Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ГТД судового применения

Расчеты параметров энергетических и механических приводов произведены для природного газа с низшей теплотворной способностью Ни=50056 кДж/кг, газовых турбин судового применения — для дизельного топлива с Ни=42000 кДж/кг. Мощность и кпд определены на выходном валу привода в условиях 180.  [c.230]

Следует отметить одно важное свойство винтовых поверхностей, состоящее в том, что эти поверхности, так же как и поверхности вращения, могут сдвигаться, т. е., совершая винтовое перемещение, поверхность скользит вдоль самой себя. Это свойство обеспечивает винтовым поверхностям широкое применение в технике. Винты, шнеки, сверла, пружины, поверхности лопаток турбин и вентиляторов, рабочие органы судовых движителей, конструкции винтовых аппарелей и лестниц — вот далеко не полный перечень технического использования винтовых поверхностей.  [c.117]


Смазочные масла минерального происхождения подразделяют на группы по химическому составу в зависимости от вида сырья, из которого они изготовлены, причем масла одинакового состава различают по характеру очистки и способу производства. По условиям применения выделяют две основные группы масел — конструкционные и технологические. К первой группе относят моторные, трансмиссионные, компрессорные, индустриальные, турбинные, цилиндровые, вакуумные и специальные (судовые, приборные, осевые и др.) ко второй — масла, применяемые при обработке металлов.  [c.730]

Цветные сплавы. Из цветных металлов наибольшее применение в деталях судовых машин находит медь, но не в чистом виде, а в виде цветных сплавов. Цветные сплавы — латунь, бронза, баббит— дорогостоящие, поэтому надо стараться, где это возможно, заменять их сталью, чугуном и заменителями цветных металлов. В судовой практике эти сплавы находят применение в деталях тонкостенного литья, в деталях, которые должны хорошо сопротивляться окисляющему действию воды и пара, а также в узлах трения, где детали подвергаются сильному износу.  [c.323]

Методы, основанные на изучении прямолинейного движения. К ним можно отнести изучение сопротивления при падении тел и исследование моделей при полете и при горизонтальном перемещении их по тросу или по рельсовому пути. Последний способ получил широкое применение в гидравлических каналах и судовых бассейнах, а также при изучении движения моделей ракет и снарядов на баллистических установках и ракетных тележках.  [c.463]

Вода имеет теплоемкость в два раза, а коэффициент теплопередачи в пять раз больше по сравнению с маслом, что улучшает процесс теплообмена и охлаждения. Вода не дает устойчивого пено-образования. Она может с успехом применяться в судовых установках, однако применение ее как рабочей жидкости встречает возражения из-за усложнения системы защиты подшипников, из-за разделения системы смазки и питания, а также из-за коррозионного действия ее на некоторые металлы. Вследствие применения и обработки дополнительных деталей, а также применения более дорогих и дефицитных металлов и материалов, не подвергающихся коррозии, использование воды удорожает конструкцию гидродинамической передачи.  [c.13]

Особенности газовых турбин. По принципу действия газовые турбины не отличаются от паровых. При освоенных в настоящее время температурах начальное давление и срабатываемый в газовой турбине перепад энтальпий в несколько раз меньше, чем в паровой. В результате для получения требуемой мощности необходимо, чтобы расход рабочего тела через газовую турбину был большим. Высокие температуры, относительно малые давления и перепады энтальпий, а также большие расходы обусловливают следующие особенности судовых ГТД малое число ступеней (2—8) и малую массу ротора большую длину лопаток (степень парциальности е == 1) применение диффузора на выходе из турбины применение тонкостенной составной конструкции корпуса с вертикальными разъемами широкое использование подшипников качения соединение элементов турбины, обеспечивающее тепловые расширения воздушное охлаждение подшипников, дисков, а иногда и лопаток турбин.  [c.242]


