Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алюминий Активность химическая

Водород, хотя и не образует химических соединений с алюминием, активно в нем растворяется и обычно занимает более 75 % в общем объеме поглощенных алюминием газов. Основным источником водорода в зоне сварки являются водородосодержащие химические соединения, в том числе и влага, содержащаяся в флюсе, в адсорбированном виде на поверхности свариваемого металла, а также сварочной проволоки.  [c.493]

На алюминии образуется химически стойкая тугоплавкая окисная пленка (АЬОз имеет 7пл = 2047 °С), что при сварке плавлением может привести к дефекту в виде включений этой пленки в металл шва. Использование флюсов не дает положительных результатов флюсы для сварки алюминия легкоплавки, жидкотекучи, плохо смачивают стали флюсы для стали активно реагируют с расплавленным алюминием.  [c.445]


Электродуговая сварка в защитном газе (рис.6.3) применяется в тех случаях, когда свариваемые металлы очень активны химически и при высокой температуре интенсивно взаимодействуют с кислородом воздуха ( окисляются или даже сгорают). К таким металлам относятся сплавы на основе алюминия, титана и ряда других, редко применяемых в технике.  [c.64]

Бескислородные флюсы целиком состоят из фторидных и хло-ридных солей металлов, а также других составляющих, не содер-жащих кислород. Их используют для сварки химически активных металлов (алюминия, титана и др.).  [c.116]

Тонкие поверхностные слои металла нагреваются, металл в этих слоях немного размягчается и иод действием сжимающего усилия пластически деформируется. При сближении поверхностей на расстояние действия межатомных сил между ними возникает прочная связь. Сравнительно небольшое тепловое воздействие на свариваемые материалы обеспечивает минимальное изменение их структуры, механических и других свойств. Например, при сварке меди температура в зоне контакта не превышает 600 °С, а при сварке алюминия 200—300 С. Это особенно важно при сварке химически активных металлов.  [c.224]

Расплавленная сера химически весьма активна и реагирует почти со всеми металлами. Она сильно разъедает медь, олово и свинец, меньше — углеродистую сталь и титан и незначительно — алюминий.  [c.141]

Резка металлов осуществляется сжатой плазменной дугой, которая горит между анодом — разрезаемым металлом и катодом — плазменной горелкой. Стабилизация и сжатие токового канала дуги, повышающее ее температуру, осуществляются соплом горелки и обдуванием дуги потоком плазмообразующих газов (Аг, N2, Hj, NHJ и их смесей. Для интенсификации резки металлов используется химически активная плазма. Например, при резке струей плазмы, кислород, окисляя металл, дает дополнительный энергетический вклад в процесс резки. Плазменная дуга режет коррозионно-стойкие и хромоникелевые стали, медь, алюминий и другие металлы и сплавы, не поддающиеся кислородной резке. Высокая производительность плазменной резки позволяет применять ее в поточных непрерывных производственных процессах. Нанесение покрытий (напыление) производятся для защиты деталей, работающих при высоких температурах, в агрессивных средах или подвергающихся интенсивному механическому воздействию. Материал покрытия (тугоплавкие металлы, окислы, карбиды, силициды, бориды и др.) вводят в виде порошка (или проволоки) в плазменную струю, в которой он плавится, распыляется со скоростью - 100—200 м/с в виде мелких частиц (20— 100 мкм) на поверхность изделия. Плазменные покрытия отличаются пониженной теплопроводностью и хорошо противостоят термическим ударам.  [c.291]


Высокой химической активностью при сварке отличаются и другие цветные металлы алюминий, магний, медь, никель и сплавы на их основе. Качество их защиты обеспечивается инертными газами, а также специальными электродными покрытиями и флюсами.  [c.40]

Инертными газами называются те, которые химически не взаимодействуют с металлом и не растворяются в нем. В качестве инертных газов используют аргон (Аг), гелий (Не) и их смеси. Инертные газы применяют для сварки химически активных металлов (титан, алюминий, магний и др.), а также во всех случаях, когда необходимо получать сварные швы, однородные по составу с основным и присадочным металлом (высоколегированные стали и др.). Инертные газы обеспечивают защиту дуги и свариваемого металла, не оказывая на него металлургического воздействия.  [c.53]

