Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сварка стали с алюминием и алюминиевыми сплавами

Сварка стали с алюминием и алюминиевыми сплавами  [c.444]

В первые годы освоения сварки под флюсом ее применяли только при производстве конструкций и изделий из обычной низкоуглеродистой стали. Затем в 1941—1942 гг. освоили сварку броневых сталей. В настоящее время успешно сваривают под флюсом различные стали, сплавы, цветные металлы. Наряду с конструкциями из углеродистых сталей успешно свариваются под флюсом различные конструкции и аппараты из низколегированных сталей, нержавеющих, кислотостойких, жаропрочных сплавов на никелевой основе. В последние годы освоена сварка под флюсом нового конструкционного металла — титана, а также сплавов на его основе. Под флюсом сваривают медь и ее сплавы. Широко применяется в промышленности сварка по слою флюса алюминия и алюминиевых сплавов.  [c.113]


Газовую сварку применяют при изготовлении и ремонте изделий из тонколистовой стали ремонтной сварке литых изделий из чугуна, бронзы, алюминиевых сплавов монтажной сварке стыков трубопроводов малых и средних диаметров (до 75... 100 мм) с толщиной стенки до 4...5 мм и фасонных частей к ним сварке узлов конструкций из тонкостенных труб сварке изделий из алюминия и его сплавов, меди, латуни и свинца при наплавке латуни и бронзы на детали из стали и чугуна наплавке твердых и износостойких сплавов сварке и наплавке чугуна пайке-сварке ковкого и высокопрочного чугуна.  [c.338]

В курсе "Инженерная графика" обычно рассматривается сварка деталей из углеродистых сталей с применением швов, выполняемых автоматической дуговой сваркой. Типы швов определяет ГОСТ 5264—80. Сварные соединения из алюминия и алюминиевых сплавов выполняются швами по ГОСТ 14806—80. Кроме того, существует еще ряд стандартов, определяющих типы и конструктивные элементы швов иных сварных соединений, а также способы их сварки.  [c.305]

Свариваемые металлы. Стыковой сваркой (в том числе и ударной) свариваются между собой почти все металлы и сплавы, а именно а) конструкционные, углеродистые и специальные стали во всех возможных сочетаниях, как, например, углеродистая с быстрорежущей, быстрорежущая с нержавеющей, хромоникелевая с малоуглеродистой б) углеродистые и специальные стали с ковким чугуном, всеми сортами латуней и бронз, монель-металлом, медью, никелем, сплавами высокого электрического сопротивления, немагнитными сплавами, вольфрамом, молибденом, оловом, свинцом, сурьмой и всеми благородными металлами в) алюминий с алюминиевыми сплавами, медью и большинством сортов латуней и бронз г) вольфрам с медью и медными сплавами, а также сплавами высокого электрического сопротивления д) никель с медью, латунями и бронзами.  [c.356]

Контактная сварка основана на свойстве электрического тока нагревать проводник в местах значительного сопротивления, т. е. в местах соединения плотно прижатых одна к другой деталей. Различают точечную (рис. 13,1, б) и шовную (рис. 13.1, в, г) контактные сварки, которые позволяют получать хорошие соединения тонкостенных (менее 1,5—2,0 мм) деталей из низкоуглеродистых сталей. Несколько хуже свариваются алюминиевые сплавы, латунь, кремнистая бронза, никель и его сплавы. Плохо свариваются алюминий, медь и ее сплавы с высокой электрической проводимостью.  [c.136]


Большое затруднение при сварке алюминия и его сплавов вызывает образование пор в металле шва. В отличие от стали поры в алюминии располагаются преимущественно внутри шва вблизи границы сплавления его с основным металлом и у поверхности шва. Принято считать, что основным возбудителем пор в алюминиевых швах является водород.  [c.638]

Более сложно осуществлять сварку плавлением алюминия и его сплавов со сталью без биметалла. Непосредственная сварка алюминия со сталью, как правило, не дает положительных результатов. Шов получается хрупким вследствие образования интерметаллидов и большого различия физико-химических свойств соединяемых металлов. Удовлетворительное соединение алюминия со сталью возможно с применением цинкового покрытия. Наличие цинка на поверхности стали улучшает растекание алюминиевой присадки. Слой цинка толщиной до 30 мм предварительно наносят на сталь гальванически или горячим погружением.  [c.682]