Область применения сплава АЛ2. Сплав АЛ2 применяется для изготовления деталей испытывающих ударные нагрузки тонкостенных деталей сложной конфигурации, при литье в землю, кокиль и под давлением деталей, работающих в контакте с некоторыми химически активными средами, в частности деталей судовой арматуры.  [c.75]

С появлением реверсивных двигателей стали возможными упрощение систем передачи энергии на гребные валы (изменение направления вращения их легко достигается соответствующим изменением направления вращения коленчатых валов двигателей) и повышение коэффициента полезного действия судовых двигательных установок. Кроме того, применение реверсивных двигателей определило постепенный отказ от строительства колесных речных теплоходов и переход к строительству теплоходов с гребными винтами, так как для них отпадала необходимость в пользовании сложными редукторами, обязательными для случаев применения малооборотных гребных колес.  [c.276]

Совершенствование форм и обводов судовых корпусов, применение устройств, повышающих тяговое усилие буксиров и улучшающих ходовые качества самоходных судов.  [c.284]

В 30-х годах советское машиностроение создало новые типы судовых энергетических установок. Модернизированные паровые машины двукратного расширения с клапанным парораспределением наклонного типа мощностью от 200 до 500 л. с. и судовые водотрубные котлы с поверхностью нагрева 70— 85 и 160 стали устанавливать на новых колесных пароходах различного назначения. Конструктивные особенности этих установок, их относительная экономичность, широкий диапазон оборотов паровой машины и возможность получения большого крутящего момента при пуске обусловили их широкое применение на речных судах.  [c.285]

Дальнейшее развитие дизелестроения в СССР, одним из направлений которого явилось создание судовых реверсивных двигателей различных мощностей, привело к тому, что на судах среднего и крупного тоннажа в основном начали устанавливать реверсивные, бескомпрессорные, вертикальные дизели, работающие непосредственно на гребные винты (на винтовых судах) или через шестеренчатые редукторы на гребные колеса (на колесных теплоходах). Нереверсивные двигатели небольшой могцности с использованием реверсивных муфт заднего хода находили применение на малотоннажных судах. Такие двигатели мощностью 140 л. с. были установлены на пассажирских теплоходах, построенных для канала имени Москвы.  [c.289]

Нехватка специальных судовых двигателей малых мощностей для катерного флота малых рек и верховий магистральных рек в довоенный период в значительной мере компенсировалась применением тракторных и автомобильных двигателей, при этом из-за отсутствия реверсивных муфт использовали коробки скоростей. На быстроходных служебных катерах морских портов и разъездных вспомогательных малотоннажных судах различного назначения устанавливали бензиновые двигатели Московского и Горьковского автозаводов с коробками скоростей и дополнительными шестеренчатыми водяными насосами для охлаждения. Тракторные двигатели Челябинского и Харьковского тракторных заводов, конвертированные для работы на судах, применялись на рабочих баркасах, промысловых судах, речных буксирах и других малотоннажных и мелкосидящих судах, рассчитанных на использование в отдаленных районах страны. Проблема обеспечения таких установок запасными частями решалась сравнительно легко, поскольку автомобильные и тракторные двигатели названных заводов изготовлялись в массовом количестве и эксплуатировались по всей территории СССР.  [c.289]

Енисее и Вилюе, намного улучшивших условия плавания по рекам восточных бассейнов. На Красноярском гидроузле для пропуска судов взамен многоступенчатых шлюзов впервые в практике советского гидростроительства применен судоподъемник с самоходной судовой камерой и с наклонными рельсовыми направляющими, сопрягающими верхний и нижний бьефы с гребнем высотной подпорной плотины [30].  [c.314]