При сварке титана и алюминия — металлов очень высокой химической активности — раскисление осаждением невозможно, поэтому их сварку осуществляют с внешней защитой от окружающей среды — в инертных газах, в вакууме или под флюсами, не содержащими кислородных соединений.  [c.330]

Таким образом, поверхностной двумерной пленке свойственна прочность, хрупкость и отсутствие свойств механической стабильности. В силу прочности пленки ее функцией является обеспечение упругой реакции на механические воздействия небольшой величины, а в силу химической стабильности - защита средней части переходного слоя и, следовательно, объемной части, от химического воздействия окружающей среды. Например, защитная оксидная пленка на поверхности алюминия обусловливает для химически активной объемной части данного вещества практически инертное поведение материала в целом.  [c.124]

В группу самой низкой стоимости входят свинец, цинк, медь, железо. Никель, кадмий составляют промежуточную группу, к дорогостоящим относятся серебро, палладий, золото. Экономическая целесообразность применения алюминия взамен цинка определяется не только повышенной коррозионной стойкостью в большинстве коррозионно-активных сред нефтяной и газовой промышленности, но и снижением экономических затрат на применяемый материал. Так, соотношение цен цинка и алюминия составляет 16,3. Учитывая соотношение плотностей, получаем, что при одной и той же толщине алюминий значительно дешевле цинка. Технико-экономические затраты, связанные с использованием покрытия, в значительной степени зависят от способа нанесения его на изделия. При выборе способа исходят из технологических возможностей нанесения покрытия на конкретное изделие для получения наилучших эксплуатационных свойств при минимальных экономических затратах. По методу нанесения различают физические, электрохимические и химические методы.  [c.49]

Титан и его сплавы относятся к числу химически активных материалов. В электрохимическом ряду напряжений титан находится между магнием, алюминием и бериллием, нормальный потенциал реакции Т -> - Тр +2е, отнесенный к нормальному водородному элементу, равен — 1,75 В, в то время как электродные потенциалы магния и алюминия равны соответственно —2,37 и —1,66 В. При этом высокая химическая активность титана сочетается с исключительно высокой коррозионной стойкостью. Последнее объясняется наличием на поверхности тонкой практически бездефектной пленки оксидов, мгновенно образующихся  [c.114]

Наряду с разработкой и освоением рациональной технологии производства ядерного топлива большое значение для развития атомной техники имеют конструкционные материалы, применяемые в производстве специального промышленного и исследовательского оборудования. Помимо обычных требований механической прочности, теплопроводности, жаростойкости, коррозионной, эрозионной стойкости и т. д. к ним предъявляются специфические, определяемые особенностями атомной техники требования радиационной стойкости, необходимой степени поглощения нейтронов в зависимости от производственного назначения материала и пр. С учетом этих требований выбирались и изучались различные марки стали для элементов конструкции атомных реакторов, искусственного графита для элементов систем замедления и отражения нейтронов.в активной зоне реакторов, алюминия для защитных оболочек твэлов, предотвращающих возникновение химической реакции между химически несовместимыми урановыми сердечниками твэлов и теплоносителем (например, водой), бетона для нужд противорадиационной защиты и т. д. Применительно к этим же требованиям отечественной промышленностью освоены в производстве новые конструкционные материалы, ранее получавшиеся лишь в крайне ограниченных количествах на лабораторных установках — тяжелая вода, бериллий, цирконий и его сплавы и др.  [c.163]


Физико-химическое воздействие внешней среды на механические свойства поверхностного слоя металлов и сплавов. Поверхность металла обладает повышенной химической активностью и в реальных условиях неизбежно адсорбирует атомы элементов окружающей среды, покрываясь слоями адсорбированных газов, паров воды и жиров. Слой жира достигает нескольких сот микрон, пленка водяных паров составляет 50—100 слоев молекул. Жировые пленки прочно связаны с поверхностью металла и не удаляются обычными механическими и химическими средствами. После промывки деталей керосином и бензином на поверхности остается слой жиров в 1—5 мкм. Очень тщательной очисткой можно довести толщину слоя жиров до 0,1—0,001 мкм (примерно 100— 10 рядов молекул). Воздействие внешней среды приводит к образованию на поверхности металла различных соединений, прежде всего различных окислов. Они быстро возникают в результате влияния атмосферного кислорода. Толщина наружной пленки в окисляющихся металлах равна примерно 20—100 А (10—20 слоев молекул). Например, окисная пленка в стали равна 10— 20 А, а алюминии — 100—150 А.  [c.51]