Так, диффузионной сваркой не удается получить достаточно прочное соединение непосредственно алюминия и его сплавов со сталью в связи с образованием в зоне соединения интерметаллидов. Алюминиевый сплав АМц сваривают со сталью 15 через слой никеля, нанесенный гальваническим методом на поверхность стали с предварительно осажденным тем же методом подслоем меди. Сварку проводят на следующем режиме температура 550 °С, сварочное давление 14 МПа, время выдержки 2 мин. При механических испытаниях сварных соединений на растяжение разрушение происходит по алюминию.  [c.24]

Аргон для сварки поставляется по ГОСТу 10157—62. В зависимости от чистоты он делится на три марки. Аргон чистый марки А (аргона не менее 99,99%) предназначен для сварки особо активных металлов и их сплавов. Аргон чистый марки Б (аргона не менее 99,96%) —для сварки алюминиевых и магниевых сплавов. Аргон чистый марки В (аргона не менее 99,90%)—-для сварки чистого алюминия, нержавеющих сталей и жаропрочных сплавов. Получают аргон из воздуха. Окраска баллонов черная с белым верхом и черной надписью Аргон чистый .  [c.140]

Некоторые пары разнородных металлов, не поддающиеся непосредственной сварке, оказывается возможным сваривать при помощи промежуточных прослоек. Такую сварку можно осуществлять для различных пар. Однако наибольший интерес для авиационного конструктора представляет сварка деталей из алюминиевых сплавов с деталями из высокопрочных сплавов, воспринимающими большие сосредоточенные силы. Исследования показали, что применение промежуточных прослоек при сварке, равно как и способ их применения, в значительной степени влияет на качество соединения. Так, например, сварные соединения стали, покрытой оловом методом погружения, с технически чистым алюминием обладают низкой коррозионной стойкостью при эксплуатации на море. Если же сталь до сварки покрыть оловом гальваническим способом, то коррозионная стойкость сварного соединения повышается. Сварные соединения стали, покрытой алюминием, и технического алюминия обладают хорошей коррозионной стой-  [c.170]

Аргоно-дуговая сварка W-электродом широко применяется для ответственных конструкций из коррозионно-стойких сталей, алюминиевых и других сплавов. Сварка обычно ведется на прямой полярности (исключая сварку алюминия), от источника с крутопадающей характеристикой.  [c.99]

Особенностью сварки алюминия со сталью по сравнению с обычным процессом аргонодуговой сварки алюминиевых сплавов является расположение дуги в начале наплавки первого шва - на присадочном прутке, а в процессе сварки - на присадочном прутке и образующемся валике (рис. 13.8, а), так как при длительном воздействии теплоты дуги на поверхность стали происходит преждевременное выгорание покрытия, что препятствует дальнейшему процессу сварки. После появления начальной части валика дугу нужно зажигать вновь (после перерыва) на алюминиевом валике. При сварке встык дугу ведут по кромке алюминиевой детали, а присадку - по кромке стальной детали таким образом, что жидкий алюминий натекает на поверхность стали, покрытой цинком или алитированной (рис. 13.8, б).  [c.500]


Другое затруднение при сварке алюминиевых сплавов обусловлено тем, что алюминий имеет высокий коэффициент линейного расширения (например, в 2 раза больше, чем у низкоуглеродистой стали). В результате при сварке возникают значительные остаточные напряжения и деформации, которые в сочетании с неправильным режимом охлаждения (чрезмерно резким) могут привести к образованию трещин в процессе завершения кристаллизации металла шва.  [c.125]

