Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алюминий модули упругости

При введении алюминия модуль упругости титана увеличивается почти линейно и, следовательно, повышается устойчивость титановых конструкций. Алюминий уменьшает чувствительность титана к водородной хрупкости, так как заметно увеличивает  [c.66]

Коэффициент пропорциональности Е называется модулем продольной упругости или модулем упругости первого рода, он имеет размерность напряжений (даН/см или даН/мм ) и характеризует способность материала сопротивляться упругой деформации при растяжении и сжатии. Величину модуля продольной упругости для различных материалов определяют экспериментально. Для стали = (2,0- 2,15) 10 даН/см , для алюминия = (0,7н-0,8) 10 даН/см , для бронзы = 1,15-10 даН/см , для дерева вдоль волокон = 1-10 даН/см , для стеклопластиков = (0,18-ь н-0,4) 10 даН/см  [c.130]


Отметим, что модуль упругости второго рода для стали О 8.10 даН/см , для алюминия С 2,7.10 даН/см  [c.186]

К алюминиевой проволоке длиной 2 м и площадью поперечного сечения 4 мм подвесили груз, под действием которого она удлинилась на 1 мм. Определите силу упругости, возникшую в проволоке. Модуль упругости алюминия 0,71-10" Па.  [c.126]

Алюминий имеет несколько меньший модуль упругости и существенно меньшую плотность р, чем латунь.  [c.697]

При решении задач этого параграфа следует принимать для провода (каната) следующие значения модуля упругости (приведенного) Е и плотности материала р для меди Е — 85 ГПА, р = = 8900 кг/м для стали f == 170 ГПа для алюминия Е 50 ГПа. Эти характеристики используются при проектировании конструкций с гибкими нитями.  [c.39]

Модуль упругости стали при растяжении или сжатии Модуль упругости алюминия и дюралюмина  [c.8]

Металлы, применяемые на практике, имеют поликристаллическое строение, поэтому в них обычно существенным является рассеяние, связанное с упругой анизотропией. Это явление заключается в том, что в кристаллах значения модулей упругости (а следовательно, и скоростей звука) зависят от направления относительно осей симметрии кристалла. С точки зрения упругих свойств вольфрам является изотропным материалом для некоторых других металлов анизотропия свойств возрастает в таком порядке магний, алюминий, титан, уран, железо, никель, серебро, медь, цинк.  [c.194]

Величины модуля упругости Е и коэффициента Пуассона v для различных материалов определяют экспериментально. Для стали Е = = 2,15 10 МПа, для алюминия и чугуна = 0,7 10 МПа, для бронзы = 1,2 10 МПа. Для большинства металлов и сплавов v 0,3. Между , G и V существует зависимость  [c.144]

Зависимость скорости роста усталостной трещины и шага усталостных бороздок от модуля упругости была продемонстрирована на многих материалах на основе алюминия и сталей различного класса [32-35]. Однако в ряде случаев показатель степени при модуле упругости был получен больше двух и не являлся целым числом.  [c.237]

Недостаточная жесткость. Несмотря на армирование волокнами листовых материалов, их суммарная жесткость, определяемая модулем упругости, относительно низка по сравнению с другими конструкционными материалами, такими, как сталь и алюминий. Жесткость композиционных материалов близка по величине к жесткости бетона и древесины в направлении вдоль волокон. Для более эффективного использования композиционных материалов необходимо воспользоваться их формуемостью и изготовлять из них конструкции, жесткость и прочность которых обеспечивается их формой.  [c.268]


В табл. 38 представлены значения предела прочности, модуля упругости и удлинения материала на основе алюминия, упрочненного различными количествами борных волокон, уложенных в одном направлении. Таблица позволяет оценить, какое количество упрочняющих волокон необходимо ввести для получения композиционного материала с заданными уровнями прочности и жесткости.  [c.203]