Алюминий отличается весьма высокой химической активностью. Он легко окисляется за счет не только кислорода воздуха, но и составляющих футеровки. Окисная пленка алюминия обладает повышенной плотностью, которая предохраняет его от дальнейшего окисления. Поэтому алюминий является одним из коррозионно-стойких металлов. Однако образовавшаяся окись при реакции алюминия с кислородом атмосферы или из футеровки может остаться внутри металла, что вызовет понижение качества отливки.  [c.79]

Алюминий относится к числу немногих элементов, имеющих большую химическую активность энергия образования его соединений с кислородом, галоидами, серой и углеродом очень велика.  [c.211]

С другой стороны, высокая химическая активность алюминия создает большие трудности в подборе конструкционных материалов, что, безусловно, значительно затруднит его практическое применение. Как следует из табл. 3, чистые металлы и их сплавы без специальных защитен  [c.69]

В заключение необходимо отметить,, что работа с алюминием при высоких температурах очень осложнена его высокой химической активностью. Такие обычно применяемые материалы, как железо, нержавеющая сталь, молибден и другие металлы, сильно взаимодействуют с алюминием и не могут быть использованы для изготовления тигля. Алюминий при определенных температурах ведет себя агрессивно и с обычными графитами.  [c.98]

Баржо предложил бинарный цикл с верхней ступенью на парах бромата алюминия AlaBr . Невысокая критическая температура бромата алюминия и химическое взаимодействие с водой (с образованием активного бромистого водорода) были причиной отказа от реализации этого цикла.  [c.12]

Существуют также химико-механические способы шлифования. Для этой цели служат специальные пасты, в состав которых (табл. 3), кроме абразивных материалов (окись храма и окись алюминия), входят химически активные вещества, ускоряющие процессы снятия и возобновления окисной пленки. Однако эти пасты следует применять после грубого механического щлифова-ния образца на щкурках.  [c.132]

Исследования показали, что для получения недендрйтной структуры необходимо присутствие в составе сплава модификаторов зародышевого действия. Введение в состав сплава небольших добавок переходных метал яов (Т1, 2г и др.) и активация неконтролируемых твердых примесей поЗ воляет резко увеличить число центров кристаллизации. Таким образом, ультразвуковая обработка кристаллизующегося расплава, не меняя гетерогенного характера кристаллизации твердого раствора на поверхности частиц химических соединений переходных металлов с алюминием, активно размножает эти поверхности счет активирующего действия на яримеси.  [c.463]

По своим физико-химическим свойствам многие цветные металлы резко отличаются от стали, что необходимо учитывать при швборе вида и технологии сварки. По химической активности, температурам плавления и кипения, теплопроводности, плотности, мехавиче-ским характеристикам, от которых зависит свариваемость, цветные металлы можно условно разделить на такие группы легкие (алюминий, магний, бериллий)  [c.131]

Учитывая высокую химическую активность аг -фазы, ее влияние на анизотропию характеристик разрушения наиболее резко должно было проявиться при проведении испытаний в коррозионной среде. Автор работы [88] показал, что увеличение содержания алюминия в сплаве Т1—6 % А1 —4 % V с призматической текстурой в пределах марочного состава при проведении испытаний в 3 %-ном растворе МаС1 приводит к резкому снижению вязкости разрушения поперечных образцов без заметного изменения продольных образцов.  [c.130]

В других случаях реакции на поверхности раздела приводят к необратимому снижению собственной прочности упрочнителя. Петрашек [28], например, наблюдал уменьшение собственной прочности волокон вольфрама по мере развития рекристаллизации, на которое заметно влияют определенные легирующие элементы медной матрицы. Саттон и Файнголд [37] отмечали, что активные легирующие элементы никелевой матрицы снижают прочность волокон окиси алюминия в композите, изготовленном путем пропитки. Эти наблюдения легли в основу предложенной ими теории прочности композитов, рассмотренной в гл. 8. Предполагается, что разупрочнение окиси алюминия обусловлено огрублением рельефа поверхности, а в этом случае удаление продукта реакции не восстанавливает прочности, хотя химическая  [c.26]