Холодная сварка позволяет осуществлять соединения алюминия и многих его сплавов, меди, никеля, свинца, цинка кадмия, серебра, титана и других металлов, но практически пока ею можно осуществлять прочные и надежные соединения алюминия и некоторых его сплавов, меди и меди с алюминием. В тех случаях, когда необходимо получить герметичное соединение и не предъявляется высоких требований к его механической прочности, холодная сварка применяется для соединения меди с коваром и меди со сталью. Возможность использования холодной сварки для соединения разнородных металлов, таких, например, как медь с алюминием, представляет особый интерес для электромашиностроительной промышленности, где в связи с актуальностью задачи по замене меди алюминием, возникает необходимость в оконцевании выводов алюминиевых токопроводящих деталей медью, что лучше всего осуществлять этим способом. Холодную сварку удобно применять для соединения деталей, имеющих электрическую изоляцию, и для работы в огне- и взрывоопасной среде.  [c.3]

Предложено осуществлять сварку трением таких металлов через прослойку из третьего металла, хорошо соединяющегося с каждым из первых двух металлов. В частности, легированные алюминиевые сплавы успешно соединяются со сталями через прослойку из технически чистого алюминия. Технология получения таких соединений состоит из двух последовательных циклов сварки алюминиевый сплав с технически чистым алюминием и технически чистый алюминий со сталью. При этом осевой размер оставляемого перед вторым циклом сварки технически чистого алюминия должен обеспечить требующуюся конечную толщину прослойки и необходимое для сварки укорочение алюминия в процессе его осевой пластической деформации.  [c.104]

В настоящее время технология холодной сварки алюминия, меди, меди с алюминием, а также некоторых алюминиевых и медных сплавов настолько хорошо отработана, что, по сути дела, круглые, полосовые (шинные) и листовые изделия всех размеров должны свариваться холодной сваркой. Контактная стыковая сварка стала для этих металлов нерациональной из-за потребления больших электрических мощностей и значительно менее стабильного качества сварных соединений.  [c.180]

Генераторы импульсов типа ГИ-ИДС и аппараты ИИП предназначены для импульсной дуговой сварки плавящимся электродом в аргоне и смеси аргона с кислородом углеродистых, коррозионностойких сталей, алюминия, меди, титана и их сплавов. Генератор ГИ-ИДС-2 используется для сварки алюминиевых токопроводов в монтажных. условиях.  [c.34]

Сварка алюминия полуоткрытой дугой может выполняться аппаратурой, предназначенной для автоматической сварки стали под флюсом. Однако требуются следующие переделки 1) установить дозатор флюса 2) установить мундштук с фиксированным контактом 3) заменить кассету для электродной проволоки катуш- кой. В некоторых случаях требуется установка водяного охлаждения, служащего для предупреждения чрезмерного нагрева аппаратуры полуоткрытой дугой. В табл. 56 приведен состав алюминия марки А1 и сплава АМц. Механические свойства металла шва и сварного соединения на алюминии марки А1, выполненных полуоткрытой дугой алюминиевой электродной проволокой, помещены в табл. 57. Там же для сравнения приведены механические свойства основного металла. Прочность швов и сварных соединений на сплавах АМц и АМг составляет 90% прочности основного металла.  [c.172]

Сплавы алюминия с магнием, марганцем и медью. Прокат из алюминиевых сплавов (листы, трубы, уголки) в монтажном производстве используется для изготовления переносных лестниц, стремянок и различных приспособлений. Алюминиевые сплавы отличаются низким удельным весом при относительно высокой прочности. Модуль упругости алюминия равен 7,Ы№ кгс/см , т. е. в 3 раза меньше, чем у стали. Это требует увеличения жесткости конструкций, работающих на изгиб. Сварка алюминия производится по специальной технологии.  [c.8]

Метод применим также при сварке разнородных металлов. Так, при помощи холодной сварки успешно свариваются и дают прочное соединение без образования хрупкой интерметаллической прослойки такие пары разнородных металлов, как алюминий с медью, титан с медью, титан с алюминиевыми сплавами, титан со сталью, алюминий со сталью, медь со сталью ( Автоматическая сварка , 1964, № 5, с. 1-3).  [c.172]

