Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия металлов и ее оценка

Коррозия металлов и ее оценка  [c.316]

Таким образом, приведенный термодинамический анализ дает оценку критических допустимых концентраций окислителя, при которых поверхность металла ещ,е не подвергается окислению, но выше которых начинается газовая коррозия. Однако такой подход не позволяет определить кинетику процесса окисления и, следовательно, оценить скорость окисления.  [c.17]


При оценке совместимости различных металлов и сплавов в конструкции необходимо учитывать не только взаимное влияние от контакта, но и возможность изменения полярности даже при незначительном изменении свойств как электролита, так и самого материала при технологических операциях изготовления и сборки. Увеличение содержания кислорода может изменить потенциал коррозионно-стойкой стали и сделать ее катодной по отношению к медны.м сплавам, и наоборот. В большой степени материальные потери при катодной коррозии зависят от соотношения поверхностей анода и катода. Часто можно без особого ущерба допускать контакт детали с малой катодной поверхностью с деталями значительно большего размера, но анодными по отношению к ней.  [c.94]

Общие коррозионные потери состоят из прямых и косвенных. Прямые потери — это безвозвратная потеря металла вследствие коррозии, которая по существующим оценкам составляет около 15 % всего выпускаемого металла, стоимость замены вышедших из строя элементов машин, оборудования и коммуникаций, антикоррозионных мероприятий и пр. Косвенные потери связаны с уменьшением выпуска продукции из-за простоев во время ремонта, ухудшением ее качества, загрязнением окружающей среды. Большие убытки вследствие коррозии несут нефтегазодобывающая, нефтехимическая, химическая, горнорудная, металлургическая, энергетическая промышленность, сельское хозяйство, транспорт и др.  [c.3]

Таким образом, термодинамика дает не только сведения о возможности или невозможности протекания коррозионного процесса, но и количественную оценку его движущих сил. Суждение о степени термодинамической нестабильности различных металлов в растворах электролитов, т. е. суждение о возможности или невозможности протекания электрохимической коррозии металла может быть приближенно сделано также по величине стандартного электродного потенциала металлов [7] (см. табл. 2).  [c.14]

Оценка коррозии ло потере в весе упрощает измерения, поскольку она не требует предосторожностей для сохранения продуктов коррозии. Однако этот показатель коррозии вносит и свои осложнения, так как удаление окалины с поверхности металлов подчас затруднительно. Поэтому выбрать данный показатель следует только в случаях, когда имеется сравнительно большая скорость коррозии. Простейшая установка для изучения окисления металлов весовым методом, т. е. для испытания в атмосфере воздуха, показана на рис. 31. Образцы, подготовленные обычным способом, помещают либо в открытые тигли, которые могут быть из любого огнеупора фарфоровые, шамотные или кварцевые, либо, еще проще, укладывают в фарфоровые лодочки. При этом необходимо предусмотреть, чтобы образующиеся окислы не взаимодействовали с материалом тигля. Для этого образцы следует устанавливать не непосредственно на дно тигля, а на подставки их жаростойкого материала (нихромовая проволока, серебро и др.). При испытании серии образцов тигли устанавливают в гнезда подставки, изготовленной из нержавеющей, жаропрочной стали или нихрома и помещают в печь с регулируемой температурой, В качестве таких печей могут быть использованы различные горизонтальные муфельные печи. Тигли или подставки следует располагать на равном расстоянии от стенок печи для того, чтобы избежать разницы в температуре испытания отдельных образцов, которая не должна превышать 10—15°. Испытания проводят двумя способами 1) выдерживают образцы в печи при выбранной температуре определенное время, после чего вынимают их, охлаждают, выдерживают некоторое время в эксикаторе и взвешивают 2) делят испытания на определенное число промежутков, например 100 час. на 10 промежутков по 10 час. каждый. После каждых 10 час. испытаний образцы вынимают из печи, охлаждают, выдерживают некоторое время в эксикаторе, взвешивают и вновь помещают в печь.  [c.83]