Впервые созданные примерно в 1890 г. турбины стали основным средством получения электроэнергии и основным типом судового и авиационного двигателя. Турбина обеспечива- ет очень высокий КПД преобразования внутренней энергии нагретого рабочего тела в энергию вращения вала турбины. Для турбин. характерны малые удельные капитальные вложения на единицу мощности, снимаемой с вала, экономичность обслуживания, высокий КПД, а также равномерность вращения н отсутствие вибраций при работе. Первые турбины были небольшими, мощностью несколько сот киловатт, и предназначались для военных кораблей. Одна из самых крупных современных турбин, используемая в качестве судового двигателя, имеет мощность 1300 МВт (эл). В автомобильной промышленности изучается возможность использования турбин в качестве автомобильных двигателей. Учитывая широкое применение турбин, рассмотрим общий принцип их работы.  [c.70]


Применение катодной защиты, например, на трубопроводах, в стальных резервуарах, судовых конструкциях и других устройствах, работающих в земле или воде, обеспечивает требуемую надежность.  [c.94]

Предлагаемый прием был применен при решении задачи оптимального проектирования резонансного преобразователя (РП) для судовых валопроводов [4, 5], используемых в целях изменения (снижения) уровня продольных колебаний механической системы, так как с его помощью можно воздействовать на собственные частоты системы к-  [c.3]

Сплавы второй группы в настоящее время в зарубежной промышленности считаются наиболее перспективными. Механические свойства их не зависят от сечения отливок. Высокий уровень и хорошее сочетание прочностных и пластических свойств, пониженный удельный вес (7,5 г см ), хорошие технологические свойства и высокая коррозионная стойкость обеспечивают самое широкое применение этих сплавов в зарубежной промышленности, в частности, для отливки судовых гребных винтов. Помимо применения в литом состоянии, сплавы второй группы используются в виде поковок, штамповок и проката.  [c.90]

Для составления объективных рекомендаций областей применения, в том числе в судостроении, из нового сплава был отлит опытный судовой гребной винт для натурных испытаний. Предварительные осмотры показали хорошие эксплуатационные свойства новой бронзы и ее высокую коррозионную стойкость. Таким образом, из числа рассмотренных систем Си—А1 Си—А1—Ре Си—А1— Мп Си—А1—Ре—N1 Си—А1—Мп—Ре Си—А1—Мп—Ре—N1 наиболее перспективны для дальнейших изысканий с целью разработки новых, более совершенных сплавов, оказались системы Си—А1—Мп и Си—А1—Мп—Ре. Интерес представляет исследование свойств бронз с повышенным содержанием марганца 7—13%, при среднем 4—6%, и повышенным 8—10% содержанием алюминия. Сплавы таких составов недостаточно исследованы и не применяются до настоящего времени в отечественной промышлен-  [c.92]

Для судовой установки ледокола Ленин был принят цикл сдавлением Pi == 29 бар и температурой перегретого пара 310° С, что позволило снизить конечную влажность пара (рис. 20-5). Однако перегрев пара в парогенераторе с водяным теплоносителем применяется только-в специальных установках. Как показывают расчеты, более высокий к. п. д. АЭС получается при применении огневого пароперегрева. Р1апример, для бельгийской с кипящим реактором давление вторичного пара 47 бар, а после огневого перегрева  [c.321]

Примерами совмещения первого типа являются парная установка судовых двигателей, работающих каждый на свой винт, а также установка двух или большего числа двигателей в крыльях самолета. Помимо повышения общей мощности (при затруднительности создания двигателя боль-, шой мощности) этот способ иногда позволяет удачно решить другие задачи. Так, параллельная установка судовых двигателей увеличивает маневренность судна, особенно на малом ходу. Установка нескольких двигателей на самолетах облегчают виражирование и выруливание на земле. Применение нескольких двигателей до известной степени увеличивает также надежность при выходе из строя одного из двигателей можно продолжать рейс, хотя и с пониженной скоростью.  [c.48]

Одна из проб отраслевого назначения — проба ВНИИТС. Проба представляет собой натурный образец, воспроизводящий многослойное стыковое соединение судовых корпусных конструкций (рис. 13.35). Сварку пробы выполняют по технологии, принятой при производстве подобного рода конструкций. Начальная температура образца составляет 250...500 К. После выдержки пробы более 1 сут ее с помощью анодно-механической резки разрезают на поперечные и продольные темплеты, из которых изготавливают металлографические шлифы. Трещины выявляют визуальным осмотром шлифов с применением лупы трехкратного увеличения. Показателем стойкости сварных соединений против трещин служит начальная температура, при которой не образуются трещины.  [c.540]