Механическая связь реализуется в отсутствие какого бы то ни было химического механизма — даже сил Ван-дер-Ваальса — и сводится к механическому сцеплению. Однако отсутствие химической связи существенно снижает прочность композита при поперечном нагружении поэтому в технологии изготовления компози тов механическую связь не считают полезной. Связь путем смачивания и растворения имеет место в композитах, где упрочнитель, не являющийся окислом, смачивается или растворяется матрицей, но не образует с ней соединений. Окисная связь может возникать при смачивании, а также при образовании промежуточных соединений на поверхности раздела. Как правило, металлы, окислы которых обладают малой свободной энергией образования, слабо связываются с окисью алюминия. Однако следы кислорода иль активных элементов усиливают эту связь путем образования промежуточных зон в обоих случаях связь относится к окисному типу. Кроме того, согласно общей классификации, к окисному типу относится связь между окисными пленками матрицы и волокна.  [c.35]


Важным критерием оценки способности элемента реагировать с окисью алюминия Саттон и Файнголд считают свободную энергию образования его окисла. Легирующий никелевую матрицу элемент очень активно реагирует с окисью алюминия, если его окисел имеет большую отрицательную величину свободной энергии образования. По этой причине сплавы никеля с титаном и цирконием химически очень активны, тогда как никель-хромовые сплавы реагируют с АЬОз умеренно. Степень химической активности можно регулировать только путем изменения содержания этих элементов в никелевой матрице. Элементы, образующие менее стабильные окислы по сравнению с окисью алюминия, могут участвовать в реакции лишь в том случае, если они получают кислород из других источников (например, из атмосферы). Как и в приведенном ранее примере реакции меди с окисью алюминия, Мур [26] показал, что образование связи между никелем и AI2O3 зависит от доступа кислорода. Шпинель NiAl204 образуется только в присутствии кислорода.  [c.86]

Рост интереса к исследованию поверхностей раздела был связан с переходом от модельных систем к композитам, матрицами которых являются важные конструкционные металлы — алюминий, титан и металлы группы железа. Эти металлы обычно более химически активны, чем серебряные и медные матрицы исследованных модельных систем, таких, как Ag—AI2O3 и Си—W. Однако приведенные в настоящей главе данные по казывают, что известная реакционная способность может благоприятствовать достижению желательного комплекса механических свойств. Выше приводились примеры, когда определенное развитие реакции на поверхности раздела обеспечивало оптимальное состояние последней. Бэйкер [1] показал, что композиты алюминий—нержавеющая сталь обладают наилучшими усталостными характеристиками в условиях слабо развитой реакции, а Бзйкер и Крэтчли [2] установили то же самое для системы алюминий—двуокись кремния.  [c.180]

Все тугоплавкие металлы обладают отрицательными нормальными электродными потенциалами и располагаются в ряду активности левее водорода. Высокая коррозионная стойкость тугоплавких металлов обусловлена образованием на поверхности плотной, химически устойчивой пленки, представляющей собой окисел данного металла для Та, Nb, Мо, Zr — это Ta Os, NbiOs, М0О3, Zr O и т.д. Так, например, тантал без окисной пленки обнаруживает сильную анодность по отношению к большинству металлов в течение нескольких секунд после погружения пары в электролит, но образование на его поверхности окисла Таг Os под действием анодного тока быстро изменяет потенциал тантала на обратный и тантал становится катодом (рис. 48). Этот процесс аналогичен процессу пассивации алюминия, но протекает быстрее (рис. 49).  [c.56]

Кальцит — кристаллический карбонат кальция СаСОз, содержит 56% СаО и 44% СО2. Получают кальцит из известняка, при этом основной примесью является карбонат магния, присутствующий в виде двойной соли Mg Oa- a Oa — доломита, а также оксиды алюминия и железа. Кальцит обладает малой химической активностью и низкой гидрофильностью. Он способствует предотвращению растрескивания покрытий, особенно в сочетании с алкидными смолами.  [c.69]

Одним из способов достижения высокой вязкости разрушения сплавов на основе железа, предназначенных для криогенной техники, является снижение концентрации охрунчивающих примесей (углерода, кислорода и азота) путем введения химически активных (поглощаюших) элементов, которые будут связывать указанные примеси. Были опробованы добавки одиннадцати активных металлов в системе Fe—I2Ni, включая А1, Hf, La, мишметалл, Nb, Si, Та, Ti, V, Y и Zr. Предварительные исследования [2] показали, что AI, Nb, Ti и V наиболее эффективно повышают вязкость разрушения. Для наиболее подробного исследования в качестве оптимального варианта химически активного элемента был выбран алюминий. Задачами исследования были оптимизация содержания никеля и алюминия, изучение влияния примесей, механизмов упрочнения и свариваемости.  [c.251]