Серия горелок АР разрабатывается НИАТ. Комплект АР-10 состоит из малой, средней и большой горелок, причем малая имеет воздушное, а средняя и большая — водяное охлаждение. Для токов до 160 А имеется керамическое сопло, для больших токов — металлический наконечник. Г орелка работает на постоянном и переменном токах. Горелки ГРАД отличаются высокой надежностью, небольшими размерами и малой массой. Они имеют алюминиевый корпус, в котором смонтирован газовый клапан, комплект керамических сопел н сменных цанг работают на постоянном и переменном токах. 1 орел-ки МГ-3 и МГВ-1 разработаны НИКИМТ, широко используются в строительно-монтажных организациях. Горелка МГ-3 имеет естественное (воздушное) охлаждение и изолированное сопло. Горелка МГВ-1 с водяным охлаждением работает на токах до 400 А. Горелки РГА предназначены для сварки стыковых и угловых швов изделий из нержавеюших, жаропрочных сталей и легких сплавов в любом пространственном положении, со сварочной проволокой и без нее, на переменном и постоянном токах. Горелки оснащены керамическими соплами, а горелка РГА-400 дополнительно снабжена металличе ским изолированным соплом с водяным охлаждением. Горелка ГРСТ-1 предназначена для ручной трехфазной сварки деталей пз алюминия и его сплавов толщиной до 8 мм. Конструкция горелки предусматривает замену наконечников, цанг и вольфрамовых элек-  [c.249]


Большое затруднение при сварке алюминия и его сплавов вызывает образование пор в металле шва. В отличие от стали в алюмишт поры располагаются преимущественно внутри шва вблизи гратщы его сплавления с основным металлом и у поверхности шва. O HOBiibiM возбудителем пор в алюминиевых швах считается водород. Азот в алюминии практически не растворяется, а переходит в шлак в виде нитрида алюминия и поэтому не вызывает появления пор.  [c.417]

В случае необходимости соединения коррозионностойкой стали, например 0Х18Н10Т, с алюминиевым сплавом техника подготовки поверхности металла усложняется. На сталь наносят слой алюминия. Свариваемое изделие алитируют (покрывают алюминием) в расплаве алюминия А85. Техника сварки сохраняется та же, что и, при сварке углеродистой стали с алюминием. Временное сопротивление сварных соединений стали 0Х18Н10Т с алюминиевым сплавом АМц находится на уровне временного сопротивления сплава в отожженном состоянии (И—12 кгс/мм ). Для сплава АМгб временное сопротивление соединения составляет 30—32 кгс/мм.  [c.682]

Холодная сварка — способ соединения с пластической деформацией деталей без специального нагрева. Для соединения деталей на воздухе при этом способе необходима большая, а в глубоком вакууме незначительная деформация. С увеличением степени деформации пластичность металла (в частности, алюминия) падает, а прочность и пластичность его соединений повышаются (рис. 69). Холодной сваркой можно соединять медь, свинец, серебро, железо с алюминием, никелем и медью, медь со сталью 1Х18Н9Т, серебро с медью и его сплавами, алюминий с никелем, цинком, оловом, кадмием, цирконий со сталями и алюминием, а также чувствительные к перегреву молибден, титан и упрочненные алюминиевые сплавы между собой. Из-за наклепа и упругих напряжений холодной сваркой трудно сваривается железо, ниобий, а также сплавы ВТ1 и АМгб.  [c.101]