Газотурбинные уелановки, являясь относительно молодым типом двигателей, находят все большее применение в народном хозяйстве, Они используются в авиации, а также для привода электрических генераторов тепловых электростанций, для привода насосов и компрессоров на магистральных газо- и нефтепроводах, в судовых установках и на железнодорожном транспорте. Малая удельная стоимость ГТУ и возможность быстрого ввода в работу позволяют также использовать их в качестве пиковых и аварийно-резервных агрегатов энергетических систем.  [c.81]

Намеченные и утвержденные XXIII съездом КПСС перспективы развития народного хозяйства предусматривают широкий и неуклонный рост промышленности. Успешное выполнение этой программы возможно при наличии и создании надежных, высокоэкономичных, высокопроизводительных, автоматизированных и безопасных в эксплуатации машин. Для выполнения указанных требований используются различные передачи, являющиеся звеньями, с помощью которых передается крутящий момент от одного элемента к другому. Существует много типов передач зубчатые, червячные, фрикционные, электрические, электромагнитные, гидрообъемные, гидродинамические. Каждый из типов может быть использован как самостоятельно, так и с другими передачами (зубчатая —фрикционная, зубчатая — гидродинамическая). В различных областях машиностроения все большее применение находят гидродинамические передачи. Они используются в трансмиссиях автомобилей, дорожно-строительных машин, тепловозов, в горнодобывающих, металлургических, судовых, подъемно-транспортных и буровых установках.  [c.3]

Среди судовых ГТУ наибольшее применение находят легкие прямоточные установки. Основные особенности их можно показать на примере ГТД, схема которого приведена на рис. 4.17. ГТД состоит из воздухозаборника I, КНД 4, КВД 5, камеры сгорания 6, ТВД 7, ТСД 8 и ТНД (турбины винта) 10. Компрессор 5 приводится во вращение турбиной 7, компрессор 4 — турбиной 8 вал компрессора 4 и турбины 8 проходит внутри вала компрессора 5 и турбины 7 (конструкция вал в валу ). Мощность турбины 10 винта через рессору 13 и редуктор 14 передается винту. Роторы всех трех турбин имеют разную частоту вращения. Для передачи мощноети от пусковых электродвигателей и для привода расположенных на корпусе двигателя механизмов служат передняя 2 и основная 3 коробки приводов. Масло-агрегат 15 также получает мощность от вала компрессора. Все элементы ГТД смонтированы на общей раме 16. Кожух 12 газоотводного патрубка 11 сообщается с кожухом двигателя 9. Окружающий воздух эжектируется отработав-щими газами и, проходя между кожухом и корпусом двигателя, охлаждает их.  [c.198]


В судовых и стационарных ГТУ, выполняемых по схеме рис. 4.17, имеется возможность дальнейшего увеличения температуры газа при одновременном повышении 71к и соответственно КПД установки. Для применения высоких температур Тг необходимо вводить интенсивное охлаждение проточной части и, в первую очередь, лопаток, поскольку жаропрочность металлических сплавов ограничена. В настоящее время практически ни одна ГТУ (или ГТД) не выполняется без охлаждения лопаток. Накоплен больщой опыт конструирования охлаждаемых элементов турбин, разработаны методы расчета охлаждаемых лопаток, внедрены и постоянно совер-щенствуются способы изготовления лопаток.  [c.198]

АГТД находят применение также в судовых установках. Для эффективной передачи мощности АГТД на винт предусматривается компоновка со свободной силовой турбиной 5 винта (рис. 6.10, а), а турбокомпрессорн ,1Й блок ТРД используется в качестве генератора газа. Мощность от силовой турбины винту передается через редуктор 7. Иногда для этих целей у одно-вального ТВД выделяют последние (одну или две) ступени турбины 5 (рис. 6.10,6) в кинематически не связанную с турбокомпрессорным блоком свободную турбину для привода винта.  [c.268]