Оптимизация содержания алюминия. Первоначально усилия были направлены на повышение вязкости разрушения сплава Fe—12Ni путем добавления химически активных металлов. Результаты проведенных исследований показали [2], что наиболее эффективной добавкой для повышения вязкости разрушения и прочности является алюминий. Влияние добавки алюминия на вязкость разрушения сплава Fe—12Ni при низких температурах показано на рис. 1. Три кривые, представленные на этом рисунке, характеризуют материал, отожженный в течение 2 ч при температурах 823 К (в однофазной а-области), 958 К (в двухфазной а-Ь у-области) и 1093 К (в однофазной 7-области). Максимальную вязкость разрушения достигали при концентрации алюминия, равной 0,5% (ат.), при двух более высоких температурах отжига и при содержании алюминия в пределах 0,5—1 % (ат.) и температуре отжига 823 К. Повышение вязкости разрушения связывают с удалением примесей, являющихся элементами внедрения, и с измельчением размера зерна на 50%. Из-за резкого снижения вязкости в сплаве Fe—12Ni—lAl, отожженном при 958 и 1093 К (см. рис. 1), для дальнейшего исследования было выбрано оптимальное содержание алюминия, равное 0,5 % (ат.).  [c.252]

Аустенит снижает вязкость разрушения, что показано на сплавах с повышенным содержанием никеля, имеющих остаточный аустенит. Результаты исследования показали, что вязкость разрушения сильно снижается в сплавах, в которых основной вредной примесью является кислород. Основная роль химически активного металла — алюминия— состоит в удалении таких примесей путем связывания их в соединения. Кроме того, добавка алюминия измельчает размер зерна, что способствует повышению прочности и вязкости разрушения. Сплав Fe—12Ni—0,5А1, сваренный дуговой сваркой вольфрамовым электродом в среде защитного газа с последующей термообработкой после сварки, имеет вязкость разрушения в зонах шва и термиче-  [c.258]

Для полирования детадей применяют пасту, содержащую окись хрома зернистостью 45 мкм. Доводочные же пасты, применяемые для прецизионных деталей, весьма разнообразны. В ряде случаев при окончательной доводке используется паста, которая содержит 18% (по весу) прокаленной окиси алюминия, зернистостью М3, 35-% олеиновой кислоты, 31% стеарина, 8% парафина и 8% костного масла. Пасты на олеиновой и стеариновой основе вообще преобладают, так как считается, что эти две жирные кислоты, являющиеся поверх-ностно-активными веществами, играют весьма важную роль в процессе, интенсифицируя его благодаря своему химическому действию. Имеются попытки применения паст и на керосино-парафиновой основе, которые являются более дешевыми. Так, паста Ml, содержащая 15% абразива, 40% керосина и 45% парафина, по производительности аналогична пастам на кислотной основе, а стоимость ее в 6 раз ниже.  [c.30]

Это процесс постепенного накопления повреждений материала под воздействием переменных напряжений и коррозионно-активных сред, приводящий к изменению свойств, образованию коррозионно-усталостных трещин, их развитию и разрушению изделия. Этому виду разрушения в определенных условиях могут быть подвержены все конструкционные материалы на основе железа, алюминия, титана, меди и других металлов. Опасность коррозионно-усталостного разрушения заключается в том, что оно протекает практически в любых коррозионных средах, включая такие относительно слабые среды, как влажный воздух и газы, спирты, влажные машинные масла, не говоря уже о водных растворах солей и кислот, в которых происходит резкое, иногда катастрофическое снижение предела выносливости металлов. Поэтому коррозионная усталость металлов и сплавов наблюдается во всех отраслях техники, но наиболее она распространена в химической, энергетической, нефтегазодобывающей, горнорудной промышленности, в транспортной технике. Коррозионно-усталостному разрушению подвергаются стальные канаты, элементы бурильной колонны, лопатки компрессоров и турбин, трубопроводы, гребные винты и валы, корпуса кораблей, обшивки самолетов, детали насосов, рессоры, пружины, крепежные элементы, металлические инженерные сооружения и пр. Потеря гребного винта современным крупнотоннажным судном в открытом океане приносиГ убытки, исчисляемые миллионами рублей.  [c.11]