Выбор количества образцов для испытаний зависит от условий проведения испытаний, т. е. от того, будут ли образцы сниматься с испытания через определенные промежутки времени или испытываться непрерывно до конца выбранного срока, и от способа оценки коррозионной стойкости металла. При непрерывных испытаниях и качественной оценки коррозии, осуществляемой внешним осмотром, достаточно двух параллельных образцов. При количественной оценке коррозии число образцов зависит от требуемой точности измерений и может быть равно 10—12. При проведении атмосферных испытаний необходимо помнить, что однажды испытанные образцы нельзя испытывать вторично, так как состояние их поверхности существенно отличается от первоначального.  [c.203]

Критерием коррозионной стойкости металла при атмосферных испытаниях наиболее часто служит изменение внешнего вида образцов, изменение их веса и механических характеристик. При оценке коррозионной стойкости металла или покрытия по изменению внешнего вида сравнение ведут по отношению к исходному состоянию поверхности, поэтому состояние последней перед испытанием должно быть тщательно зафиксировано. Для этого образцы осматривают невооруженным глазом, а некоторые участки — через бинокулярную лупу. При этом особое внимание обращают [320] на дефекты а) на основном металле (раковины, глубокие царапины, вмятины, окалина, ее состояние и пр.) б) на гальваническом или лакокрасочном покрытии (шероховатость, питтинг, трещины, вздутия, непокрытые места, пятна от пальцев, царапины). Результаты наблюдений записывают или фотографируют. Для облегчения наблюдений и точного фиксирования их результатов на осматриваемый образец накладывают проволочную сетку или прозрачную бумагу с нанесенной тушью сеткой. Результаты осмотра записывают в специальную карту предварительного осмотра, имеющую такую же сетку [319]. Первоначально за образцами наблюдают ежедневно для установления первых очагов коррозии. В дальнейшем осмотр повторяют через 1, 2, 3, 6, 9, 12, 24 и 36 мес. с момента начала испытаний. При наблюдении на образец можно накладывать масштабную сетку и наблюдаемые изменения фиксировать на карте осмотра [1]. При наблюдении обращают внимание на следующие изменения 1) потускнение металла или покрытия и изменение цвета 2) образование продуктов коррозии металла или покрытия, цвет продуктов коррозии, их распределение на поверхности, прочность сцепления с металлом 3) характер и размеры очагов коррозии основного, защищаемого металла. Для однообразия в описании производимых наблюдений рекомендуется употреблять одинаковые термины потускнение, пленка и ржавчина. Термин потускнение применяют, когда слой продуктов очень тонкий, когда происходит только легкое изменение цвета поверхности образца, термин пленка употребляется для характеристики более толстых слоев продуктов коррозии и термин ржавчина — для толстых, легко заметных слоев продуктов коррозии. Характер слоев продуктов коррозии предлагается описывать терминами очень гладкие, гладкие, средние, грубые, очень грубые, плотные и рыхлые. При описании характера продуктов  [c.206]

Определение скорости не только общей, но и локальной коррозии, наблюдаемой при эксплуатации энергооборудования современных электрических станций, требует применения точных и быстрых методов ее оценки. При этом приобретает важное значение определение указанных видов коррозии в любой момент, т. е. получение кинетической характеристики процесса. Применяющиеся сейчас в практике дисковые индикаторы коррозии позволяют определять только весовые потери металла с единицы поверхности, что наиболее полно характеризует равномерную коррозию. Оценка локального коррозионного разрушения только по весовым потерям металла не дает действительной картины процесса.  [c.131]

Количественные методы оценки коррозионной стойкости основаны на определении изменений а) массы образца б) объема выделяемого или поглощаемого газа в процессе коррозии в) механических свойств в результате коррозии г) физических свойств материала до и после коррозии д) коррозионного тока е) глубины прокорродировавшего металла и др.  [c.44]