При назначении АГТД в качестве судовой силовой установки, кроме изменений в схеме двигателя, необходимо также предусмотреть меры, обеспечивающие удовлетворительную работу ГТД в условиях движения судна установку сеператоров влаги и фильтров при входе в двигатель, применение покрытий для деталей компрессора и устройств для периодической чистки компрессора от отложений, а также  [c.268]

Отечественная промышленность выпускает холодильные установки в широком диапазоне температур конденсации Т и испарения Т с поршневыми или винтовыми компрессорами, а также с турбокомпрессорами, холодопроизводитель-ностью от нескольких ватт до 6500 кВт. Наряду с компрессорными машинами выпускаются теплоиспользующи(2 абсорбционные бромисто-литиевые и пароводяные эжекторные холодильные машины. Производятся холодильные установки для ожижения углекислоты и производства сухого льда, льдогенераторы, термобарокамеры, кондиционеры, тепловые насосы и другое оборудование. В нашей стране впервые были созданы оригинальные регенеративные воздушные холодильные машины с вакуумным циклом. Широкое применение получило использование холода на транспорте. Серийно выпускаются судовые, автомобильные, железнодорожные и другие транспортные холодильные установки. В большом количестве производятся бытовые холодильники и кондиционеры разнообразных типов.  [c.321]

Применение турбин в качестве главного судового двигателя связано с именем талантливого изобретателя инженера-механика русского флота П. Д. Кузьминского, который в 1892 г. начал постройку опытной турбинной установки для быстроходного катера. Однако эта инициатива не была поддержана царским правительством. Через два года после первых опытов П. Д. Кузьминского подобные работы были начаты Парсонсом, который в 1894—1896 гг. на яхте Турбиния установил трехвальную турбинную установку. Испытания показали ряд преимуществ турбинного двигателя перед паровой поршневой машиной. Первым судном в России, оборудованным паровыми турбинами, была военная яхта Ласточка , построенная в 1904 г. Установка была трехвальной бортовые валы работали от паровых турбин активного типа моищостью по 740 кВт. На средний вал работала паровая поршневая машина мощностью 184 кВт, она же обеспечивала задний ход судна. Ласточка имела водоизмещенйе 140 т и развивала скорость 27 уз.  [c.23]

Конструкция. Редуктор состоит из корпуса, крышки, шестерен (ведущих органов), зубчатых колес (ведомых органов), подшипников, устройства для смазки. В современных судовых турбозубча-тых агрегатах наиболее часто применяют двухступенчатые передачи. При мощности ГТЗА свыше 22—33 тыс. кВт для уменьшения напряжений в зубчатых зацеплениях используют раздвоение мощности [15], которое заключается в передаче крутян1,его момента от шестерни первой ступени сразу на два зубчатых колеса и далее двумя шестернями второй ступени — большему колесу (рис. 2.15, б). Все большее применение в качестве одной из ступеней находят планетарные передачи.  [c.45]

В судовых ГТД находят также применение гидрозубчатая реверсивная передача, которая представляет собой сочетание обычной зубчатой передачи с гидрореверсивным устройством (рис. 2.17), и реверсивная гидрозубчатая передача с муфтой трения (рис. 2.18). Эти реверсивные гидрофрикционные передачи сочетают в себе достоинства гидравлических и механических передач. Для осуществления заднего хода в них использован гидротрансформатор, а переднего — фрикционная муфта, жестко соединяющая ведущий и ведомый валы. На переднем ходе отсутствуют потери в гидротрансформаторе, и КПД передачи достигает 0,98.  [c.48]