Большое внимание в настоящее время уделяется исследованию композиционных материалов алюминий — углеродное волокно, обладающих высокой прочностью и малой плотностью. Свойства этих материалов зависят от свойств упрочняющих волокон, а также в значительной степени от метода изготовления и технологических параметров. Так, например, композиционный материал, содержащий 30—40 об. % волокон, при плотности 2 г/см в зависимости от вида упрочнителя и технологии может иметь предел прочности от 50 до 120 кгс/мм [156, 170, 178]. Модуль упругости материала зависит только от величины модуля упругости применяемого волокна и может изменяться в пределах от 9000 до 20 000 кгс/мм [170]. На рис. 83 показано изменение предела прочности композиционного материала на основе алюминиевого сплава А-13 (алюминий + 13% кремния), упрочненного —30 об. % углеродного волокна. Видно, что вплоть до температуры плавления матрицы прочность заметно не меняется. Длительная (100-часовая) прочность подобного материала при 400° С составляет 15—20 кгс/мм [1]. Характеристики усталости материала алюминий — 33—38 об. % углеродного волокна приведены в табл. 47.  [c.210]

Строительные конструкции. Алюминиевые строительные конструкции находят все более широкое применение. Потребление алюминия и его сплавов для изготовления строительных конструкций за 1971 г. достигло в мировом масштабе внушительной цифры 1,6 млн, т с ежегодным приростом около 8%. Расширяющееся применение алюминиевых сплавов объясняется их легкостью (примерно в 2,9 раза легче стали), широкими пределами прочностных характеристик — повышенной коррозионной устойчивостью, пониженным модулем упругости, повышенной усталостной устойчивостью, высокой технологичностью, возможностью нанесения сравнительно недорогих декоративных покрытий, высокой отражательной способностью, сохранением прочностных свойств при низких температурах, отсутствием магнитных свойств и искрообразования и т. д. Строительные конструкции изготавливают в основном из деформируемых алюминиевых  [c.128]

Долго не находивший промышленного применения бериллий с развитием сверхзвуковой авиации стал В ряде случаев незаменимым. Обладая удельным весом 1,85 r/i M , он по модулю упругости превосходит сталь, титан и алюминий соответственно в 1,5, 2,5 и 4 раза. Не испытывая аллотропических превращений, бериллий плавится при температуре 1300°.  [c.114]

Металлическая матрица композиционных материалов выбирается из условий получения максимальной удельной прочности материала, обеспечения связи между упрочняющими элементами и получения необходимых технологических и эксплуатационных свойств. Она обеспечивает передачу нагрузки на волокна, вносит существенный вклад в модуль упругости и снижает чувствительность к концентраторам напряжений. В качестве матриц используются магний, алюминий, титан, кобальт, никель и их сплавы, стали. Преимуществами металлических матриц являются  [c.78]

Подвижность дислокаций. Было показано, что присутствие окалины или покрытия с хорошей адгезией упрочняет материал, затрудняя выход из поверхности краевых дислокаций [122] и движение пересекающих поверхность винтовых дислокаций [114]. Простой анализ сил реакции показывает, что препятствующее движению дислокаций напряжение, связанное с наличием поверхностной окалины, пропорционально величине (ца—РА)/(ца+р.л) [130], где ца и Ца — модули сдвига окалины и сплава соответственно. Можно было бы ожидать, что напряжение будет притягивающим, если модуль упругости окалины меньше, чем подложки. Однако это обычно не имеет места для окалины, состоящей из оксидов или других коррозионных продуктов. Возможность существования уменьшающих деформацию напряжения подтверждается, например, данными по пластической деформации при комнатной температуре, полученными при исследовании покрытых медью кристаллов цинка [122], окисленных кристаллов алюминия [121], а также окисленных кристаллов [125] и поликристаллов [126] кадмия. Несмотря на отсутствие экспериментальных данных, можно ожидать, что этот эффект распространяется также и на скольжение границ зерен, поскольку такое скольжение (или вращение зерен) связано с образованием поверхностных ступенек.  [c.28]


При одинаковой твердости материалов с разными модулями упругости материал, модуль упругости которого меньше, дает большее значение условных показаний твердости L. Если измеряют твердость какой-то определенной группы материалов (т. е. сталь, алюминий и т. д.), то применительно к этой группе устанавливают диапазон L.  [c.275]

Материалы с алюминиевой матрицей обладают меньшей анизотропией, чем материалы на эпоксидной основе. Это обусловлено больн1ими прочностью и пластичностью алюминия. Модуль упругости боралюминия в поперечном направлении составляет 75 % модуля упругости в про-  [c.368]