Усталостное разрушение углеродистых, средиелегированных и нержавеющих сталей, а также сплавов на основе алюминия и других металлов в присутствии коррозионной среды отличается от характера разрушения этих материалов в сухом воздухе или химически мало активных и инертных средах. Характерными признаками коррозионной усталости в этих случаях являются  [c.12]

Химико-термические методы упрочнения поверхности для повышения износостойкости за счет увеличения поверхностной твердости (цементация, азотирование, цианирование, борирование и др. процессы) весьма эффективны для повышения сопротивления абразивному изнашиванию. Для улучшения противозадирных свойств создаются (посредством сульфиди-рования, сульфо-цианирования, селенирования, азотирования) тонкие поверхностные слои, обогащенные химическими соединениями, предотвращающими схватывание и задир при трении.. Большой эффект получается при использовании метода карбонитрации. Широко применяются электрохимические методы нанесения покрытий А1, РЬ, Sn, Ag, Au и др. При восстановлении деталей (в ремонте) используется электролитическое хромирование, никелирование, железнение и др. Значительная часть технологических задач, связанных с необходимостью повышения износостойкости, коррозионной стойкости, жаропрочности, восстановительного ремонта и др. решается при использовании методов металлизации напылением, включающих газоплазменную металлизацию, электродуговую, плазменную, высокочастотную индукционную металлизацию и детонационное напыление покрытий - наносятся металлы и сплавы, оксиды, карбиды, бориды, стекло, фосфор, органические материалы. Плазменное напыление используют для нанесения тугоплавких покрытий окиси алюминия, вольфрама, молибдена, ниобия, интерметаллидов, силицидов, карбидов, боридов и др. Детонационное напыление имеет преимущество в связи с незначительным нагревом покрываемой детали и распыляемых частиц. В последнее время активно развиваются методы нанесения износостойких покрытий в вакууме катодное распыление, термическое напыление, ионное осаждение. В зависимости от реакционной способности газовой среды методы напыления  [c.199]

Для охлаждения контуров турбин АЭС в штате Аризона (США) используется [98] часть очищенных городских сточных вод, которые в количестве 150 и 225 тыс. м /сут сбрасываются в пруды-усреднители и обрабатываются по следующей схеме фильтрование, первичное осветление, обработка активным илом, а затем повторно используются. Сопоставление химического состава отработавших вод и норм качества охлаждающей воды показывает, что сточные воды должны дополнительно очищаться для снижения содержания ионов Сг +, SiOa ", Р04 , взвешенных веществ, ХПК перед использованием в системе охлаждения турбины для восполнения потерь с продувкой и испарением в градирнях. Для разрушения органических соединений и аммиака применяется нитрификация на биологических фильтрах и в аэрируемых водоемах, для удаления фосфатов — обработка солями алюминия и железа и известкование. Удаление аммиака осуществляют фильтрованием воды через клиноптилолит. Технико-экономическое срав-  [c.77]

Литий Li (Lithium). Серебристо-белый металл, обладающий большой мягкостью, имеет наименьший удельный вес из всех твердых веществ. Распространенность в земной коре 0,0065% = 186° С, кип — 1336° С, плотность 0,53. Обладает высокой химической активностью, легко окисляется на воздухе, покрываясь слоем окисла. Непосредственно взаимодействует с водородом с образованием гидрида лития LiH бурно реагируете водой, выделяя водород. Незначительные присадки лития к алюминию, магнию, свинцу и другим металлам повышают их прочность и делают более стойкими в отношении действия кислот и щелочей. Литий входит иногда в состав подшипниковых сплавов.  [c.370]


Смотреть страницы где упоминается термин Алюминий Активность химическая : [c.16]    [c.56]    [c.121]    [c.566]    [c.266]    [c.276]    [c.82]    [c.61]    [c.367]   
Материалы в машиностроении Выбор и применение Том 1 (1967) -- [ c.79 ]



ПОИСК



Алюминий химические

Химическая активность



© 2025 Mash-xxl.info Реклама на сайте