В технике используются механические колебания в очень широком интервале частот — от нескольких герц до 200 МГц, или от инфразвука до ультразвука. Широкий интервал применяемых частот обусловлен тем, что характер их распространения и поглощения зависит от частоты. Ею определяются контролируемая зона, минимальная измеряемая толщина, степень поглощения и характер возбужденных волн. В ультразвуковой дефектоскопии используется целая гамма различных видов волн, которые отличаются друг от друга как направлениями распространения колебаний, так и характером колебаний. Механические колебания используются для выявления нарушения сплошности и измерения толщины. Свойство их поглощения при прохождении через контролируемую среду используется для нахождения мелких рассеянных инородных включений и пустот, оценки неоднородности зерна, структуры, определения плотности массы, внутренних напряжений, коэффициента вязкости, межкристаллитной коррозии, зоны поверхностного распространения. Большим достоинством методов и средств неразрушающего ультразвукового контроля является их универсальность — возможность применения как для металлов и сплавов, так и для керамики, полупроводников, пластических масс, бетона, фарфора, стекла, ферритов, твердых сплавов, т. е. таких синтетических материалов, которые находят все большее применение в технике.  [c.548]

Во многих случаях локальная коррозия металла сопровождается общей коррозией поверхности, оценка которой также необходима. Кроме того, сочетание различных методов контроля общей коррозии позволяет дать характеристику местных ее видов. Поэтому технологические решения, применяемые для исследования общей коррозии, представляют интерес и при изучении локальной коррозии.  [c.8]

Поэтому более результативны дифференциальные методы оценки степени повреждения поверхности. К ним относятся — линейный износ V (мкм) изменение размера детали при ее изнашивании в направлении, перпендикулярном к поверхности трения. Аналогично применяется глубинный показатель коррозии, оценивающий уменьшение толщины металла в каждой точке (зоне) поверхности. Эти показатели являются функцией координат данной точки поверхиости х =1 — длины, у = а — ширины), т. е. и — f а, I) (см. рис. 23). Анализ этой зависимости позволит установить необходимые для данных условий численные показатели степени повреждения. Например, максимальный износ, неравномерность износа, износ сопряжения и др. (см. часть И).  [c.93]

Мерой оценки свариваемости служит комплекс показателей по химической однородности, по стойкости против межкристаллитной коррозии, твердости, пределу текучести и прочности, показателям пластичности, ударной вязкости, чувствительности к надрезам и т. д. Особо важное место занимают проблемы свариваемости с позиций технологической прочности, т. е. сопротивления металла образованию трещин при сварке, в процессе остывания и в последующий период.  [c.129]

На практике для количественной оценки коррозионной стойкости металлов можно использовать любое свойство или характеристику металла, которые существенно и закономерно изменяются при коррозии. Так, в системах водоснабжения оценку коррозионного состояния труб можно дать по изменению во времени гидравлического сопротивления системы или ее участков.  [c.192]

Критерии оценки коррозионной стойкости материалов могут быть качественные и количественные. Качественным критерием является оценка изменений, произошедших в ходе коррозионных испытаний с внешним видом испытуемых образцов и коррозионной средой. Оценка изменений внешнего вида образца может быть визуальной или проводиться с применением микроскопов — определяется изменение морфологии поверхности металла и ее окраски. Об изменениях в коррозионной среде судят по нарушению ее цветности и появлению в ней нерастворимых продуктов коррозии. Разновидностью качественных методов являются индикаторные методы, основанные на изменении цвета специально добавляемых в коррозионную среду реактивов под действием продуктов растворения испытуемого материала. В практике испытаний сталей таким реактивом часто является смесь ферро- и феррицианида калия, в результате взаимодействия которой с ионами двухвалентного железа образуется турбулевая синь — ярко окрашенные области синего цвета. Качественным индикатором при исследовании коррозии алюминия и его сплавов является ализарин, окрашивающий зоны преимущественного растворения в красный цвет.  [c.141]