Видно, что износостойкость тем выше, чем больше значение модуля упругости (выпадают точки для магния и алюминия). Модуль упругости, являясь характеристикой сил связи атомиой решетки, довольно слабо зависит от температуры и структурно мало чувствителен, чегО нельзя сказать об износостойкости. Поэтому, не настаивая на сушест-вовании точной и однозначной зависимости, мы все же можем утверждать, что имеется тесная связь между этими величинами, которая позволяет в общем говорить, что абразивная износостойкость в потоке частиц тем выше, чем выше значение модуля упругости Е.  [c.30]

На рис. 14 изображена зависимость отношения модуля упругости композиционного материала в поперечном направлении к модулю упругости матрицы от объемной доли волокна и отношения модуля упругости волокна к модулю упругости матрицы для квадратного расположения волокон. Из этого графика видно, что армирование металлической матрицы волокнами оказывает большое влияние на модуль упругости композиции в поперечном направлении. Например, при 60 об. % армируюш,его компонента (волокон бора) в алюминии модуль упругости композиции в поперечном направлении почти в 3 раза больше, чем у матрицы.  [c.34]

В связи с большой величиной коэффициента линейного расширения ы низки.м модулем упругости сплав имеет повышенную склонность к короблению. Поэтому 1Шобходимо прибегать к жесткому закреплению листов с помощью грузов, а такгке ннев-мо- или гидравлических прижимов на специальных стендах для сварки полотнищ и секций из этих сплавов. Ввиду высокой теплопроводности алюминия приспособления следует изготовлять из материалов с низкой теплопроводностью (легированР1ые стали и т. п.).  [c.354]

Усы получают также из неметаллических материалов (графитд, окиси бериллия, карбида кремния, окиси алюминия, окиси магния [12]). Прочность многих керамических усов значительно превышает прочность металлических усов (рис. 84). Упругое удлинение керамических усов 1,5—6% модуль нормальной упругости = (30 -н 50) 10 кгс/мм . Исключительно высокий модуль упругости имеют графитные усы ( = 100-10 кгс/мм ). V.,.  [c.173]

Высокие теплопроводность и теплоемкость алюминия требуют применения мощных источников тепла, а в ряде случаев подогрева. Высокий коэффициент линейного расширения и малый модуль упругости способствуют появлению значительных сварочных деформаций, что требует применения надежных зажимных приспособлений и устранения деформаций после свар Ки в ответственных конструкциях. В алюминии отсутствует пластическое состояние при нагреве и переходе из твердого в жидкое соетояние, при этом алюминий не меняет своего цвета, а в области температур более 400—450 С имеется провал прочности и пластичности, поэтому рекомендуется сварка на подкладках,  [c.134]

В последние десятилетия наряду с традиционными материалами появились новые искусственные материалы — так называемые композиты. Строго говоря, термин композитный материал или композит следовало бы относить ко всем гетерогенным материалам, состоящим из двух или большего числа фаз. Сюда относятся практически все сплавы, применяемые для изготовления элементов конструкций, несущих нагрузку. Соединение хаотически ориентированных зерен пластичного металла и второй более прочной, но хрупкой фазы позволяет в известной мере регулировать свойства конечного продукта, т. е. получать материал с необходимой прочностью и достаточной пластичностью. Усилиями металлургов созданы прочные сплавы на основе железа, алюминия, титана, содержащие различные. тегирующие добавки. Достигнутый к настоящему времени предел прочности составляет примерно 150 кгс/мм для сталей, 50 кгс/мм для алюминиевых сплавов, 100 кгс/мм для титановых сплавов. Эти цифры относятся к материалам, из которых можно путем механической обработки получать изделия разнообразной формы. Теоретический предел прочности атомной решетки металла, представляющий собою верхнюю границу того, к чему можно в идеале стремиться, по разным моделям оценивается по-разному, в среднем это 1/10—1/15 от модуля упругости материала. Так, для железа теоретическая прочность оценивается значением примерно 1400 кгс/мм что в десять раз выше названной для сплава на железной основе цифры. В настоящее время существуют способы получепия тонкой металлической проволоки или ленты с прочностью порядка 400—500 кгс/мм , что составляет около одной трети теоретической прочности. Однако применение таких проволок пли лент в конструктивных элементах неизбежным образом ограничено.  [c.683]

Как правило, все примеси и легирующие элементы, не изменяющие фазовый состав сплавов, несколько повышают модуль упругости. Исключение составляют олово и цирконий, которые могут немного снизить модуль. Наиболее заметное влияние на величину Е оказывает алюминий, каждый прюцент которого повышает его на 0,014-10 Па. Введение -стабилизирующих элементов до содержания, превышающего их растворимость в а-фазе и приводящее к образованию 3-фазы, снижает модуль нормальной упругости. Его величина сравнительно мало зависит от структурного состояния, хотя у двухфазных сплавов при образовании мартенсита или нестабильной 3-фазы обнаружено заметное снижение модуля, а при образовании ы-фазы—его повышение. Повышение Е установлено и при старении а-сллавов, с высоким содержанием алюминия (более 6 %) за счет образования а, -фазы или ее предвыделений. При нагреве и охлаждении в температурной области существования а-фазы модуль упругости изменяется практически линейно. Отношение /Г зависит от степени легированности титана. В интервале 27 — 727 С у чистого титана оно равно около 7,0, у сплава ПТ-ЗВ 5,3.  [c.8]


Другими словами, оптимальное решение лежит на границе всех ограничений. На рис. 12 показаны графики для типовых структур с углами армирования + 0 и О—90°. На рисунке точки соответствуют металлическим элементам. Масса узлов соединений не учитывается. Из рисунка следует, что оптимальным материалом является высокомодульный углепластик с соотношением слоев 90% под углом 0° и 10% под углом 90°. Такой материал имеет осевой модуль упругости, равный 25 300 кгс/мм, и позволяет снизить массу элемента более чем в 2 раза по сравнению с алюминием. При уменьшении длины стержня роль осевого модуля снижается, соответственно возрастает влияние предела прочности при сжатии, и более эффективным оказывается боропластик, имеюхций очень высокий предел прочности при сжатии. Это обстоятельство является важной отличительной чертой процесса проектирования элементов ферменных конструкций из композиционных материалов. В результате анализа геометрических параметров и нагрузок выбирают тип и структуру композиционного материала, оптимального для заданных условий эксплуатации. В табл. 3 для сравнения приведена масса двух стержней различной длины и из различных материалов. Изменение длины стержня полностью меняет порядок расположения материалов по степени эффективности.  [c.129]

Использование покрытий не является единственным способом подавления реакции на поверхности раздела. Легирование упроч-нителя также позволяет изменить состав продуктов реакции. Так, например, Харден и Райт [15] обнаружили химическое взаимодействие в слоистом композите алюминий — бор, полученном диффузионной сваркой, проводившейся при температуре 873 К с различными временами выдержки под давлением 2,8 кГ/мм . Было установлено, что уменьшение прочности и модуля упругости материала начинается после выдержки в течение соответственно 3 и 5 ч оба параметра значительно снижаются, если реакция идет в течение 8 ч. Напротив, в слоистом материале А1—В4С, полученном диффузионной сваркой в тех же условиях, не было обнаружено продуктов реакции.  [c.131]

Как правило, экспериментальные значения свойств хорошо согласуются с представлениями об идеальной поверхности раздела. Значения модуля упругости подчиняются правилу смеск [48]. Из-аа ряда синергических эффектов прочность композитов алюминий—бор может на 20—30% превышать расчетные значения [42, 81]. Однако лишь несколько исследователей проводили структурный анализ [5, 32, 82]. Блюхер и др. [5], исследуя поверхность раздела в композите алюминий—бор после изготовления, не обнаружили на ней следов взаимодействия (рис. И). В композите А17075—бор Свенсон и Хэнкок [82], а также Хэнкок [32] наблюдали четкие поверхности раздела, на которых отсутствовали микропоры, но имела место сегрегация выделений (она наблюдалась и на границах зерен в матрице). В непосредственной близости от границ зерен в матрице располагались зоны, свободные от выделений у поверхностей раздела они отсутствовали [82]. Субструктура поверхностей раздела в системах тугоплавкий металл — карбид металла исследована сравнительно мало это направление развивается медленнее, чем исследование механических свойств [9, 21, 55—57, 60, 63—65].  [c.245]

На рис. 16, а [14] показаны значения прочности и модуля упругости слоистого композиционного материала бор — алюминий различных схем армирования. Для сравнения на том же графике приведены соответствующие характеристики алюминиевого сплава 2219. Как видно, в любой точке композиционный материал по свойствам превосходит традиционный сплав. Прочность при растяжении и модуль упругости одноосноармированного слоистого материала, определенные при испытаниях в осевом (продольном) и трансверсальном (поперечном) направлениях, представлены точками А VI В соответственно. Точками С VI О представлены свойства композиционного материала со схемами армирования 0° (50), 45° (50), 90° (0) и 0° (25), 45° (50), 90° (25) соответственно (в скобках приведено количество слоев в %, имеющих указанную ориентацию). Композициоивык материал последней из приведен-  [c.59]

Углеродные волокна. В композиционных материалах используются различные виды углеродных волокон. В первом приближении они могут быть разделены на высокомодульные, высокопрочные и среднего качества дешевые волокна. Высокомодульные волокна имеют модуль упругости от 35 000 до 52 000 кгс/мм . Эти волокна обладают самым высоким удельным модулем упругости и в 7—11 раз жестче алюминия, титана и стали. Таким образом, теоретически они могут быть исключительно эффективны для высокожестких конструкций.  [c.84]

Сравнительно эффективным материалом заполнителя (сердцевины) является фанера (дугласова пихта), широко используемая в слоистых панелях контейнеров. Она в известной степени удовлетворяет требованиям, предъявляемым к материалам сердцевины, эксплуатационные характеритики ее хорошо изучены на практике. Однако это не идеальный материал. Ее плотность зависит от содержания влаги (около 0,58 г/см ). Масса 1 м сердцевины композиционных панелей стеклопластик — фанера составляет около 1030 г. Модуль упругости фанеры (1370 кгс/мм ) превышает модуль упругости материала, идеально подходящего для применения в сочетании со стеклопластиком это приводит к тому, что возникающие в сердцевине напряжения могут превысить уровень, который способна выдержать фанера. При испытании панелей стеклопластик — фанера установлено, что критические изгибающие нагрузки в большинстве случаев приводят к повреждению фанерной сердцевины, а не покрытия. Можно показать, что свойства фанеры являются промежуточными между свойствами идеального материала для сердцевины и высокопрочного материала. В слоистой композиции наиболее эффективно сочетание фанеры с покрытием из алюминия и стали.  [c.213]

Еще более усложняет изучение проблем, связанных с разрушением, разнообразие материалов арматуры и матрицы, которые позволяют создавать композиты с любыми необходимыми свойствами. Наиболее распространены следующие типы армирующих волокон. Волокна Е- и S-стекля—низкомодульные, умеренно прочные при растяжении и сжатии с большими предельными деформациями. Волокна бора — высокомодульные, высокопрочные при растяжении и сжатии. Углеволокна могут сочетать различные свойства — высокую прочность и низкий модуль упругости или низкую прочность и высокий модуль. Органоволокна (Кевлар-49) — высокомодульные, высокопрочные при растяжении, весьма низкопрочные при сжатии. Волокна FP ) —высокомодульные, высокопрочные при сжатии, довольно низкопрочные при растяжении. В качестве связующего (матрицы) используются, как правило, синтетические смолы (термореактивные и термопластичные), графит и сплавы алюминия.  [c.38]

Методом пропитки в вакууме получали композиционный материал на основе алюминия, упрочненного нитевидными кристаллами окиси алюминия. Технологический процесс заключался в предварительном получении полуфабрикатов в виде ленты из проволочной сетки с нанесенными на нее после воздушной сепарации нитевидными кристаллами. Такая лента разрезалась на отрезки определенной длины, которые подвергались на специальной установке прокатке до необходимой толщины. На полученные таким образом листы методом катодного напыления наносили покрытие из нихрома (60% Ni —24% Fe—16% r) или из углеродистой стали. Листы с покрытием пропитывались жидким алюминием. Полученный таким образом материал, содержащий 20 об.% нитевидных кристаллов AI2O3, имел при 500° С предел прочности 21 кгс/мм и длительную, 100-часовую прочность при этой же температуре 8,4 кгс(мм . По данным работы [174] модуль упругости композиции алюминий — усы AljOa составлял 12 6000 кгс/мм2.  [c.100]


