Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ТЕРМИЧЕСКАЯ ОБРАБОТКА Методы определения

Нередко магнитные методы применяют для сортировки однородных изделий по твердости (например, после термической обработки), для определения толщины слоя после химико-термической обработки и т. д. г 1  [c.33]

При этом методе производства детали обрабатываются так же, как и при непрерывном поточном производстве. Разница между ними лишь та, что при периодически непрерывном методе непрерывность процесса термической обработки после определенного периода прерывается для перевода термических агрегатов на другой режим обработки. Длительность перевода агрегата па другой технологический режим равна длительности технологических операций в данном агрегате при обработке деталей предыдущей партии.  [c.258]


Дефектный поверхностный слой образуется при получении заготовок и при механической обработке заготовок из стали. Глубина дефектного слоя после механической обработки чугунов и цветных металлов, а также после термической обработки, при определении припуска не учитьшается в случае применения расчетных методик. При расчетах припуска можно установить более полно и влияние термической обработки. В этом преимущества расчетного метода перед табличным. В частности на переходах, предшествующих термической обработке, следует обеспечить такую точность заготовки, чтобы переходы механической обработки после термической обработки позволяли получить стабильный термообработанный поверхностный слой.  [c.28]

Действительное зерно характерно для стали после определенной термической обработки и определяется его фактическим размером. Величина действительного зерна зависит от способа выплавки стали, методов термической и механической обработки и главным образом от температуры последнего нагрева.  [c.91]

Анализ формулы (4.59) позволяет выяснить вопрос о влиянии на кривую термического высвечивания изменения скорости нагревания, изменения степени начального возбуждения, а также глубины уровней захвата. Математическая обработка кривой термического высвечивания позволяет определить глубину уровней локализации электронов Ё. Рассмотрим два метода определения Е.  [c.220]

С целью получения однородного диффузионного цинкового покрытия определенного химического состава и с определенной структурой, по своей коррозионной устойчивости не уступающего покрытию, полученному диффузионным способом с применением порошковой смеси, нами производилась термическая обработка цинковых покрытий, полученных жидким методом. Микроструктура цинкового покрытия, полученного жидким методом, представлена на рис. 3.  [c.175]

Важным практическим применением низкочастотных электромагнитных приборов является определение количества углерода стали, оценка механических характеристик при термической обработке, контроль за правильным ее выполнением. Возможность разработки того или иного метода контроля во многом определяется свойствами соединений железа с углеродом.  [c.107]

Анализ результатов, полученных при определении размеров блоков когерентного рассеяния и величин микронапряжений различными методами, показал, что несмотря на то, что различными методами получены разные значения этих величин, имеются общие зависимости, обусловленные термической обработкой.  [c.179]


Основными параметрами качества поверхностного слоя деталей после механической обработки металлическим или абразивным инструментом является шероховатость поверхности, глубина и степень наклепа и технологические макронапряжения. Для определения степени влияния каждого из них в отдельности на характеристики усталости, в данной работе использован метод изотермических нагревов в вакууме образцов после заданных режимов механической обработки. Вакуум необходим для предохранения от окисления поверхностного слоя образцов при нагревах. Для этой цели образцы после механической обработки на заданных режимах разделены на три группы. Образцы первой группы испытывали на усталость непосредственно после механической обработки, образцы второй и третьей групп до испытания на усталость подвергали изотермическим нагревам в вакууме для снятия технологических макронапряжений (вторая группа) и для снятия поверхностного наклепа (третья группа). Относительную значимость каждого параметра качества поверхностного слоя в отдельности оценивали путем сравнения характеристик усталости образцов после термообработок для снятия остаточных напряжений, поверхностного наклепа и образцов, не подвергавшихся термической обработке.  [c.173]

Повышение усталостной прочности связано с созданием в поверхностных слоях благоприятных остаточных внутренних напряжений. Принято различать три рода остаточных напряжений 1-го рода — напряжения, которые уравновешиваются в пределах детали или участка ее поверхности 2-го рода — напряжения, которые уравновешиваются в пределах отдельного зерна, и 3-го рода — напряжения, которые уравновешиваются в пределах кристаллической решетки. Усталостная прочность зависит от напряжений 1-го рода, именно их создает поверхностная пластическая обработка. Остаточные напряжения порождаются и термической обработкой и обработкой резанием. Однако получение остаточных напряжений не является целью указанных методов, они являются неизбежным, но побочным и часто нежелательным результатом воздействия нагрева и охлаждения при термической обработке, сил пластической деформации и нагрева при резании. При поверхностном пластическом деформировании в поверхностном слое формируются остаточные напряжения определенной величины и определенного знака. Обычно поверхностные слои деталей в работе испытывают напряжения растяжения.  [c.95]