Стыковой сваркой сваривают медь и ее сплавы (бронза — сплав — меди с оловом, латунь — сплав меди с цинком), алюминий и его сплавы. Медь и алюминий обладают значительно больщей теплопроводностью, чем сталь, вследствие чего требуют большего тепла для образования слоя расплавленного металла на торцах. Из-за больщой теплопроводности и низкого электросопротивления оплавление в целях концентрации тепла около торцов проводится с повышенными скоростями при повышенных плотностях тока. Сильное окисление с появлением тугоплавких пленок требует, наряду с интенсивным оплавлением, больших скоростей осадки с приложением значительного усилия, необходимого для удаления окислов из стыка. Перемещение плиты должно проводиться по графику, близкому к полукубической параболе. При оплавлении меди поддерживать на торцах слой расплавленного металла, а также прогреть металл на достаточную гл бину еще труднее, вследствие чего для получения соединения необходимого качества применяются большие усилия осадки (до 40 кг1мя1 ). Следует от.метить, что исходное состояние сплава (в особенности алюминиевого) существенно влияет на условия его сварки оплавлением и на качество получаемых соединений. Режимы сварки некоторых изделий из цветных металлов приведены в табл. 20. При сварке латуни наблюдается выгорание цинка (температура плавления которого 419° С) это может привести к изменению свойств лат ни. С целью уменьшения выгорания цинка необходимо процесс оплавления и осадки вести с большой скоростью. Сварка латуни затруднена также из-за ее быстрого окисления и небольшого интервала температур перехода из твердого состоя-иия в жидкое. В сгыках лат ни, соде,рл<ашей цинка до 40% (например, Л62), наблюдается однофазная структура а-латуни в этих случаях стык равнопрочен основно.му металлу. При содержании цинка более 40 Ь (например, Л59) в стыках наблюдается (а + -f ), латунь, закаливающаяся до твердости 170 кг/лш при твердости основного металла 125—130 кг1мм-. Отпуск при 600—650° С обеспечивает требуемую пластичность латуни.  [c.155]

Сварка алюминия и его сплавов с цветными металлами, их сплавами и сталями. Исследования взаимодействия алюминия с другими металлами при сварке показали, что основные трудности при изготовлении и использовании биметалла связаны с большой химической активностью алюминия. С другими металлами он образует хрупкие твердые соединения (алюминиды), а с кислородом воздуха — прочные твердые слои окислов. Наличие в переходной зоне прослоек алюми-нидов и недиспергированных окислов является основной причиной снижения прочности, ударной вязкости и большого разброса механических характеристик соединения. Особое место отводится химической обработке алюминия и его сплавов перед сваркой. Окисная пленка на поверхности металла может удаляться травлением (в растворе щелочи КОН — для алюминия, ортофосфорной кислоты — для сплавов АМг и АМц с последующим осветлением в азотной кислоте), зачищаться металлическими щетками на воздухе или в вакуумной камере. Целесообразно после очистки от окислов свариваемые поверхности алюминиевых деталей покрывать акриловыми смолами, лаками и полимерами на основе стирола, разлагаемыми без остатка при нагреве в вакууме.  [c.140]

Биметаллы успешно применяются во многих отраслях промышленности при решении конструктивных и технологических вопросов (гибка, сварка, отделка поверхности). Для изготовления емкостного оборудования используют биметалл углеродистая стальЧ-нержавеющая сталь . Весьма эффективно применение биметаллических конструкций из высокопрочных сталей с титаном. В этом случае удается получить высокую прочность и высокую коррозионную стойкость. Обычно такие биметаллические конструкции производят с применением взрывной технологии или диффузионной сваркой. В практике нашел широкое применение биметалл сталь-f медь , особенно для труб, подвергающихся высокому внутреннему давлению и действию коррозионной среды. Путем наплавки (иногда с последующей деформацией) производят биметаллические полуфабрикаты и изделия из биметалла сталь-f бронза . Большинство листов из алюминиевых сплавов производится с технологической планировкой чистым алюминием или сплавом алюминия с цинком, которая выполняет роль более коррозионностойкого слоя.  [c.77]

Ультразвуковую сварку применяют в приборостроении и радиоэлектронике при изготовлении деталей толщиной от 0,03 до 3,0 мм из алюминия, меди, их сочетаний, причем провода к этим деталям можно приваривать без снятия изоляции. Обмотки трансформаторов и обкладки конденсаторов из анодированной алюминиевой фольги сваривают с токоподводами из латуни и алюминия, не зачищая фольгу. УЗС приваривают термопары и датчики из. коррозионно-стойких сплавов, этот способ сварки трудно заменим при соединении мембран толщиной 0,05...0,1 мм из палладиевых сплавов с массивными деталями химических аппаратов. Выдающимся достижением нашей науки и техники стали разработанные под руководством Г. А. Николаева и В.И. Лощилова технологии ультразвуковой резки, наплавки и сварки костных тканей, а также резки и сварки мягких тканей человека (например, кровеносных сосудов). Эти технологии освоены медиками и применяются при хирургических операциях.  [c.261]