В практике судового турбиностроения нашли применение радиальные центростремительные (первая ступень турбоагрегата атомного ледокола Леонид Брежнев ) и радиально-осевые (вспомогательные ГТД и турбонаддувочного агрегаты дизелей) ступени. Особенностью таких ступеней является то, что часть работы в них совершается кориолисовыми силами.  [c.130]

Турбины атомных судовых энергетических установок. В качестве атомных энергетических установок (АСЭУ) на транспортных судах нашли применение двухконтурные установки с водо-водяными реакторами давления (ВВРД). В первом контуре такой установки циркулирует вода под давлением, которая служит как замедлителем нейтронов, так и теплоносителем. Эта вода, нагретая в реакторе, поступает в специальный теплообменник — парогенератор, где происходит образование насыщенного или слегка перегретого пара из воды второго контура. Для обеспечения температурного перепада между контурами давление воды на выходе из реактора должно быть на 3—10 МПа выше, чем давление пара на входе в турбину [39]. Таким образом, повышение начального давления пара связано с трудностями создания реактора, надежно работающего под большим давлением. Обычно в судовых конструкциях начальные параметры пара давление 3—4 МПа, температура 240 310 °С, что наряду с отсутствием регенеративных отборов пара приводит к пониженным значениям термического КПД.  [c.156]

Зубчатые передачи (редукторы)7судовых турбин характеризуются большими передаточными отношениями, большими передаваемыми мощностями и являются высоконапряженными элементами турбоагрегатов. Для повышения плавности зацепления судовые редукторы выполняют с наклонными зубьями. Применение. двухвенечной конструкции с противоположным наклоном зубьев позволяет уравновесить возникающее при этом осевое усилие рис. 8.14). Шестерни и колеса редуктора находятся под воздействием передаваемого крутящего момента и изгибающего окружного усилия. Долговечность передачи и создаваемый ею шум зависят от напряжений в зубьях и деформации шестерен.  [c.301]

Соответственно с ростом перевозочной работы расширяется и совершенствуется производственная база судостроения, проводится типизация судов и унификация судовых конструкций, осуществляется сборка судовых корпусов из укрупненных элементов (секций, блоков), монтируемых вместе с элементами судового оборудования непосредственно в заводских цехах до подачи на стапели. Работы Г. В. Тринклера, Д. Б. Тана-тара, В. А. Ваншейдта, М. И. Яновского и других исследователей, конструкторов и технологов во многом способствовали производственному и эксплуатационному освоению судовых дизель-редукторных, дизель-электрических и паротурбинных силовых установок большой мощности. На основе опыта изготовления судовых паровых турбин и авиавдонных газотурбинных двигателей были построены первые судовые газовые турбины, особенно перспективные в применении к судам на подводных крыльях и на воздушной подушке. С 60-х годов по мере развития отечественной электронной промышленности и совершенствования судовых паровых котлов, двигателей, генераторов, рулевых и швартовочных устройств, погрузочно-разгрузочных механизмов и пр. все шире стали использоваться на судах системы централизации и автоматизации управления и контроля, которые значительно улучшают эксплуатационные качества судов, повышают производительность труда судовых команд и освобождают их от многих трудоемких и тяжелых работ.  [c.307]


Алюминиевая бронза, содержащая > 8 % А1, имеет очень хорошие прочностные характеристики и хорошую коррозионную стойкость при условии, что сплав не содержит богатой алюминием "у-фазы, которая очень чувствительна к селективному коррозионному деалюминирова-нию. Чтобы понизить опасность возникновения 1)-фазы, следует обеспечивать подходящие условия термообработки и сварки материала. Опасность можно понизить также, вводя в сплав добавки никеля, железа и марганца. Никельалюминиевая бронза является прочным и коррозионностойким материалом, который хорошо зарекомендовал себя для морских применений, например судовых винтов, кранов и трубных досок в теплообменниках.  [c.137]