Недостатком магнитного метода является зависимость получаемых результатов от магнитных свойств основного металла детали,, которые, в свою очередь, зависят от состава и структуры его. Известное влияние на силу отрыва оказывает также чистота обработки поверхности самого покрытия. Поэтому, для обеспечения возможно большей точности определений, необходимо для расчета толщины слоя пользоваться градуировочными кривыми, построенными по эталонам, возможно более подобным испытываемым деталям как по марке основного металла, так и по условиям механической и термической обработки его.  [c.543]

В теоретическом определении остаточных напряжений, возникающих вследствие неравномерных температурных воздействий (при термической обработке, сварке, литье и т. д,), существуют два направления. К первому направлению относятся работы, в которых применен так называемый метод фиктивных сил, сущность которого состоит в использовании температурной кривой в данном поперечном сечении полосы и гипотезы плоских сечений для определения зоны пластических деформаций, возникающих при нагреве. Далее принимается, что последующее остывание должно вызвать появление остаточных напряжений обратного знака. Соответствующую этим напряжениям нагрузку принимают за активную нагрузку, приложенную к полосе. Основные параметры, характеризующие распределение остаточных напряжений, определяют при помощи гипотезы плоских сечений и условия равновесия внутренних сил в данном поперечном сечении полосы. Однако метод фиктивных сил может быть использован лишь в случае применимости гипотезы плоских сечений, т. е. в одномерных задачах. Только в наипростейших случаях двухмерной задачи этот метод может дать достаточно удовлетворительное первое приближение.  [c.211]


Поэтому прочность стекла сравнительно мало меняется от его химического состава и преимущественно зависит от способа и условий формования стекла, от характера его термической и механической обработки, от массивности (объема, толщины), размеров, геометрической формы и состояния поверхности испытываемых образцов (стеклоизделий), от условий окружающей среды (температура, влажность и пр.), а также от самого метода определения прочности — способа  [c.450]

Изготовление доброкачественных сварных роторов требует в равной мере как правильного выбора материалов, конструкции ротора и сварного шва, так и соответствующей конструкции приспособлений для сборки частей ротора перед сваркой, выбора электродов, технологии самой сварки, определения режима термической обработки ротора и выбора методов контроля сварного шва.  [c.120]

Возможность ускоренной оценки влияния технологических факторов доказана при исследовании влияния режима термической обработки и вида чистового шлифования на характеристики рассеяния предела выносливости стали ЗОХГСА (работа проводилась совместно с Киевским политехническим институтом). Испытаниям на усталость при изгибе с вращением подвергались образцы из стали ЗОХГСА после закалки с высоким (630°С), средним (510°С) и низким (190°С) отпуском, шлифованные обычными наждачными и алмазными кругами до одинаковой степени чистоты поверхности (8-й класс). Определение характеристик рассеяния пределов выносливости, осуществленное по двум методам — экстраполяции кривых усталости и возрастающей нагрузки, показало, что среднее значение предела выносливости повышается при снижении температуры отпуска приблизительно в соотношении 1 1,3 1,6. При этом среднее квадратическое отклонение также увеличивается, а рассеяние, характеризуемое коэффициентом вариации, остается практически неизменным. Замена обычных кругов алмазными в случае шлифования до одинаковой степени чистоты, поверхности не отразилась существенно на указанных характеристиках при всех трех режимах термообработки. Достигнутая экономия времени (1,3-10 циклов при возрастающей нагрузке, вместо 4,7-10 при постоянной амплитуде напряжений) и образцов (90 шт. вместо 500 шт.) свидетельствует  [c.188]

Химико-термическая обработка 141 Инструментальное хозяйство — Исходные данные для проектирования 40 — Методы расчета оборудования 12 р— Нормы дли определения количества оборудования 13  [c.219]