Для получения необходимой информации о коррозии металла и оценки влияния на ее развитие среды и отдельных эксплуатационных факторов следует систематически осматривать внутреннюю по1верхность элементов энерго-оборудования и вырезок труб из мест, где наиболее вероятна коррозия. К таким местам относятся  [c.242]

Все принятые методы оценки коррозии металлов и способы ее определения разделяются на качественные и количественные. Качественные методы испытания, хотя и не дают полной характеристики стойкости металлов и являются вспомогательными, имеют большое значение, так Как во многих случаях позволяют заранее устамовить характер и интенсивность корровийного процесса.  [c.13]

Все принятые методы оценки коррозии металлов и способы ее определения разделяются на качественные и количественные. Качест-  [c.313]

Таким образом, гомогенная трактовка протекания электрохимического коррозионного процесса, являющаяся вполне законной для жидкого металла, при переходе к твердому металлу может слуокить только известным приближением являющимся упрош,ен-ной картиной при наличии в металле инородных включений и пригодным только для металлов повышенной частоты или для количественной оценки случаев более или менее равномерного характера разрушения поверхности корродирующего металла, т. е. когда общая величина коррозии представляет интерес.  [c.186]


Другим свойством протектора как анода в коррозионном элементе является эквивалентность между нагрузкой и массой, согласно уравнению (2.5). Этот показатель называется токоотдачей. Он получается тем выше, чем меньше атомная масса и чем выше валентность металла протектора. Для оценки практической пригодности теоретическая токоотдача сама по себе не является определяющей, поскольку под анодной нагрузкой большинство материалов протекторов обеспечивает не теоретическую, а меньшую токоотдачу. Разность между теоретической и фактической токоотдачей (выход по току) соответствует собственной коррозии самого материала протектора. Ее причиной являются катодные побочные реакции или анодная реакция, протекающая иногда с аномальной валентностью ионов металла протектора (см. раздел 7.1.1).  [c.175]

Влияние других примесей в атмосфе-р е. Широкий спектр химических примесей в атмосфере антропогенной природы затрудняет оценку их влияния на коррозию металлов, особенно на фоне относительно больших концентраций таких загрязнений, как SO2, NO2, С1 и др. Вместе с тем, можно заключить, что активаторами атмосферной коррозии металлов будут все примеси, способные при растворении в пленке влаги ионизироваться или подвергаться гидролизу. К этому классу примесей могут быть отнесены пары низкомолекулярных кислот (муравьиной, уксусной, пропио-новой и др.), многие элементоорганические соединения, которые могут быть выброшенными в атмосферу предприятиями лесохимической и деревообрабатывающей промышленности.  [c.65]

Оценку защитных свойств ПИНС проводят при их непосредственном испытании в коррозионных камерах различной конструкции. Были испытаны многочисленные прямые методы оценки защитных свойств с целью прогнозирования сроков защиты и установления скорости коррозии металлов. В работах П. В. Стрекалова, Ю. Н. Михайловского, Г. Б. Кларка и других исследователей изучена кинетика развития коррозионных процессов под пленками влаги, в присутствии диоксида серы и хлора в специальных автоматизированных установках и камерах, а также на атмосферных испытательных станциях стран — членов СЭВ [127]. Сделана попытка моделирования в камерах искусственного климата атмосферной коррозии металлов за счет ее ускорения с повышением температуры.  [c.101]

По потере в весе (K w). Измерение потери в весе прокорро-дировавшего металла является наиболее широко распространенным методом колнчествеиной оценки коррозии металлов. Это, несомненно, связано с простотой метода и тем, что он является прямым, т. е. непосредственно выражает количество металла, разрушенного коррозией. Данный метод не применим лишь при резко выраженной избирательной коррозии, такой как межкри-сталлитная или экстрагивная и глубокий питтинг. В первом случае — вследствие трудности удаления продуктов коррозии, а во втором — потому, что глубина проникновения язвы может оказывать решающее влияние на прочность металла по сравнению с потерей веса. Показателем при определении коррозии весовым методом является величина К, представляющая собой отношение разницы между весом металла в исходном состоянии Ро и после коррозии Р к единице исследуемой поверхности F, т. е.  [c.21]