В конструкциях криогенной техники применяется много трубопроводов малого диаметра из алюминиевых сплавов и стали 12XI8H10T. Для изготовления трубопроводов необходимы биметаллические переходники из этих металлов. Получают переходники сваркой плавлением алюминия с предварительно алитированной сталью. Однако этот способ имеет свои недостатки трудоемкость процесса, вредные условия труда при алитировании, недостаточная надежность в эксплуатации.  [c.503]


В настоящее время достаточно хорошо отработаны методы низкотемпературных механических испытаний на растяжение. Эти испытания проводятся, как правило, на стандартных машинах, снабженных криостатом и дополнительными тягами для передачи на образец растягивающего усилия, а также системами термо- и тензометрирования I313, 377], В зависимости от конструкции криостата образец может находиться в соприкосновении с жидким хладоагентом, обдуваться его парами или быть изолированным от жидкости и паров. В последнем случае широко используется метод отвода тепла от образца по металлическому холодопро-воду. Основными конструктивными материалами при изготовлении криостатов и их элементов являются хромоникелевые стали аустенитного класса, алюминиевые и титановые сплавы, сплавы на основе меди (бериллиевые бронзы) и никеля (типа монель). В неразъемных соединениях применяется сварка и пайка серебряньш припоем. Для изготовления прокладок в разъемных соединениях используются индий, серебро, медь, алюминий, свинец, фторопласт.  [c.259]

Сварка производится с использованием стандартных сварочных установок типа УДАР-300 и УДАР-500, лантанированных вольфрамовых электродов диаметром 2—5 мм и аргона классов А — В по ГОСТу 10157 —62. Особенностью сварки алюминия со сталью в сравнении с обычным процессом аргоно-дуговой сварки алюминиевых сплавов является расположение дугп, которое должно в начале сварки первого шва удерживаться на присадочном прутке, а в процессе сварки остальных швов — на присадочном прутке и образующемся валике (рис. 16, а) этим предупреждается преждевременное выгорание покрытия. Возможен и иной вариант, когда дуга ведется по кромке алюминиевой детали, а присадка — по кромке стальной таким образом, что жидкий алюминий натекает на поверхность стали, покрытой цинком пли алитированной. При сварке, в зависимости от типа соедпнения, необходимо соб.1юяать последовательность наложения валиков шпа (рис. 16, б).  [c.217]

Сварка алюминия со сталью находит применение в судостроении и других отраслях промышленности палубные надстройки длиной в несколько десятков метров состоят из алюминиевого сплава АМгб, а корпус судна — из стали. Ряд деталей — трубы, трапы, мачты, леера изготовляют из алюминиевых сплавов и крепят к стальному корпусу. Сталеалюминиевые конструкции можно изготовлять, применяя прокладки-переходники из биметалла сталь—алюминий (или сплава алюминия). По известным технологическим процессам сваривают однородные металлы, например, алюминий с алюминиевой плакировкой биметалла и сталь со стальным слоем биметалла.  [c.681]

Сварка трением дает возможность получать соединения высокого качества, равнопрочные алюминиевому сплаву в отожженном состоянии. В процессе сварки температура в стыке быстро достигает своего максимума и затем стабилизируется. При сварке аустенитной стали 12Х18Н10Т с АД1 продолжительность латентного периода для температуры 660 °С, что близко к развиваемой в стыке, составляет 100... 120 с. Продолжительность сварки 10 с. Поэтому интерметаллидная фаза не успевает образоваться в сколько-нибудь значительных количествах. В то же время непрерывно идущая осадка (главным образом за счет алюминия) способствует получению чистого от интерметаллидов шва (суммарная осадка 14 мм).  [c.188]

Характер процесса сачовон сварки алюминия зависит пт физико-химических свойств алюминиевых сплавов, что препятствует кристаллизации расплава Т ва Т уменьшает механическую прочность. Из-за более высокой теплопроводности (0,52 х X 418,7 вт м-град), по сравнению с теплопроводностью черных металлов (теплопроводность стали 0,10-418,7 втЫ-град) при сварке конструкций появляются значительные деформации коробления. Вследствие различия механических свойств литых и деформированных сплавов, зона сварки по сравнению с основным металлом может иметь пониженные механические свойства.  [c.61]

В нек-рых неответственных случаях в качестве присадочного материала применяются сплавы из никеля, меди, железа, марганца и алюминия в различных пропорциях. Иногда в качестве присадочного материала употребляют т. н. бронзу Тобина, к-рая состоит из меди (69—63%), олова (0,5—1,5%) и цинка (40,5— 35,5%). Темп-ра плавления этого сплава достигает 870, так что в данном случае происходит уже не сварка, а пайка. Сущностью горячей газовой заварки, как говорилось выше, является предварительный подогрев отливки, исправление и затем медленное охлаждение в специальной печи. Самый процесс горячей газовой заварки ничем не отличается от заварки холодной. Для доброкачественности отливки заваренную деталь полезно перед охлаждением еще раз нагреть докрасна и лишь затем охладить окончательно. Большое употребление получила дуговая заварка, в особенности тех мест литья, к-рые не подвергаются дальнейшей механич. обработке. При дуговой заварке расплавляющая отливку вольтова дуга зажигается мешду отливкой и специальным электродом, одновременно служащим и присадочным материалом. После очистки литье подвергается иногда термич. обработке. Стальное литье (см.) и ковкий чугун (см. Чугун ковкий) обязательно отжигаются. Серое чугунное литье, особенно высококачественное, и легированное (см. Чугунное литье) такше м. б. подвергнуто термич. обработке аналогично стали, причем структура чугуна феррито-графито-цементи-товая переходит в структуру перлито-графитную с повышением механич. качеств. Бронзовое и алюминиевое литье такше м. б. улучшено посредством термич. обработки (см. Цеептюе литье).  [c.97]

Значительная усадка при затвердевании сварного шва, а также высокий коэффициент линейного расширения приводят к существенным остаточным деформациям (большим, чем деформации конструкций из малоуглеродистой стали). При сварке нагартованного алюминия и термически упрочненных алюминиевых сплавов снижается прочность сварного соединения по сравнению с прочностью основного металла, что создает определенные трудности.  [c.114]

Первостепенное значение для технологии ультразвуковой сварки имеют вопросы подбора наплавочного материала, ибо они определяют возмон ность регулярной работы сварочной машины в производственных условиях. Обычно для сварочного наконечника рекомендуется применять твердые износостойкие материалы. Однако столь общая рекомендация порой приводит к плохим результатам. Например, наконечник из твердого сплава ВК-8 покрывается алюминием после сварки 100—150 точек [56]. Имеется ряд конкретных рекомендаций по выбору материала сварочного наконечника это может быть закаленная в масле быстрорежущая инструментальная сталь, ннконель, сплавы на основе никеля [34], сапфировые вставки. Используют и обычные стали, например, сталь 45, закаленная на твердость 50 ед. по Роквеллу, после электрополировки позволяет сварить без зачистки наконечника 900 золотых проводников с напыленными пленками [27] то же относится к вставкам из твердых сплавов ВК-20 и ВК-25 (сварка алюминиевых сплавов) [17, 42] и т. д.  [c.141]


Смотреть страницы где упоминается термин Сварка стали с алюминием и алюминиевыми сплавами : [c.208]    [c.62]    [c.114]    [c.116]    [c.142]    [c.191]    [c.90]    [c.695]    [c.117]    [c.142]   
Смотреть главы в:

Сварка и свариваемые материалы Том 1  -> Сварка стали с алюминием и алюминиевыми сплавами



ПОИСК



Алюминиевые сварка

Алюминий в стали

Алюминий и его сплавы, сварк

Алюминий и сплавы алюминия

Сварка алюминиевых сплавов

Сварка алюминиевых сплавов стали

Сварка алюминия и алюминиевых сплавов

Сварка алюминия и его сплавов

Сварка стали

Сварка стали с алюминием

Сплав алюминия

Стали и сплавы



© 2025 Mash-xxl.info Реклама на сайте