Многие развиваемые в настоящее время прогрессивные методы комплексного определения теплофизических характеристик материалов, базирующиеся на научной теории тепло- и массообмена, основаны на закономерностях нестационарного температурного поля. Разумеется, применение дифференциального уравнения теплопроводности с постоянными теплофизическими коэффициентами для раскрытия механизма тепло- и массообмена в материалах, подвергаемых термической обработке, в некоторых случаях может привести к значительным ошибкам. Исключительная трудность аналитического решения задач нестационарного тепло- и массообмена в телах с переменными теплофизическими коэффициентами известными классическими методами приводит к необходимости применения приближенных аналитических и графоаналитических методов.  [c.183]

В табл. 16 приведены значения коэффициента упрочнения Кв в зависимости от эффективного коэффициента концентраций напряжений Кв и метода поверхностного упрочнения. Чем больше Ко, тем эффективнее процесс поверхностного упрочнения. После поверхностной обработки очаг усталостного разрушения смещается под упрочненный слой, поэтому на величину влияет прочность сердцевины (см. табл. 16). Чем больше Кв, тем эффективнее поверхностное упрочнение. С увеличением сечения изделия (масштабный фактор Кйа) коэффициент упрочнения Ко после поверхностной закалки, химико-термической обработки и ППД уменьшается. При оптимальных режимах упрочнения (а < 3) для предварительных расчетов Ко может быть определен по формуле  [c.319]

Метод внутреннего трения дает оценку качественной стороны дефектов структуры — характера их подвижности по решетке под действием температуры и внешних напряжений. Он является одним из эффективных неразрушающих методов оценки технологических и эксплуатационных показателей качества вольфрамовых проволок в определении температуры начала первичной и вторичной рекристаллизации, уровня жаропрочности и склонности к ползучести, уровня термоциклической прочности образцов, позволяет установить оптимальные режимы термической обработки.  [c.34]

Рекристаллизационные свойства вольфрамовых проволок зависят от содержания примесей, не поддающихся определению обычными методами анализа. Поэтому, помимо постоянства процесса термической обработки тела накала, необходимо придерживаться одного и того же завода-поставщика. Запас вольфрамовой проволоки должен обеспечить возможность отработки нового режима термической обработки в случае замены поставщика.  [c.467]

Термическая обработка сплавов с точкой плавления ниже 1100°, применяемая для определения линии солидус методом закалки, обычно не представляет трудности. В этом случае образцы запаивают в откаченные стеклянные или кварцевые трубочки и нагревают до соответствующих температур в условиях, описанных в главе 4. Некоторые сплавы, например алюминиевые, находясь в контакте со стеклом цри температурах, близких к линии солидус, легко загрязняются окисью кремния. Чтобы избежать соприкосновения исследуемого образца со стеклом, должны применяться алюминиевые кольца. Было установлено, что для полного отжига достаточно 30 мин. и в таких случаях температуру лучше всего регулировать вручную с помощью переменного сопротивления в цепи печи (при температурах до 1100 допускаются колебания не более 0,5°). В этом температурном интервале успех рассматриваемого метода в значительной степени зависит от легкости выявления микроструктуры сплава, а также и от того, насколько превращения, про- <5  [c.199]


Выбор метода обработки воды, составление общей схемы технологического процесса при применении различных методов, определение требований, предъявляемых к качеству ее, существенно зависят от состава исходных вод, типа электростанции, параметров ее, применяемого основного оборудования (паровых котлов, турбин), системы теплофикации и горячего водоснабжения. При применении термических методов обработки воды экономичность их зависит также от того, как включена обессоливающая установка в схему станции, и от характеристик и параметров оборудования. Поэтому до того, как перейти к рассмотрению методов обработки воды, необходимо хотя бы в самом общем виде познакомиться с типами и схемами тепловых электростанций.  [c.6]

Для контроля качества термической обработки и определения количества остаточного аустенита применяют метод магнитной структуроскопии. Этот метод основан на связи между структуромеханическими или химическими свойствами контролируемых деталей (инструмента) и магнитными характеристиками — коэрцитивной силы Не), остаточной индукции (Вг) и магнитной проницаемости ( 1тах).  [c.194]

В связи с перечисленными выше затруднениями разработан другой, так называемый гальванотермический метод получения поверхностных сплавов. Сущность его заключается в том, что электролитически осаждается последовательно два или большее количество металлов, после чего в результате термической обработки при определенных условиях происходит взаимная диффузия между осаждающимися металлами (а иногда между последними и основным металлом) с образованием сплавов.  [c.86]

Метод Фроммера позволяет производить все измерения в области упругой деформации. Хотя этот метод не может, повидимому, иметь широкого применения для обнаружения внутренних дефектов в стали вследствие своей чувствительности к изменениям структуры, но он может дать ценные результаты при исследовании изменений, вызванных термической обработкой. Метод Фроммера уже успешно применялся к изучению легких сплавов, структура которых меньше зависит от термической обработки, чем структура стали, вследствие чего внутренние дефекты в них выявляются с полной определенностью.  [c.252]

Поиски путей создания оптимальных по своей структуре и распределению барьеров показали, что в стали и многих сплавах, испытывающих фазовые превращения, такие барьеры можно создать, если подвергнуть материал комбинированному воздействию в одном технологическом цикле пластической деформации и термической обработке. Этот технологический метод получил название термомеханической обработки (ТМО). Ей можно дать такое определение термомехантеская обработка— это совокупность выполненных в одном технологическом цикле в различной последовательности операций пластической деформации, нагрева и охлаждения сплавов, испытывающих фазовые превращения. Структура, фазовый состав и соответственно свойства сплава формируются при ТМО в условиях влияния структурных несовершенств, созданных деформацией на механизм фазового перехода и структуру новых фаз, и наоборот.  [c.532]

Статья содержит результаты исследований, показываюпщх, что путем термической обработки цинковых покрытий, полученных жидким методом, можно получить диффузионные цинковые покрытия с заданной структурой определенного химического состава, что значительно увеличивает их коррозионную стойкость. Библ. — 6 назв., табл. — 2, рис. —6.  [c.343]

Магнитный метод имеет две разновидности. Отрывной магнитный метод (рис. 5.1, а) основан на измерении с помощью пружины 4 усилия, которое необходимо приложить к магниту для отрыва его от поверхности покрытия 2, нанесенного на основной металл 1. Сила отрыва магнита коррелирует с толщиной покрытия. Метод хорошо зарекомендовал себя в производственных условиях при серийном и массовом выпуске изделий [134]. Для определения толщины покрытий предварительно строятся градуировочные кривые для эталонных юбразцов с известной то.чщиной покрытия, К недостаткам метода следует отнести влияние чистоты и структуры покрытия, а также термической обработки и химического состава основного металла на результаты измерений. Метод применяется для оценки толщины немагнитных покрытий, нанесенных на ферромагнитную основу, возможно использование его и в тех случаях, когда магнитные свойства материалов резко различаются. Некоторые приборы, основанные на этом методе, выпускаются серийно (толщиномер конструкции Н. С. Акулова, ИТП-5 и др.) и характеризуются простотой конструкции и портативностью. Пределы измерения этими толщиномерами О—2000 мкм. Наибольшая погрешность измерения 10% продолжительность измерения 5—6 с. В некоторых конструкциях приборов постоянный магнит заменен на электромагнит, и усилие измеряется не пружинными динамометрами, а изменением силы тока намагничивания.  [c.82]

В книге содержатея результаты многолетних исследований авторов, в том числе по расчетно-экспериментальному методу определения жаропрочных свойств, по влиянию восстановительной термической обработки на свойства металла. Главы 1, 2, 6.6 написаны Т. Г. Березиной, гл. 3, 4 — И. И. Труниным, гл. 5, 6 — Н. В. Бугаем.  [c.4]

Микротвердость бывших аустенитных участков можно увели чить с помош,ью термической обработки, однако закалка белого чугуна нредставляет определенную трудность, сопровождается воз< никновением микротрещин и приводит к снижению стойкости при многократных ударных нагрузках. В связи с этим основным методом повышения твердости бывших аустенитных участков следует считать легирование белого чугуна элементами, способствуюш,ими переохлаждению аустенита и переводу его в мартенсит при обычных скоростях охлаждения отливок. Такими элементами являются хром, никель (при совместном присутствии), марганец, молибден и некоторые другие.  [c.34]

Для контроля твердости поковок коленчатых валов из стали 45Х на Минском тракторном заводе успешно внедрен прибор с накладным датчи1шм НЧГ-1 [30], работающий по методу высших четных гармоник. Прибор применяется для контроля качества термической обработки в области температур отпуска свыше 600°С. Погрешность определения твердости не превышает 10%. Время измерения не более 10 с.  [c.82]

В эти же годы в Советском Союзе выросли и другие научные школы металлургов, металловедов, физико-хи-миков. Основателем московской школы металловедов был заслуженный деятель науки и техники РСФСР А. М. Боч-вар (1870—1947). Его ученики Г. В. Акимов, К. Ф. Грачев, И. И. Сидорин, С. М. Воронов и другие провели обширные исследования легких сплавов на базе алюминия и магния, способствуя этим форсированному развитию авиационной и автомобильной промышленности. Ими же создан ряд новых сплавов, в том числе и антифрикционных, разработаны и внедрены в народное хозяйство методы борьбы с коррозией металлов. Научную школу А. М. Бочвара в наши дни достойно продолжает его сын — акад. Андрей Анатольевич Бочвар, широко известный своими работами но изысканию новых сплавов и определению методов их тепловой и механической обработки, а также создавший ряд прекрасных учебников по металловедению и термической обработке металлов, которыми широко пользуются студенты советских вузов п инженерно-технические работники промышленности.  [c.220]


Многие крупные ученые старшего поколения отдали свои знания и опыт делу развития металловедения и технологии термической обработки металлов и сплавов в первые пятилетки индустриализации страны. Н. С. Курнаков (1861—1941 гг.) — крупнейший металлофизик, создатель науки о физических методах исследования сплавов и законах их образования. С. С. Штейн-берг (1872—1940 гг.) — создатель Уральской школы металловедов-терми-стов, внесший большой вклад в изучение проблемы аустенит и его превра-ш ения во всем многообразии связанных с этим преврагцением явлений и получением конечных результатов. Н. А. Минкевич (1883—1942 гг.) — руководитель и непосредственный участник работ по определению, назначению и разработке технологических процессов термической обработки различных марок стали для деталей самолетов, автомобилей, тракторов и изделий оборонной промышленности периода первых пятилеток. Им разработано большое количество конструкционных и инструментальных марок стали.  [c.145]

Кроме того, при наиболее распространенном методе определения износа — микрометраже деталей — не учитывается так называемый отрицательный износ , выражающийся в изменении геометрических размеров чугунных отливок после ликвидации внутренних напряжений. При замере микрометром износа таких деталей, как цилиндры двигателей, иногда приходится встречаться с весьма странным явлением, когда диаметр замеряемого цилиндра не увеличивается после работы двигателя и износа, а, наоборот, уменьшается. Происходит это от ликвидации разного рода напряжений в поверхностном слое, возникающих в результате механической и термической обработки деталей.  [c.65]

Для выбора режима термической обработки предварительно было проведено определение критических точек дил1атометрическим методом.  [c.185]

В связи с интенсивным развитием газонефтепроводного транспорта, резким увеличением общего объема добываемого газа в северных районах страны и, особенно в Сибири, возникла необходимость существенного увеличения пропускной способности строящихся трубопроводов, а также создания новых эффективных способов транспортировки газа. При существующем сортаменте труб (диаметром до 1420 мм) наиболее целесообразным является увеличение пропускной способности трубопроводов, которое достигается путем повышения рабочего давления. Трубная промышленность в десятой пятилетке освоила серийное производство газопроводных труб диаметром 1420 мм из малоперлитной стали 09Г2ФБ контролируемой прокатки на рабочее давление 7,5 МПа. Дальнейшее повышение рабочего давления до 10—12 МПа позволит существенно увеличить пропускную способность строящихся трубопроводов. Развитие производства сталей для магистральных газопроводов с такими высокими параметрами должно учитывать повышенные требования, предъявленные к основному металлу таких труб. Низколегированная сталь должна обладать как необходимой прочностью, так и высоким сопротивлением хрупкому и вязкому разрушению при температурах монтажа и службы газопровода. С увеличением диаметра труб и их рабочего давления существенно возрастает толщина листовой стали, из которой изготавливаются такие трубы. В зтом случае возникают определенные трудности в достижении как необходимой прочности, так и вязкости даже при использовании специальных мер, например, ограничение температуры окончания прокатки или специальная термическая обработка в виде нормализации или термоулучшения. Принципиально новым методом повышения надежности газопроводных труб является применение труб многослойной конструкции, изготовленных из рулонной, относительно небольшой толщины, полосы, прокатанной на высокопроизводительных широкополосных станах.  [c.197]

Для очень ответственных деталей применяется также контроль механических свойств, а для деталей, подвергнутых химико-термической обработке или поверхностной закалке, определяется глубина и микроструктура науглероженного, азотированного, цианированного и поверх-H0 1H0 закаленного слоя. В табл. 102 приведена характеристика приборов, применяемых в производственных условиях для испытания твердости. В табл. 103 дано соотношение чисел твердости, определенных различными методами. Соотношение между твердостью и пределом прочности при растяжении а может быть принято для стальных поковок и проката  [c.142]

Метод определения предела усталости по критическому напряжению. Метод ускоренного определения предела усталости по критическому напряжению разработан В. С. Иване вой и основан (как указывалось ь главе энергетических теорий) на гипотезе энергетического подобия уст лостного разрушения и плавления металлов. В. С. Иванова [14] установила, что циклическая константа разрушения а, равная разности между критическим напряжением и напряхчением предела выносливости, выраженном в касательных напряжениях а = Тк—Tw и критическое число циклов Nk постоянны для определенного вида металла. Например, для стали а = 3 кгс1мм , iV,( = 2-10 циклов. Величина а не изменяется при изменении легирующих добавок в стали и не зависит от термической обработки, геометрии образца и типа напряжений (растяжение-сжатие, изгиб, кручение). Критическое число Л к зависит от легирующих добавок и термической обработки, но эта зависимость незначительна и ею можно пренебречь.  [c.31]

На фиг. 48 приведены результаты исследований Л. А. Гликмана и В. П. Тэхта [84] по определению режима термической обработки для снятия остаточных напряжений в деталях из аустенитной стали 1Х18Н9Т. Исследования проводились на дисках диаметром 170 мм, в которых методом закалки в воде создавались остаточные напряжения. В отличие от перлитных сталей в данном случае полное снятие остаточных напряжений наступает лишь при 800°.  [c.90]

В настоящее время нет единой методики определения антифрикционных свойств материалов, и поэтому их исследования проводятся на различных типах машин, при различных скоростях, удельных давлениях и путях трения, при применении разнообразных смазок и пар трения. Антифрикционные свойства слоев на титане, полученные методами химико-термической обработки, изменяются по мере износа слоя, так как послед1Шй имеет пере- менные по глубине физико-механические свойства, в том числе и твердость, изменяющуюся от максимальной на поверхности до твердости исходного материала.  [c.194]

В настоящем учебнике рассмотрены физико-химические основы строения и свойств конструкционных металлических и неметаллических материалов, приводятся широко используемые методы определения механических свойств материалов при различных видах нагружения, излагаются основы термической обработки и поверхностного упрочнения деталей. Значительное внимание при этом уделяется дислокационной концепвдш прочности,  [c.3]

В учебнике рассматриваются вопросы физико-химического строения металлических и неметаллических материалов, термической обработки и поверхностного упрочнения, понятия о механических свойствах и методах их определения, основы теории и технологии получения заготовок литьем, давлением сваркой и пайкой, механическоцобработкой и рекомендации по их применению.  [c.640]


Смотреть страницы где упоминается термин ТЕРМИЧЕСКАЯ ОБРАБОТКА Методы определения : [c.513]    [c.265]    [c.148]    [c.167]    [c.18]    [c.484]    [c.484]    [c.33]    [c.390]   
Материалы в машиностроении Выбор и применение Том 2 (1968) -- [ c.454 , c.474 ]



ПОИСК



Методы термические

Напряжения остаточные в брусках призматических — Определение — Методы механические прочность 219, 221 —Определение Методы 215, 218 — Снятие при помощи термической обработки

Обработка Методы

ТЕРМИЧЕСКАЯ ОБРАБОТКА СТАЛ Методы определения

Термическая тангенциальные — Определение Методы механические 212, 213 Снятие при помощи термической обработки



© 2025 Mash-xxl.info Реклама на сайте