации — жесткое нагружение (рис. 601 а — сплав В96, б — сталь 1Х18Н9Т). При таких испытаниях за счет перераспределения упругой и пластической составляющих деформации максимальные напряжения от цикла к циклу могут изменяться.  [c.687]

Образец 1 колеблется под действием электромагнитного поля резонансной машины 2, которая питается через стабилизатор СН-500Н и автотрансформатор ЛАТР-9 переменным напряжением с частотой 50 Гц, пропорциональным амплитуде деформации. Образец соединен жестким рычагом обратной связи 3 с упругой балочкой из полоски фосфористой бронзы толщиной 0,1 мм, у основания которой наклеен тензодатчик. Электрический сигнал с датчика, усиленный тензостанцией ТА-5, регистрируется потенциометром ЭПП-09. К усилителю УЭ-119 потенциометра ЭПП-09 параллельно к двигателю РД-09 привода каретки включен еще один двигатель РД-09, который замыкается зубчатой муфтой с осью автотрансформатора ЛАТР-9. В результате изменения заданной амплитуды деформации появляется сигнал рассогласования. Двигатель привода автотрансформатора, управляемый этим сигналом, приводит систему к равновесию.  [c.198]

Для сравнительных лабораторных исследований коррозионной усталости сварных соединений труб и основного металла вырезали образцы размером 180Х38Х 10 мм из прямошовных (сталь 17ГС) и спирально-шовных (сталь 17Г2СФ) сварных труб диаметром 820 мм. Механические свойства и химический состав соответствовали ГОСТам и техническим условиям. Учитывая, что в реальных условиях эксплуатации концентраторы напряжений испытывают упруго-пластические деформации, тогда как остальное тело трубы деформируется упруго, т. е. в концентраторах имеет место жесткая схема нагружения, усталостные испытания проводили на машине с задаваемой амплитудой деформации (максимальная тангенциальная деформация 0,22 и 0,3% или интенсивность деформации 0,25 и 0,34% в наружных волокнах) чистым изгибом с частотой 50 циклов в минуту. Коррозионную среду подавали с помощью капельницы (для обогащения кислородом) или влажного тампона.  [c.230]


Таким образом, при со = onst коэффициент FJn является мерой некоторого изменения расчетных амплитуд сил трения по отношению к максимальным реальным (см. табл. 2. 3, д, е). Впрочем, равенство рассеяния обеспечивает при этом требуемую сходимость как расчетных, так и экспериментальных резонансных амплитуд деформаций в упругих участках систем, в широкой области изменения этих величин вплоть до предела текучести материала. В табл. 2. 3 (см. вклейку) дано сравнение параметров петель при разных значениях показателей степени п для скоростной зависимости сил трения.  [c.106]

Другим важным вопросом обеспечения прочности и ресурса атомных реакторов, не получавшим отражения в традиционных расчетах энергетических установок по уравнениям (2.1) —(2.3), являлся анализ сопротивления деформациям и разрушению при циклическом нагружении [2,5-7,16]. Как следует из данных гл. 1, в процессе эксплуатации атомных реакторов число циклов нагружения на основных режимах изменяется в достаточно широких пределах - от (2- 5) 10 при гидроиспытаниях до (1 2) Ю при программных изменениях мощности и до 10 —10 с учетом вибро-нагруженности. Систематические исследования прочности в этом диапазоне числа циклов были начаты применительно к энергетическим установкам в середине 50-х годов, а в середине 60-х годов были сформулированы основные (преимущественно деформационные) критерии разрушения и свойства диаграмм циклического деформирования [17,18 и др.]. По опытным данным, полученным на лабораторных образцах, было показано, что при числе циклов до 10 циклические пластические деформации оказываются сопоставимыми (в диапазоне числа циклов 10 —10 ) или существенно большими (в диапазоне числа циклов 10 -5 10 ), чем циклические упругие деформации. При этом в зависимости от типа металлов и условий нагружения (с заданными амплитудами деформаций или напряжений) пластические деформации по мере увеличения числа циклов могут возрастать (циклически разупрочняющиеся металлы), уменьшаться (циклически упрочняющиеся металлы) или оставаться постоянными (циклически стабильные металлы). Указанные особенности поведения металлов при циклическом упругопластическом деформировании обусловливают нестационар-ность местных напряжений и деформащ1Й в зонах концентрации при стационарных режимах внешних нагрузок. Для малоцикловой области уравнения кривых усталости и сами кривые усталости при числах циклов 10 —Ю представлялись не в амплитудах напряжений (как для обычной многоцикловой усталости при числах циклов 10 —10 ), а в амплитудах упругопластических деформаций.  [c.40]