Существенным отличием оценки воднохимического режима прямоточных котлов ОКД является важность данных по скорости коррозии конструкционных материалов в различных участках пароводяного тракта и по интенсивности образования отложений [47]. Скорость коррозии металлов питательного тракта определяют с помощью индикаторов коррозии различного типа, выполняемых в виде пластин кз исследуемых металлов и устанавливаемых до деаэратора— в трубопровод после деаэратора — в контейнер, монтируемый на трубопроводе, шунтирующем ПВД в экономайзере — в одну из труб. Протекание пароводяной коррозии контролируется по вырезаемым коротким (около 60 мм) участкам из различных зон котла не менее чем после годичного срока его эксплуатации оценкой состояния металла специальных вставок, устанавливаемых в котел определением содержания водорода в питательной воде и паре работающего котла (при переменных режимах работы используют водородомер j. Водородомеры устанавливают на входе и выходе из котла, за встроенной задвижкой, на входе и выходе из промежуточного перегревателя. За ростом отложений на внутренней поверхности котлов осуществляют непрерывный контроль с помощью замера температуры стенки металла трубы по вваренным в экранные трубы температурным вставкам (см. 13.3). Необходимо проводить определение эрозионной активности питательной воды (обычно для деталей питательного тракта), являющейся следствием ее силового и коррозионного воздействия на омываемую поверхность металла. Контроль осуществляют установкой образцов из материалов-эталонов по эрозионной стойкости.  [c.292]

Прямые методы связаны с определением потенциала металла, времени до начала образования твердых и газообразных продуктов коррозии, характером изменения этих показателей во времени. К пря1мым методам относятся также количественная и визуальная оценка состояния покрытия, т. е. фиксирование появления видимых на покрытии или под пленкой точек или очагов коррозии.  [c.48]

Значительно менее надежны данные для твердых электродов, особенно в случае металлов, подвергающихся коррозии в кислой среде. Здесь возможны несколько путей использования уравнения (1.79) применительно к ингибированию коррозии. Л. И. Антропов [28, 33, 36] предлагает использовать для оценки величины Ая )1 приведенную или ф-щкалу потенциалов. В его работах неоднократно подчеркивалось, что величины Аг 31 для ртути, измеренные по смещению максимума электрокапиллярных кривых в присутствии ПАВ, и величины lg7, полученные при коррозии железа и цинка в присутствии тех же ПАВ, изменяются параллельно. Степень заполнения поверхности ртути этими добавками не превышает 0,3—0,7. По-видимому, заполнение поверхности железа и цинка в условиях их кислотной коррозии должно быть еще меньше. Поэтому, как считает Л. И. Антропов [28, 33, 36], при ингибировании кислотной коррозии пиридиновыми и анилиновыми соединениями экранирующий эффект практически не играет никакой роли, а все торможение связано с появлением при адсорбции ПАВ дополнительного фгпо-тенциала. При этом должно выполняться уравнение (1.84). Несмотря на то, что величина Ая )1 для ртути отличается от значений Ая )1 для других металлов, в первом приближении ее можно использовать для расчета 157 по уравнению (1.84) с целью оценки эффективности ингибиторов. Принимая, что в уравнении (1.84) = 5,5, Л. И. Антропов рассчитал величины у и сопоставил их с экспериментальными результатами при ингибировании коррозии железа в серной кислоте в присутствии пиридина и его производных. В табл. 1.3 приведены данные о влиянии добавок пиридина на величину Ая )1 [36].  [c.30]

