Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные теоремы о нелинейных уравнениях

Основные теоремы о нелинейных уравнениях  [c.42]

ОСНОВНЫЕ ТЕОРЕМЫ 0 НЕЛИНЕЙНЫХ УРАВНЕНИЯХ  [c.45]

ОСНОВНЫЕ ТЕОРЕМЫ О НЕЛИНЕЙНЫХ УРАВНЕНИЯХ 47  [c.47]

В 3.05 приводятся основные теоремы Ляпунова. Эти выдающиеся результаты послужили источником для огромного количества работ по качественной теории дифференциальных уравнений, теории нелинейных колебаний, аналитической и качественной небесной механике. Впервые они были опубликованы в докторской диссертации А. М. Ляпунова [7]. Укажем также на издания [8], [32], [71—73], содержащие подробное изложение как основных теорем Ляпунова, так и результатов многих его последователей.  [c.831]


Возможности решения уравнений обобщенной модели ЭМП определяются основными положениями теории обыкновенных нелинейных дифференциальных уравнений. Теоремы существования и единственности гарантируют однозначное решение на некотором интервале времени при условии непрерывной дифференцируемости переменных и непрерывности коэффициентов уравнений в зависимости от времени. Получаемые при этом решения, в свою очередь, являются непрерывными функциями времени.  [c.62]

Примечание 28.4. Отметим, что в рассматриваемых задачах нелинейной теории пологих оболочек разрешимость основных конечномерных уравнений методов БГР в силу лемм 26.2, 27.12 имеет место с первого приближения, N = 0. Между тем по теореме М. А. Красносельского [60] их разрешимость гарантируется лишь при достаточно больших N.  [c.249]

В гл. 4 заложена основа для стохастических методов, используемых главным образом в гл. 10. В гл. 5 и 6 рассмотрены связанные нелинейные осцилляторы и квазипериодическое движение. Обе главы (5 и 6) содержат подготовительный материал к гл. 8 (в особенности, к разделам 8.8—И). В гл. 6 излагается важная теорема Мозера. Чтобы не перегружать основной текст, ее доказательство (принадлежащее Мозеру) вынесено в приложение. В гл. 7 подводится итог нашего продвижения по основному направлению, начатого в гл. 2 и 3, и рассматривается принцип подчинения (для нелинейных дифференциальных уравнений с флуктуирующими силами и без них). В этой главе излагаются также новые результаты,.  [c.89]

Первые 6 лекций Якоби посвящает изложению основных принципов механики принципу сохранения движения центра тяжести системы, принципу живой силы, принципу площадей и принципу наименьшего действия. С 10-ой лекции Якоби развивает теорию множителя" систем обыкновенных дифференциальных уравнений, являющуюся обобщением теории эйлеров-ского интегрирующего множителя. Якоби показывает каким образом можно в целом ряде случаев построить с помощью последнего множителя" всю систему п независимых интегралов. Изложив подробно теорию этого множителя, Якоби затем применяет ее к решению ряда механических задач. С 19-ой лекции Якоби, исходя из вариационного принципа Гамильтона, излагает тот метод интегрирования уравнения с частными производными первого порядка, который известен под названием метода Якоби-Гамильтона". В следующих лекциях этот метод примендется к ряду задач, взятых главным образом из области небесной механики. В 26 лекции Якоби излагает теорию эллиптических координат и показывает их приложение к разысканию геодезических линий эллипсоида, к задаче построения карт, к выводу основной теоремы Абеля и проч. Наконец, последние лекции Якоби посвящены изложению его классических методов интегрирования нелинейных уравнений в частных производных первого порядка.  [c.4]


ДвойсгБ нно Ть представлений энергии деформации и дополнительной энергии служит основанием для некоторых исключительно мощных методов расчета конструкций. Эти методы применяются к исследованию как линейного, так и нелинейного поведения конструкций, и к ним относятся принцип возможной работы (уравне-ние (11.1)) и метод единичной нагрузки в его основной форме (см. уравнение (И.З)). Однако теоремы взаимности, метод податливости и метод жесткостей основываются на использовании способа наложения и, следовательно, применимы только к конструкциям с линейным поведением, В случае же метода единичной нагрузки исследование начиналось с вывода уравнения (11.3) для конструкций с нелинейным поведением, а затем как частный случай рассмат-  [c.481]

Теоремы, приведенные в гл. VIII, касаются в основном вопросов разрешимости линейных задач кинетической теории газов при предположении, что внешние поля отсутствуют, а меж-молекулярные силы задаются центрально-симметричным потенциалом конечного радиуса действия. Здесь мы остановимся более подробно на соответствуюш их результатах для нелинейного уравнения Больцмана (см. (II.5.1) и (V.9.6))  [c.461]

Наиболее существенные отличительные особенности рецензируемого пособия 1) полнее, чем в имеющейся учебной литературе, освещены мировоззренческие вопросы в теоретической механике 2) введен ряд новых разделов в соответствии с тенденциями развития научно-техни-ческого прогресса, например, однородные координаты, применяемые при описании роботов-манипуляторов. что потребовало существенно перестроить раздел кинематики твердого тела основные теоремы динамики изложены не только в неподвижных, но и в подвижных (неинерциальных) системах координат в разделе Синтез движения рассмотрены вопросы сложения не только скоростей, но и ускорений. При этом получен ряд новых результатов сравнение механических измерителей углов поворота и угловых скоростей твердых тел основы виброзащиты и виброизоляции, динамические поглотители колебаний основы теории нелинейных колебаний, включающей изложение основ методов фазовой плоскости, метода малого параметра, асимптотических методов, метода ускорения 3) в методических находках, позволивших углубить содержание курса и уменьшить его объем впервые обращено внимание на то, что условия динамической уравновешенности ротора и условия отсутствия динамических реакций в опорах твердого тела при ударе — это условия осуществления свободного плоского движения твердого тела полнее и глубже развиты аналогии между статикой, кинематикой и динамикой полнее изложены электромеханические аналогии и показана эффективность применения уравнений Лагранжа-Максвелла, для составления уравнений контурных токов сложных электрических цепей получение теоремы об изменении кинетической энергии для твердого тела из соотношения между основными динамическими величинами и многие другие.  [c.121]