Завершение создания отечественного способа автоматической сварки под флюсом знаменонало собой целую juoxy в развитии сварочной техники в СССР. Автоматическая сварка под флюсом сразу же получила признание и высокую оценку. Учитывая громадное производственное и экономическое значение метода скоростной ав Югиатической сварки, Совнарком СССР и ЦК ВКП(б) 20 декабря 1940 г. приняли специальное постановление о скорейшем внедрении нового метода в промышленность (20 заводов страны обязаны были освоить в 1941 г. при всемерной помощи Института электросварки автоматическую сварку под флюсом). Это постановление явилось серьезным шагом к ликвидации тяжелого ручного труда рабочих-сварщиков и к переводу сварки на механизированную и индустриальную основу. Сварка под флюсом нашла широкое применение при изготовлении труб, железнодорожных цистерн, паровых котлов, судовых корпусов, строительных металлоконструкций, магистральных трубопроводов и т. д. и является в наше время одним из основных и высокопроизводительных технологических процессов, который позволил осуществить поточное изготовление сварных конструкций и изделий.  [c.118]

Мягкими называют оболочки, которые вследствие весьма малой толщины стенки всегда испытывают только безмоментное напряженное состояние и не могут воспринимать сжимающих напряже-ний. В последние десятилетия мягкие оболочки получили широкое применение в технике и строительстве. Конструкции о надувным каркасом и воздухоопорные оболочки используют в качестве складских помещений, ангаров, выставочных павильонов и т. п. Мягкие оболочки необходимы во многих судовых конструкциях [481. В космической технике их применяют в шлюзовых устройствах на пилотируемых орбитальных кораблях, в скафандрах космонавтов и даже в качестве надувных спутников.  [c.366]

Теория крутильных колебаний и ее применение достигли наибольшего развития в Первой половине нашего столетия. Интерес к этим задачам был вызван практическими потребностями. Было установлено, что быстроходные лоршневые машины и особенно судовые нельзя рационально проектировать, не зная частот собственных колебаний всего механизма и, кроме того, весьма желательно уметь заранее вычислить наяряжеиия зала при крутильных колебаниях и теоретически обосновать применение различных средств, при помощи которых можно было бы напряжения вала ограничить заданными пределами. В опубликованных работах [1], [41], [98], [100], [198] преследовалась основная цель — сделать возможным и облегчить решение данной задачи. Создано много различных приспособлений и методов, способствующих улучшению условий работы действующих агрегатов. Не ослабевающий интерес к этой проблеме свидетельствует о том, что она не потеряла своей остроты и практически не получила еще лолного решения.  [c.257]

Одним из главных теоретических и практических вопросов, требующих быстрого решения, становится развитие методов технической диагностики. То, что сделано в этом направлении в станкостроении, совершенно недостаточно для повышения надежности оборудования и освобождения цехового персонала от непрерывного обслуживания и наблюдения за его работой. Тем не менее уже накоплен известный опыт решения отдельных вопросов диагностирования технологического оборудования на предприятиях автомобильной, станкостроительной и ряда других отраслей промышленности. Значительный интерес представляет изучение опыта передовых заводов машиностроения по диагностированию двигателей внутреннего сгорания, газотурбинных и дизелей, компрессоров, судового, авиационного и автотракторного электро-, пневмо- и гидрооборудованйя, электрических сетей, телевизионной и радиоаппаратуры, строительно-дорожных и сельскохозяйственных машип, тепловозов, и электровозов, вагонов. Опыт диагностирования мультипроцессорных систем, больших ЭВМ, может быть непосредственно применен в области гибкого автоматизированного производства (ГАП).  [c.3]


Смотреть страницы где упоминается термин ГТД судового применения : [c.73]    [c.100]    [c.101]    [c.102]    [c.124]    [c.43]    [c.246]    [c.43]    [c.240]   
Смотреть главы в:

Каталог газотурбинного оборудования  -> ГТД судового применения



ПОИСК



Применение авиационных и судовых газотурбинных двигателей при создании энергетических ГТУ



© 2025 Mash-xxl.info Реклама на сайте