Так, адгезионно-когезионные взаимодействия наряду с адсорб-ционно-хемосорбционными имеют решающее значение для оценки защитных свойств ингибированных тонкопленочных покрытий и пластичных смазок [57] (см. главу 5). Для ингибированных тонкопленочных покрытий, а также защитных минеральных и синтетических масел, предназначенных для защиты от коррозии скрытых сечений автомобилей, труднодоступных деталей и узлов, различных металлоизделий, имеющих микрозазоры, для пропитки и консервации металлокерамических изделий и т. п. необходимы масла с хорошей растекаемостью по металлу, т. е. реализация условий уравнения (1-14).  [c.26]

Нанравленное протекание анодного процесса растворения М протекает только при Е> рЕмп+/м, а катодного процесса выделения R ( нанример, Нг) или растворения Ох (нанример, Ог) нри Е<рЕох/к (рис.1). При этом значения рЕ должны отвечать реальным условиям (t. С), что создает онределенные трудности нри термодинамической оценке возможности коррозии. Очевидно, для коррозии, т.е. одновременного иротекания растворения металла и катодной деноляризации необходимо условие  [c.21]


Защитные свойства вязких ингибированных композиций связаны с их изоляционной способностью, препятствующей паро- и влагопрони-цаемости, которая, однако, не имеет решающего значения при оценке защиты от электрохимической коррозии пленками смазочного материала. В основном эффект защитного действия определяется поляризационной составляющей, т.е. торможением электрохим 1ческих реакций. Повысить защитную способность ингибированных композиций можно введением в их состав ПАВ, способных вытеснять электролит с поверхности металла, образовывать на поверхности металла адсорбционно-хемосорбционные защитные пленки. Маслорастворимые ПАВ способны только физически вытеснять адсорбированную воду, наличие которой обусловливает развитие электрохимической коррозии. Химически связанная с поверхностью металла вода наряду с кислородом и водородом участвует в формировании хемосорбционно-адсорбционных пленок.  [c.173]

Для оценки катодного подрыва на цветных металлах могут быть использованы даннйе о сталях с покрытием, но с учетом специфических свойств цветных металлов. Так, для алюминия в качестве катодной частичной реакции нужно учесть также и реакцию по уравнению (2.19), т. е. одно лишь поступление влаги (Н2О) может управлять скоростью коррозии. С другой стороны, для активации алюминия нужны ионы хлора. Исследования на алюминиевых образцах, плотно покрытых без клея полиэтиленом толщиной 2 мм, показали, что при воздействии растворов Na l в течение года при 25 °С скорость коррозии составляет около 1 мкм в год и заметно увеличивается только при концентрациях, превышающих 0,2 моль-л . Таким образом, в грунтах и пресной воде опасности коррозии для алюминия нет, если только не пойдет катодная коррозия (см. рис. 2.16) по уравнению (2.54),  [c.169]

Разрушение защитных пленок может также наступить при химическом воздействии на них концентрированных едкого натра или кислых солей при упаривании воды. При этом едкий натр наиболее опасен для металла, так как он не упаривается досуха вследствие того, что при 320 °С переходит в расплав, обладающий весьма высокой коррозионной агрессивностью. При оценке влияния солей на устойчивость пленок необходимо иметь в виду, что в результате испарения на поверхности нагрева возникает тонкий пленочный слой воды с большой концентрацией веществ, находящихся в растворенном и нерастворенном состоянии в воде всего объема котла. Естественно, что температура в граничном слое выше температуры всего объема воды. Протекание всех водно-химических реакций и коррозионного процесса завершается в данном слое. В граничном слое могут образовываться отложения веществ, хотя концентрация их в объеме воды далека от предела растворимости. Поэтому на поверхности металла при испарении воды могут осаждаться легкорастворимые в воде соли, концентрация которых быстро достигает предела растворимости при испарении воды в граничном слое. Эти соли затем снова переходят в раствор, т. е. в ядерный слой воды всего объема котла при его остановке. Явлению хайд аута наиболее сильно подвержены МззР04 и другие фосфаты натрия, растворимость которых при 340 С снижается до 0,2 %, (25—30 % при комнатной температуре). Под слоем соединений фосфатов, выпадающих на поверхности стали, может развиваться пароводяная коррозия с образованием бороздок, что обусловлено разрушающим действием отложений на защитные пленки. В реакции с железом принимает участие как кислый фосфат, так и концентрат щелочи — продукты гидролиза тринатрийфосфата. Продуктом хайд аута является НагНР04, который разъедает металл.  [c.180]