Первые крупные исследования по общей теории упругих оболочек созревают к началу сороковых годов. Освоению и анализу теории оболочек способствовало применение ведущими учеными страны тензорной символики для записи основных соотношений теории. Уравнения совместности деформации впервые вывел А, Л. Гольденвейзер (1939) А, И. Лурье (1940) и А. Л. Гольденвейзер (1940) ввели в теорию оболочек функции напряжения, через которые определяются усилия и моменты, тождественно удовлетворяющие уравнениям равновесия. А, Н. Кильчевский (1940) указал способы построения теории оболочек и решения ее задач на основе теоремы о взаимности. Уравнения в перемещениях геометрически нелинейной теории были опубликованы X. М. Муштари (1939) — изложенный им вариант теории является обобщением упрощенной нелинейной теории пластинок Кармана на оболочки произвольного очертания.  [c.229]


Вопрос о постановке корректной задачи в М-области относится к компетенции теории нелинейных уравнений смешанного типа. Наиболее существенным образом нелинейность уравнений проявляется вблизи звуковой линии — линии изменения типа уравнения. Действительно, если предположить, что коэффициенты квазилинейного уравнения, которые на самом деле зависят от решения краевой задачи, известны, то полученное таким образом линейное уравнение может быть приведено к одной из канонических форм. Тип канонической формы и определяет характер вырождения уравнения вблизи звуковой линии, который проявляется наиболее существенным образом в вопросе о правильной постановке основных краевых задач. Так, теорема М. В. Келдыша (см. гл. 1, 18) в зависимости от типа канонической формы устанавливает корректность либо задачи Дирихле, либо задачи Е в области эллиптичности, примыкающей к линии вырождения.  [c.223]

Теорема имдулы ов. Полная система уравнений, описывающая движение жидкости очень сложна для её математического решения. Основная трудность определяется наличием нелинейных членов типа  [c.343]

Градиентная катастрофа. В простых волнах сжатия непрерывное движение газа, возникающее из сколь угодрю гладких начальных данных (скажем, заданных при I = 0), не может существовать как угодно долго (при всех I > 0). Действительно, при ручке веера сверху сближающиеся с ростом 1 прямолинейные характеристики должны пересечься при конечном значении . Тогда предположение о непрерывной дифференцируемости и даже вообще о непрерывности решения в окрестности точки пересечения приходит в противоречие с теоремой единственности решения обыкновенных дифференциальных уравнений характеристик. Из соотношений типа (27) видно, что при сближении характеристик (когда необходимо кх — оо) происходит неограниченный рост градиентов основных величин — абсолютных значений производных Их, Рх, и т.д., которые в точке пересечения характеристик обращаются в бесконечность. Существование таких решений типично вообще для нелинейных гиперболических уравнений.  [c.157]

В [12]. Основная идея состоит в том, что как только мы вычислим явно область голоморфности, мы можем выразить функцию У через ев граничные значения, воспользовавшись обобщенной интегральной формулой Коши. Надежда возлагается на то, что исследование таких интегральных представлений легче, чем непосредственное изучение операторных обобщенных функций, удовлетворяющих требованию локальной коммутативности. Полная характеристика функций W со свойствами, заданными различными теоремами этого раздела, важна, поскольку, как показывает теорема реконструкции (теорема 3-7), эти функции могут быть использованы для построения теории поля, удовлетворяющей всем аксиомам, кроме аксиомы асимптотической полноты. Исследование последнего свойства приводит к нелинейным интегральным уравнениям, связывающим различные вакуумные средние. Тем самым мы приходим к нелинейной программе (см. (16]).  [c.164]

Производных Фреше, теорему о неявной функции и другие теоремы из функционального анализа, многие из которых приведены с полными доказательствами. Во второй главе дан вывод основных уравнений и граничных условий статической теории упругости. В последующих главах этой части обсуждается структура системы уравнений теории упругости, её зависимость от свойств упругого материала. Часть В под названием Математические методы трёхмерной теории упругости посвящена в основном доказательству теорем существования решений краевых задач нелинейной системы теории упругости. В этой части две главы. В первой даны доказательства теорем существования, основанные на применении теоремы о неявной функции, получены оценки отклонения решения от соответствующего решения линейной задачи, доказана сходимость метода приращений. Во второй главе теоремы существования установлены вариационным методом, на основе минимизации энергии, приведены доказательства замечательных теорем Болла о существовании решений.  [c.6]


Смотреть страницы где упоминается термин Основные теоремы о нелинейных уравнениях : [c.307]    [c.312]   
Смотреть главы в:

Небесная механика Аналитические и качественные методыИзд.2  -> Основные теоремы о нелинейных уравнениях



ПОИСК



Нелинейность уравнений

Основные теоремы

Уравнение нелинейное

Уравнение основное

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте