Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Компрессоры Детали

Лопатки компрессоров, детали двигателей в самолетах. До 100"" С Свариваются роликовой и точечной сваркой, плохо—электродуговой и газовой, легко деформируются в горячем и холодном состоянии.  [c.9]

В машинах же типа поршневых насосов, компрессоров детали поршневого узла получают возвратно-поступательное движение от кривошипно-шатунного механизма.  [c.166]

В авиастроении, ракетостроении — каркасные детали, обшивка, топливные баки, детали реактивных двигателей, диски и лопатки компрессоров, детали воздухозаборника, детали корпусов ракетных двигателей второй и третьей ступени и т. д.  [c.319]


Применение. Направляющие и рабочие лопатки паровых турбин, конструкционные элементы компрессоров, детали газовых турбин.  [c.237]

Гидроабразивному изнашиванию подвержены трущиеся детали дизеля, компрессора (детали сборочных единиц с подшипниками скольжения, цилиндро-поршневой сборочной единицы, топливной аппаратуры и др.).  [c.52]

Назначение - режущий, мерительный инструмент, пружины, карбюраторные иглы, штоки поршневых компрессоров, детали внутренних устройств аппаратов и другие различные детали, работающие на износ в слабоагрессивных средах до 450 °С.  [c.406]

Работающие при относительно невысоких температурах в условиях циклического нагружения и коррозионной среды или без нее (лопатки компрессора, детали редуктора)  [c.549]

Описание значительно сократится и станет яснее, если мы добавим рисунок (наглядное изображение) этой детали. По рисунку детали с проставленными на нем размерами и записями технических требований к готовой детали значительно быстрее можно уяснить, а затем изготовить эту деталь. Но так можно поступить с очень простой деталью, например втулкой. Для бол ее сложных деталей, например кривошипа и поршня компрессора, такое описание окажется недостаточным. Здесь только одним наглядным изображением, особенно если  [c.7]

На рис. 89, а приводится чертеж кривошипно-шатунной группы компрессора, а на рис. 89,6 изображены его детали, на которых проставлены наиболее ответственные размеры. Рассмотрим те из них, которые заданы непосредственно с предельными отклонениями.  [c.110]

На рис. 89 были изображены детали компрессора, их взаимосвязь и поставлены размеры сопрягаемых элементов, а на рис. 97 показан чертеж одной из деталей— втулки.  [c.127]

Описание значительно сократится и станет яснее, если мы добавим рисунок (наглядное изображение) этой детали. По рисунку с имеющимися на нем размерами детали и техническим требованиям к готовому изделию можно намного быстрее изготовить эту деталь. Для более сложных деталей, например кривошипа и поршня компрессора, такое описание окажется недостаточным. Здесь только одним наглядным изображением, особенно если деталь не имеет плоскостей симметрии, обойтись нельзя. Если же дать на чертеже изображения детали с нескольких ее сторон (комплексный чертеж из наглядных изображений), то чертежи окажутся трудоемкими и сложными. Такой способ составления чертежей потребует много времени на проектирование изделий.  [c.8]

Корпусные детали являются важными базовыми элементами изделия. В корпусах обычно располагаются механизмы. К корпусным деталям относятся коробки скоростей и подач металлорежущих станков, блоки цилиндров двигателей и компрессоров, корпуса редукторов, насосов и др.  [c.411]


Натурные испытания. Простейшим методом проверки деталей на проч-, пость и жесткость является их испытание на стенде в условиях, наиболее приближающихся к рабочим. Деформации измеряют индикаторами или тензометрами. Хорошо поддаются стендовым испытаниям многооборотные роторы, например рабочие диски центробежных или осевых компрессоров, нагруженные главным образом центробежными силами. Частоту вращения испытываемой детали постепенно увеличивают до частоты, превышающей на 20 — 40% рабочую частоту, что соответствует возрастанию напряжений на 40—100% по сравнению с расчетными. Такие испытания воспроизводят действительные условия нагружения (кроме термических напряжений, возникающих в роторах тепловых машин).  [c.159]

В большинстве машиностроительных конструкций повышение напряжений дает незначительный эффект вследствие ограниченности категории расчетных деталей, масса которых, как правило, составляет небольшую долю массы конструкции. Подавляющая часть — это нерасчетные корпусные детали. Для обширного класса машин (поршневых двигателей, компрессоров, турбин, насосов, металлообрабатывающих станков и т. д.) масса корпусных (преимущественно литых) деталей составляет 60-80% общей массы машин, а доля расчетных деталей не превышает 10 — 20%. Если учесть, что корпусные детали по условиям технологии изготовления выполняют с большими запасами прочности, то очевидно главные резервы уменьшения массы машин заложены в облегчении корпусных деталей.  [c.160]

Сочетание прочности, легкости, термостабильности и коррозионной стойкости делает титановые сплавы превосходным конструкционным материалом, особенно когда конструкции работают в широком температурном диапазоне. В сверхзвуковой авиации, где вследствие аэродинамического нагрева температура оболочек достигает 500 —600°С, титановые сплавы используют для изготовления обшивок и силовых элементов. Благодаря малой плотности и хладостойкости иг широко применяют в космической технике. Из них изготовляют детали, подверженные высоким инерционным нагрузкам, в частности скоростные роторы, напряжения в которых прямо пропорциональны плотности материала. Температуростойкие титановые сплавы применяют для изготовления лопаток последних ступеней аксиальных компрессоров и паровых турбин. Высокая коррозионная стойкость при умеренных температурах обусловливает применение титановых сплавов в химической и пищевой промышленности.  [c.188]

Быстровращающиеся детали (диски и лопатки компрессоров, сепараторы быстроходных подшипников качения) — из стеклопластов, полиамидов, текстолита, волокнита, обладающих малой плотностью и достаточной прочностью.  [c.42]

Графический способ задания кинематических поверхностей имеет две разновидности. Сложные поверхности технических форм, имеющие образующие переменной формы, могут быть заданы некоторым числом (совокупностью) принадлежащих им точек и линий — каркасом. Такие поверхности обычно называют каркасными. Каркасные поверхности задают на чертеже проекциями элементов каркаса. Каркас поверхности в этом случае называется дискретным в отличие от непрерывного каркаса кинематической поверхности. На полученном чертеже точки (и линии) поверхности, не лежащие на линиях каркаса, могут быть построены только приближенно. Поэтому поверхность, заданная каркасом, не вполне определена, могут существовать и другие поверхности с гем же каркасом, но несколько отличающиеся одна от другой. Примерами каркасных поверхностей могут служить поверхности обшивки самолетов, автомобилей и судов, некоторые технические детали, имеющие сложную форму, например лопатки турбин и компрессоров, гребные винты, и т. п.  [c.82]

Опрокидывание испытывает корпус и компрессора, и ДВС, и электродвигателя, т, е. любой машины, независимо от того, какой рабочий процесс в ней протекает. Опрокидывание испытывает также любой передаточный механизм. Поэтому машину и передаточный механизм всегда надо надежно закреплять на их основании. Конструктивное исполнение этого закрепления и методика его расчета излагаются в курсе Детали машин и в специальных машиностроительных курсах.  [c.196]

Из ситаллов изготавливают детали для двигателей внутреннего сгорания, трубы для химической промышленности, оболочки ваку умных электронных приборов. В качестве жаростойких пок-рытий используют для защиты металлов от действия высоких температур (сопла реактивных двигателей, лопасти воздушных компрессоров), абразивов для шлифования, точных калибров.  [c.136]


Из чугуна марок СЧ 21-40 и СЧ 24-44 изготовляют детали машин, подвергающиеся повышенному износу (втулки буровых насосов с толщиной стенки более 29 мм, колеса центробежных насосов, головки цилиндров и др.). Для особо ответственных деталей компрессоров н насосов, работающих при повышенном или высоком давлениях, а также для деталей, испытывающих при эксплуатации значительный износ, используют чугун марок СЧ 32-52, СЧ 35-56 и СЧ 38-60.  [c.30]

Коленчатые валы представляют собой сложные и ответственные детали двигателей внутреннего сгорания и компрессоров. По конструкции коленчатые валы бывают цельные (рис. 11.8) и составные. Цельные валы сравнительно небольшого размера применяются в автомобильных и транспортных двигателях, в компрессорах, кривошипных прессах. Составные валы изготавливаются небольшими партиями для крупных судовых и стационарных двигателей внутреннего сгорания. В зависимости от конструктивного оформления коленчатые валы делятся по количеству коренных опор и шатунных шеек, их взаимному расположению и т. д. К коленчатым валам предъявляются высокие требования по качеству изготовления, которые регламентируются соответствующими стандартами.  [c.240]

Охлаждение деталей газовых турбин. Детали обычно охлаждаются воздухом, отбираемым от компрессора или от камеры сгорания. Применяются следующие способы охлаждения дисков радиальный обдув, струйное охлаждение, продувка воздуха через зазоры хвостов лопаток, заградительное и комбинированное охлаждение.  [c.242]

Детали, работающие под давлением, корпуса задвижек н насосов, головки компрессоров детали, испытывающие ударные на-грузкн  [c.143]

Х17Н2 (ЭИ268) 1Х13НЗ 0,11- 0,17 0,08— 0,15 0,80 0,60 0,80 0,60 16—18 12,5- 14,5 1,5-2,5 2,2—3,0 — Лопатки спрямляющего аппарата компрессора, детали, работающие при температурах до 400° С Тяжело нагруженные детали, работающие Б условиях морской и пресной воды и их паров  [c.100]

ХНЗВА Детали больших сечений, особенно работающие при повышенных температурах (до 400° С) — диски, валы и роторы турбин, диски и валы компрессоров, детали редукторов и др.  [c.25]

Поршни быстроходных дизелей крыльчатки центробежных компрессоров подшипники распределите.пьпых валов дизелей диски и лопатки осевых компрессоров детали, изготовляемые штамповкой и работающие при повышенных температурах.  [c.711]

Станины, корпуса, муфты, тормозные диски, шестерни, кожухи, вилки, звездочки. Детали бурильных труб, буровой трансмиссии, втулки компрессора, детали лебедки, корпуса трехшарошечных долот, храповики, клинья, направляющие водила и другие ответственные детали, к которым предъявляются требования повышенной прочности и высокого сопротивления износу. Стяжные кольца плавающих головок подогревателей и теплообменников, работающие под давлением при температуре от —30 до +450 °С. Сталь применяют в нормализованном и улучшенном состоянии и после поверхностного упрочнения с нагревом ТВЧ  [c.188]

ЧтоамУч В-115, типичного для конструкции Бюхи, приведена на фиг. 27. На фиг. 28 показаны основные детали турбокомпрессора. Турбокомпрессор выполнен с опорами ротора, расположенными между рабочими колесами турбины и компрессора. Детали корпуса охлаждаются воздухом (возможно изготовление и с водяным охлаждением). Корпус компрессора разъемный, имеет диффузор, который представляет собой ряд криволинейных расширяюш,ихся каналов, отлитых в корпусе (фиг. 28). Такой диффузор обеспечивает высокий к. п. д. в широком диапазоне рабочих режимов.  [c.42]

Л, 45Л Станины, корпуса, муфты, тормозные диски, шестерни, кожухи, вилки, звездочки, детали бурильных труб, буровой трансмиссии, втухпси компрессора, детали лебедки и другие ответственные детали, к которым предъявляются требования повышенной прочности и высокого сопротивления изнашиванию  [c.83]

Такое поцеременное включение вакуум-насоса и компрессора практикуется четыре раза в течение 8 ч. Далее автоклав охлаждается и открывается. Пропитка производится при тс.мпературе 35—40° С, после чего графитовые детали подвергаются механической очистке от смолы, промываются в 5%-ном растворе едко-1 о натра и подсушиваются сжатым воздухом.  [c.452]

Среднена ружейные детали из сплава АЛ4 подвергакп только искусственному старению (Т1), а крупные нагруженные детали (корпуса компрессоров, картеры и блоки цилиндров лтнителей и т. д.) — закалке и искусственному старению (Тб) Отливки из сплава АЛ9, требующие повышенной пластичности, подвергают закалке (Т4), а для повышения прочности — закалке и старению (Тб). Когда важна высокая пластичность и стабильность размеров, после закалки проводят старение при 250 С в течение 3—5 ч.  [c.336]

Дисковые детали, роторы. Термические напряжения играют значительную роль в прочности многооборотных роторов тепловых машин (турбин, центробежных и аксиальных компрессоров). Будучи подвержены разрывающим нагрузкам от центробежных сил, роторы вместе с тем испытывают термические напряжения, вызываемые неравномерной температурой тела ротора. Обычно температура выше у периферии ротора. Здесь возникают термические напряжения сжатия. У ступицы, т. е. там, где напряжения растяжения от центробежных сил имеют наибольшую величину, возникают термические напряжения растяжения. У насадных роторов к этому добавляются еще напряжения растяжения в сту- С/катие Растяжение пице из-за посадочного натяга.  [c.374]

Назначение — режущий, мерительный инструмент, пружины, карбюраторные нглы, предметы домашнего обихода, клапанные пластины компрессоров н другие детали, работающие при температуре до 400—450 °С, а также детали, работающие в коррозионных средах.Сталь коррозионно-стойкая мартенситного класса.  [c.470]

Назначение — детали, работающие при высокой температуре и давлении (лопатки компрессоров и сопловых аппаратов, печные онвейеры, шнекл, крепежные детали и др.). Сталь коррозионно-стойкая, жаростойкая до 1000 °С, жаропрочная аустенито-ферритного класса.  [c.607]