Было бы, однако, ошибочным для определения возможно сти коррозионного процесса того или иного типа (т. е. с выделением водорода или при восстановления кислорода) посредством диаграммы, представленной на рис. 23, использовать значения равновесных потенциалов, взятых по табличным данным. В условиях действия на металл коррозионной среды потенциалы металлов могут существенным образом отличаться от их равновесных значений, относящихся к вполне олределешой концентрации потенциал-оп ределяющих ио-ной-и температуре. Такие потенциалы коррозии, как их часто называют, помимо природы металла зависят также от ионного состава электролита, различных примесей, и лк>бые оценки коррозионного поведения непременно должны осн01вывать-ся на точном учете именно таких потенциалов применительно к заданным условиям коррозионной среды.  [c.84]

В пользу электрохимической гипотезы коррозионно-механического разрушения говорит большая локальная скорость растворения металла, которая выражается в высокой локальной плотности тока коррозии. По существующим в литературе оценкам ток коррозии ювенильной поверхности составляет 1 — 10 А/см , при наличии на поверхности того же металла оксидных пленок ток снижается до 10" — 10" А/см , т.е. до 9 порядков. Исследование з. ектродных потенциалов различных металлов в процессе образования ювенильных поверхностей непосредственно в электролите показало, что степень разблагораживания потенциала определяется свойствами защитных пленок. Чем выше защитные свойства, тем выше степень разблагораживания. Наибольшее смещение в отрицательную сторону потенциала по отношению к нормальному каломельному электроду отмечено у алюминия в 3 %-ном растворе Na I( до — 1,46 В), у магния — в растворе щелочи (1,19 В — 1,74 В). У железа, никеля и меди в 3 %-ном растворе Na I потенциал смещался соответственно от —0,47 до —0,6 В от — 0,17 до —0,51 В и от — 0,21 ДО —0,44 В. У ряда титановых сплавов нами получено смещение потенциала при зачистке поверхности, непосредственно в коррозионной среде от (—0,75) (— 0,90) В до (—1,24) -ь (-1,27) В.  [c.14]

Способы определения коррозии разделяются на качественные и количественные. Способы качественного определения процесса разрушения металла часто представляют собой дополнения к количественным методам. В табл. 3 приведены основные методы определения коррозии и их характеристики. Каждый из них прямо или косвенно связан с каким-либо сопряжённым звеном общего процесса и поэтому может служить мерой самого коррозионного процесса, т. е. количества металла, перешедшего в форму коррозионных продуктов [2]. Метод оценки результатов испытаний определяется в зависимости от того, имеет ли коррозионное разрушение равномерный, местный или интеркристаллитный характер. В случае равномерной коррозии применяется весовой метод определения количества прокорродиро-вавшего металла. Он даёт непосредственную меру коррозии Л щ, т. е. потерю веса в г/л час. Показатель коррозии АГд, характеризукрщий уменьшение толщины металла, можно получить из формулы  [c.126]

Определение скорости не только общей, но и локальной коррозии, наблюдаемой при эксплуатации энергооборудования современных электростанций, требует применения точных и быстрых методов их оценки. При этом приобретает важное значение определение указанных видов коррозии в любой момент, т. е. получение кинетической характеристики процессов. Описанные выше дисковые индикаторы коррозии позволяют определять только потери массы металла с единицы поверхности, что наиболее полно характеризует равно1мерную коррозию. Однако в большинстве случаев локальная коррозия сопровождается относительно малыми потерями металла, небольшой площадью коррозионных разрушений и сравнительно высокой скоростью ее проникновения в глубину. Оценка локального коррозионного разрушения только по потерям металла не дает действительной картины процесса. Метод оценки скорости и интенсивности коррозии ло изменению электросопротивления проволочных образцов, приведенных в контакт со средой, является наиболее точным.  [c.276]

HO сосуда и возможность его эксплуатации на момент испытания и не дают представления об остаточной надежности сосуда, достаточности ее для обесиечения безопасной эксплуатации на период до следующего технического освидетельствования. Количественную оценку надежности (в том числе и остаточной) позволяют дать замеры скорости коррозии и величины износа, определение характеристик механических свойств металла, микроструктурный анализ, а также контроль сплошности сварных соединений.  [c.374]

Ограниченная величина температурного диагтазона работы не позволяет использовать тепловую трубу для теплопередачи при любой температуре. Это одно из самых существенных ограничений оно получило название температурного [12]. Наиболее характерно температурное ограничение для криогенных ТТ, например, для неона А7 раб = 20К, а для водорода А7 раб=19К. Проявляется оно также в диапазоне умеренных температур (500--900 К), где жидкие металлы еще не эффективны, а высокотемпературные органические теплоносители (ВОТ) уже не работают вследствие термического разложения, т. е. температурный диапазон работы для ВОТ имеет вид Д7 раб = 7 разл—Гтр И В колнчественной оценке может быть очень мал, так как для большинства ВОТ 7 разл = = 685 К. Вторая особенность температурного ограничения — наличие так называемых белых пятен , т. е. областей температур, где отсутствуют теплоносетели в двухфазном состоянии, например (5,2—19) К и (44,4— 53,48) К. Технологической его особенностью является предел по температуре, после наступления которого становятся существенными процессы коррозии, растворения металла корпуса в теплоносителе и уменьшается механическая прочность стенок трубы.  [c.34]


Распространена ошибочная точка зрения на роль неметаллического покрытия. Считают, что покрытие защищает метатл от коррозии, пока оно не повреждено и держится на металле. Это не так, коррозия метачла начинается задолго до того, как покрытие разрушилось. С другой стороны, даже с появлением единичных дефектов в покрытии его защитные функции еще сохраняются. На практике лимитирующим фактором непригодности покрытия в большинстве случаев считают отслоение его от подложки и распространение дефекта. При оценке защитных свойств покрытий часто опреде тяют физикохимическую стойкость материала покрытия, а состав мегалла н ею реакции с  [c.94]

Для оценки состояния внутренних проволок, т.е. контроля потери металлической части поперечного сечения каната, вызванной обрывами, механическим износом и коррозией проволок внутренних прядей, необходимо подвергать канат дефектоскопии по всей его длине. При регистрации потери сечения металла проволок, достигающей 17,5 % и более, канат бракуется. Дефектоскопия проводится с применением электромагнитного дефектоскопа (измерителя износа каната ИИСК-3), принцип действия которого основан на местном намагничивании каната посредством создания продольного магнитного поля. При изменении сечения каната (например, вследствие обрыва проволок) образуется поток рассеивания, возбуждающий в измерительной  [c.161]


Смотреть страницы где упоминается термин Коррозия металлов и ее оценка : [c.333]    [c.141]    [c.6]    [c.163]    [c.250]    [c.87]    [c.132]    [c.142]    [c.275]    [c.484]   
Смотреть главы в:

Справочник металлиста Том 2 Изд.2  -> Коррозия металлов и ее оценка



ПОИСК



Коррозия металлов

Коррозия оценка

Сравнительная оценка производства и потребления ингибиторов коррозии металлов в СССР и за рубеРекомендации

Термодинамическая оценка газовой коррозии металлов



© 2025 Mash-xxl.info Реклама на сайте