Композиционный материал с алюминиевыой матрицей получали из жгутов углеродного волокна Тор-нел-50, пропитанных матрицей методом протяжки через расплав [188]. Жгуты содержали восемь прядей волокна Торнел-50 1100 моноволокон) и в пропитанном виде имели диаметр 1,5 мм. В качестве материала матрицы использовали три алюминиевых сплава А-13 (алюминий -f 3% кремния), 220 (алюминий + 10% магния) и 6061 (алюминий -f 1% магния 0,6% кремния). Содержание волокна в жгутах изменялось от 3,3 до 45 об. %. Максимальную прочность, равную —70 кгс/мм , имели жгуты, пропитанные сплавом А-13, содержащие 21,2 об. % волокон. Эти жгуты укладывали в пресс-форму и прессовали при давлениях 35—83 кгс/см со скоростью деформации 2,5 мм/мин. Температура прессования лежала в пределах между точками ликвидуса и солидуса соответствующих сплавов, ближе к температуре ликвидуса. Прессование при температурах выше точки ликвидуса приводило к деградации и частичному разрушению волокон из-за их активного вазимодействия с матрицей, а также к образованию большого числа усадочных пор. Резкое падение прочности пропитанных жгутов в результате разупрочнения волокон наблюдалось после выдержки их при температуре 680° С. При прессовании при температурах, лежащих ближе к температуре солидуса, наблюдалось сильное разрушение волокон из-за перемещения матрицы и волокон под давлением. Максимальную прочность при растяжении, равную 68,9 кгс/мм , имели образцы с матрицей из сплава 220 с 37,6 об. % волокна, отпрессованные при температуре 650° С. Материал с матрицей из сплава А-13 и 37,1 об.% волокна, отпрессованный при температуре 645° С, имел максимальную прочность при изгибе, равную 87 кгс/мм . Модуль упругости композиционного материала с матрицей из сплава 6061, содержащего 42,5 об. % волокон, отпрессованного при температуре 670° С, достигал 21 100 кгс/мм .  [c.113]

Алюминий — бериллиевая проволока. Бериллиевая проволока является перспективным упрочнителем благодаря малой плотности, равной 1,83 г/см , высокому модулю упругости и прочгюсти, равным соответственно 29 500 кгс/мм и 130 кгс/мм . Исследование возможности получения композиционного материала методом пропитки бериллиевой проволокой расплавом алюминия, по данным Флекка н Гольдштейна, дало отрицательный результат, так как при температуре 644° С между алюминием и бериллием происходит эвтектическая реакция, сопровождающаяся растворением бериллия. В связи с этим одним из основных технологических путей получения материала алюминий — бериллиевая проволока в настоящее время является диффузионная сварка под давлением. При этом в качестве предварительных заготовок ком-  [c.136]

Прокатка. Процесс изготовления полуфабриката в виде леиты из композиционного материала на основе алюминия, упрочненного борным волокном, описан ниже (Патент Франции № 2133317, 1971 г.). Предварительную заготовку, состоящую из чередующихся слоев алюминиевой фольги и однонаправленного, уложенного с определенным шагом борного волокна, подвергали прокатке при температуре 600—650° С. Прокатку вели с небольшими степенями деформации за несколько проходов. Для улучшения прочности связи на границе раздела матрица — волокно на поверхность волокон рекомендуется наносить тонкое покрытие из вольфрама, никеля или меди. Полученный в виде ленты композиционный материал, содержащий около 50 об. % борного волокна, имел модуль упругости 25 ООО кгс/мм .  [c.145]

Наилучшие прочностные свойства имели образцы, полученные по схеме изготовление монослойной ленты электроосаждением алюминия на борные волокна — укладка отрезков ленты в пресс-форму при соблюдении параллельности волокон — горячее прессование. Материал, содержащий 40 об. % волокон, имел прочность на растяжение ПО кгс/мм и модуль упругости 19 500 кгс/мм .  [c.183]

Свойства волокнистых композиционных материалов, особенно их механические свойства, при одном и том же содержании упроч-нителя, сильно зависят от ориентации волокон в матрице и от угла между направлением действия приложенной нагрузки и ориентацией волокон [77 ]. Примером тому являются приведенные на рис. 80 кривые изменения предела прочности в зависимости от направления приложения нагрузки материала алюминий — 50 об. % борного волокна с тремя схемами укладки армирующих волокон и на рис. 81 кривые изменения модуля упругости и модуля сдвига одноосноармированного материала алюминий — 50 об. % борного волокна [10,30]. Значения предела прочности, модуля упругости и удлинения композиционного материала на основе алюминиевого сплава 6061, упрочненного волокнами бора и борсик, с различными типами укладки волокон, приведены в табл. 44, 45. Представленные на рис. 80, 81 и в табл. 44 и 45 данные свидетельствуют о широких возможностях изменения свойств композиционного материала в зависимости от типа укладки армирующих волокон при одном и том же их общем содержании. Это позволяет с максимальной степенью реализовать прочностные свойства композиционного материала в детали, сконструированной таким образом, что количество и направление укладки волокон учитывают ее напряженное состояние. Приведенные в табл. 45 данные позволяют также получить представление о прочностных свойствах при сжатии композиций алюминий — бор. 206  [c.206]