Взаимодействия волн в твёрдых телах обусловлены обычно нелинейностью упругих возмущений, описываемых нелинейными ур-ниями механики сплошной среды. Возможны также механизмы нелинейности, связанные с взаимодействием упругих деформаций с др. видами возбуждений в твёрдом теле. В пьезоэлектрич. кристаллах может проявиться нелинейность пьезоаффекта в пьезополупроводниквх доминирующим механизмом часто оказывается электронная (концентрационная) нелинейность, обусловлеввая нелинейной зависимостью концентрации носителей заряда от деформации, вызванной акустич. волной. Соответственно, если при экс-перии. исследовании нелинейных искажений УЗ-вол-ны в большинстве твёрдых тел при частотах в неск. МГц и амплитудах деформации величина второй  [c.291]

У ПРУ ГО ПЛАСТИЧЕСКАЯ ВОЛНА —волна в деформируемом твёрдом теле, при прохождении к-рой амплитуда деформации превосходит предел упругости вещества и возникают пластич. деформаций. Скорость распространения таких волн зависит от величины деформации, В стержне, по к-рому пропша У. в., сохраняются остаточные деформации по их распределению можно судить о динамич. механич. характеристиках материала.  [c.234]

Упруго-гистерезисиые свойства эластомера можно выразить достаточно полно совокупностью двух показателей — динамического модуля В и угла потерь ф, определив В отношением амплитуды напряжения к амплитуде деформации  [c.72]

Термическая усталость является результатом деформации, которая возникает из-за стесненности термического расширения детали, связанного с возникновением температурных градиентов термическая усталость может привести к растрескиванию детали. Деформация, порождающая термическую усталость представляет собой произведение коэффициента термического расширения на изменение температуры. Хорошим способом моделировать термическую усталость является испытание на малоцикловую усталость при постоянной амплитуде деформации. Петля гистерезиса, соответствующая такому методу испытаний, представлена на рис. 7.15. Верхняя часть рис. 7.15 характеризует петлю гистерезиса при испытаниях суперсплавов в обычной отливке. А на нижней части рисунка, относящейся к суперсплавам направленной кристаллизации, показано, что чем ниже модуль упругости, тем уже петля гистерезиса. Такая связь объясняется тем, что, во-первых, предел текучести у низкомодульного сплава направленной кристаллизации равен пределу текучести высокомодульного сплава для обычных отливок и, во-вторых, более низкий модуль упругости требует меньшей пластической деформации, чтобы достигнуть той же самой полной деформации. Амплитуда пластической деформации высокомодульного сплава для обычных отливок (Дe ,)oк выше, чем у низкомо-  [c.272]


Смотреть страницы где упоминается термин Амплитуда деформации упругой : [c.622]    [c.106]    [c.208]    [c.190]    [c.212]    [c.208]    [c.24]    [c.131]    [c.106]    [c.121]    [c.189]    [c.36]    [c.494]    [c.130]    [c.233]    [c.312]   
Повреждение материалов в конструкциях (1984) -- [ c.383 ]



ПОИСК



Амплитуда

Амплитуда деформаций

Волны малой амплитуды в упругих кристаллах, подвергнутых деформации

Деформация упругая



© 2025 Mash-xxl.info Реклама на сайте