Такой широкий спектр технологических возможностей определяет и различную номенклатуру деталей ГТД, требующих уп юч-нсния рабочих поверхностей с помощью защитных покрытий, нанесенных плазменным методом. Эта номенклатура деталей состоит более чем из 100 наименований сопловые и турбинные лопатки, дефлекторы турбины, корпусы компрессоров ГТД детали технологической оснастки (кокили, штампы, пресс-формы и др.).  [c.437]

Корпусные детали являются базовыми деталями машин, на которых монтируются отдельные сборочные едгхницы. По служебному назначению и конструктивным формам они подразделяются на группы (рис. 11.1) а) корпусные детали коробчатой формы в виде параллелепипеда корпуса редукторов, коробок скоростей, шпиндельных бабок и т. п. б) корпусные детали с отверстиями и полостями, протяженность которых превышает их поперечные размеры блоки цилиндров, двигателей, компрессоров, корпуса задних бабок в) корпуса деталей сложной пространственной формы корпуса паровых И газовых турбин, центробежных насосов, коллекторов, вентилей и т. п. г) корпуса деталей с направляющими столы, каретки, салазки, планшайбы и т. п. д) корпусные детали типа кронштейнов, угольников, стоек плит, крышек и т. п. Следует отметить, что деление деталей на группы является условным, т. к. некоторые из них нельзя отнести к определенной группе, и приме-  [c.227]

Корпуса высоконапорных насосов, компрессоров, турбин изготовляют из чугунов повышенной прочности или стального литья. Плиты, угольники, кронштейны, корпуса электродвигателей льют из сталей 15Л, ЗОЛ, 40Х, 12Х2Н4А. Небольшие корпусные детали изготавливают из бронзы, алюминиевых и специальных сплавов. Для мелкосерийного и единичного производства иногда более рационально применять сварные заготовки корпусных деталей из листовой стали марок СтЗ, Ст4, Ст5. Штампо-сварные картеры задних мостов автомобилей делают из стали 35, 40.  [c.229]

I с и I расш представляют собой соответственно теоретические работы сжатия и расширения, а т)комп и т]дет — внутренние относительные к. п. д. компрессора и детандера.  [c.474]

База компрессора состоит из чугунной рамы, стального кованого коленчатого вала 5, установленного в подшипниках скольжения, штампованных шатунов 6, крейцкопфов 4, которые воспринимают нормальные силы, возникающие в кривошипно-шатунном механизме, направляющих крейцкопфа и смазочной системы. На этой базе изготовляются производные компрессоры четырехрядный воздушный общего назначения, шестирядный без смазьюания на давление 20 МПа для воздухоразделительных установок И другие компрессоры. Они отличаются числом и конструкцией цилиндров, все детали и узлы унифицированы.  [c.301]

При техническом обслуживании компрессоры газотурбонагне-тателей очищают любой маслорастворимой жидкостью. Рабочие и направляющие лопатки турбин очищают в горячей пресной воде, Б сульфатном или слабом содовом растворе, в дизельном топливе, не содержащем свинец. Для удаления плотных отложений в водный раствор добавляют 1 % жидкого стекла, 1 % кальцинированной соды, 0,1 % хромпика, 1 % мыла. Лопатки выдерживают в ванне 60—90 мин при = 90 100 °С, а затем такое же время в холодном растворе нагар удаляют жесткими волосяными щетками, деревянными палочками или содой. После промывки детали обдувают сжатым воздухом [24, 32].  [c.350]


Смотреть страницы где упоминается термин Компрессоры Детали : [c.192]    [c.361]    [c.54]    [c.13]    [c.291]    [c.95]    [c.103]   
Машиностроение Энциклопедический справочник Раздел 4 Том 12 (1949) -- [ c.525 ]



ПОИСК



Детали поршневых компрессоров

Детали тормозных систем Детали компрессора пневматического привода тормозной системы

Компрессорий

Компрессоры

Компрессоры Детали - Конструирование

Конструирование крупногабаритных пластмассовых деталей автомашин Применение пластмасс на южноуральском машиностроительном заводе Результаты испытаний полимерных деталей компрессоров низкого давления

Материалы для деталей осевых компрессоров

Надежность деталей компрессора ГТД

Нарушение надежности деталей компрессора ГТД

Примеры конструкции компрессоров и их деталей. Регулирование компрессоров

Причины выхода из строя отдельных деталей компрессоров

Твердость Химический деталей компрессоров и насосов

Температура в деталях компрессора

Технологические процессы изготовления базовых деталей оппозитных и винтовых компрессоров

Устранение явлений схватывания в деталях компрессора авиационного двигателя



© 2025 Mash-xxl.info Реклама на сайте