Высокий модуль упругости, равный 30 900 кгс/мм , и малая плотность — 1,85 г/см при сравнительно высокой прочности, достигающей 105 кгс/мм , делают весьма перспективным применение берриллиевой проволоки в качестве упрочнителя алюминиевых и титановых сплавов. В табл. 51 приведены свойства материалов на основе алюминия, содержащих различные количества бериллиевой проволоки. Из таблицы видно, что при содержании 50 об. % бериллиевой проволоки композиционный материал имеет высокую прочность ( 70 кгс/мм ), в 3 раза более высокий по  [c.211]

Титановые сплавы обладают максимальной удельной прочностью по сравнению со сплавами на основе других металлов, достигающей 30 км и более. В связи с этим трудно подобрать армирующий материал, который позволил был создать на основе титанового сплава высокоэффективный композиционный материал. Разработка композиционных материалов на основе титановыг сплавов осложняется также довольно высокими технологическими температурами, необходимыми для изготовления этих материалов, приводящими к активному взаимодействию матрицы и упрочни-теля и разупрочнению последнего. Тем не менее работы по созданию композиционных материалов с титановой матрицей проводятся, и главным образом в направлении повышения модуля упругости, а также прочности при высоких температурах титановых сплавов. В качестве упрочнителей применяются металлические проволоки из бериллия и молибдена. Опробуются также волокна из тугоплавких соединений, такие, как окись алюминия и карбид кремния. Механические свойства некоторых композиций с титановой матрицей приведены в табл. 58. Предел прочности и модуль упругости при повышенных температурах композиций с молибденовой проволокой показаны в табл. 59.  [c.215]

У таких армируюш,их материалов, как непрерывные волокна (бора, углерода, карбида кремния, окиси алюмиция, прочность наиболее высокая. У двух первых она достигает 300—350 кг/мм при модуле упругости 30 000— 40 000 кг/мм . Средняя прочность нитевидных кристаллов карбида кремния и окиси алюминия в несколько раз превышает и эти показатели.  [c.121]

Сверхлегкие конструкционные сплавы. Сверхлегкие конструкционные сплавы созданы на основе магния или алюминия посредством легирования их самым легким металлом —литием (Li удельный вес 0,53 Г/см , Тсо.,,идус= 186 °С). Такое легирование не только снижает удельный вес сплава, но и, что самое важное, улучшает пластические свойства (снижается температура, допускающая обработку давлением) и повышает модуль упругости, обеспечивая тем самым большую жесткость конструкций, изготавливаемых из магнйеволитиевых сплавов (МЛС), по сравнению с жесткостью конструкции того же веса из других металлических материалов, включая сталь и тнтан. Удельный вес заключен в пределах 1,3—1,65 Псм , это ниже удельного веса промышленных магниевых  [c.320]

Тем не менее реальные упругие среды и тела в широкой полосе частот колебаний имеют гораздо более сложные зависимости Со (и) и т]((й), которые не всегда удается адекватно описать с помощью моделей, составленных из идеальных пружин и демпферов. Так, большинство металлов в широком диапазоне частот имеют почти независящие от частоты модули упругости и коэффициенты потерь. Сталь, медь, алюминий, свинец и многие другие материалы имеют примерно постоянный коэффициент потерь, >i((o) = onst, на частотах от сотен герц до десятков и сотен килогерц [282], и ни одна из рассмотренных выше моделей не может считаться удовлетворительной в этом практически важном диапазоне частот.  [c.215]



Смотреть страницы где упоминается термин Алюминий модули упругости : [c.61]    [c.90]    [c.571]    [c.53]    [c.243]    [c.178]    [c.285]   
Конструкционные материалы Энциклопедия (1965) -- [ c.2 , c.213 ]



ПОИСК



Модуль упругости

Модуль упругости вес модуля



© 2025 Mash-xxl.info Реклама на сайте