Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материал жаростойкий

Работоспособность отдельной группы деталей машин зависит не только от механических свойств, но и от сопротивления воздействию химически активной рабочей среды. Если такое воздействие становится значительным, то определяющим становятся физико-химические свойства материала — жаростойкость и коррозионная стойкость.  [c.47]

Основной материал жаростойкие и окалиностойкие стали.  [c.154]

Использование в качестве конструкционного материала жаростойкой стали позволило создать для ряда крупных высокотемпературных печей рекуператоры, позволяющие подогревать воздух до 700—900° С. Низкотемпературный подогрев воздуха (примерно до 400° С) осуществляют в конвективных трубчатых аппаратах, а окончательно подогревают воздух до конечной температуры в радиационных рекуператорах щелевого или трубчатого типа. При правильной конструкции эти аппараты обладают высокой плотностью, а радиационные аппараты к тому же мало чувствительны к загрязнению и имеют ничтожное гидравлическое сопротивление по газам. Коэффициент теплопередачи в стальных рекуператорах составляет 12,0— 18,0 ккал/(м -ч-град). Однако жароупорные стали, необходимые для изготовления высокотемпературной части рекуператоров, очень дороги. Так, аустенитные стальные трубы приблизительно в 10 и более раз дороже труб из малоуглеродистой стали.  [c.48]


Для болтов, винтов, гаек и шпилек остальных классов прочности, изделий из коррозионно-стойких, жаростойких, жаропрочных и теплоустойчивых сталей, а также изделий, материал и покрытие которых не предусмотрены ГОСТ 1759 — 70, в условном обозначении приводят те же данные (только вместо указания о применении спокойной стали полностью обозначают марки применяемой стали или сплава).  [c.202]

Электроискровую обработку применяют для упрочнения поверхностного слоя металлов деталей машин, пресс-форм, режущего инструмента. Упрочнение состоит в том, что на поверхность изделий наносят тонкий слой какого-либо металла, сплава или композиционного материала. Подобные покрытия повышают твердость, износостойкость, жаростойкость, эрозионную стойкость и другие характеристики изделий.  [c.403]

Первые два механизма, сопровождающиеся повышением жаростойкости, наблюдаются у стабильных против растворения в металлической матрице окислов, присутствующих в окалине или на границе материал —окалина в виде самостоятельных фаз.  [c.111]

Согласно ГОСТ 6130—71, жаростойкость металлов, т. е. их сопротивляемость газовой коррозии при высокой температуре, определяют по изменению массы стандартных образцов или непосредственным измерением глубины коррозии после их выдержки в печи с соответствующей газовой средой при температуре испытания, которую устанавливают в зависимости от условий эксплуатации исследуемого материала. Прн более детальном исследовании жаростойкости стали необходимо проводить испытания не менее, чем при трех температурах рабочей, ниже и выше рабочей на 50 град.  [c.440]

Антегмит применяется главным образом в качестве химически стойкого теплопроводного материала. Этот материал может быть получен и жаростойким. Новые марки АТМ-10 и АТМ-1Г обладают значительно меньшей механической прочностью, чем АТМ-1, но их теплопроводность и другие свойства выше. Физикомеханические свойства материалов ATM приведены в табл. 57.  [c.453]

Покрытия — это слои из требуемого материала, наносимые на покрываемую поверхность наплавкой или напылением (металлизацией). Покрытия преимущественно применяют для повышения износостойкости и жаростойкости. Наплавляемые материалы — твердые сплавы, антифрикционные и другие материалы. Покрытия наносят на ремонтируемые и на новые детали.  [c.34]

Материал по каждой марке стали и сплава включает следующие данные заменитель марки стали и сплава, вид поставки, назначение, содержание химических элементов в процентах по массовой доле, температуры критических точек, механические свойства, жаростойкость, коррозионная стойкость, технологические свойства, свариваемость, литейные свойства, температурный интервал ковки и условия охлаждения после ковки, обрабатываемость резанием, прокаливаемость, флокеночувствительность, склонность к отпускной хрупкости.  [c.8]


Назначение — для изготовления разнообразного сварного оборудования, работающего в средах химических производств слабой агрессивности, криогенной техники до —253°С, а также для использования в качестве жаростойкого и жаропрочного материала до 700 °С. Сталь коррозионно-стойкая аустенитного класса.  [c.508]

Углеродистые стали при высоких температурах сильно окисляются, на их поверхности образуется окалина. В связи с этим применяют специальные жаростойкие и жаропрочные стали, содер-жаш,ие различные легирующие добавки. Жаростойкостью называется свойство материала противостоять при высоких температурах химическому разрушению поверхности, а жаропрочностью — способность сохранять при высоких температурах механические свойства. В настоящее время созданы специальные сплавы, а также металлокерамические материалы, надежно работающие при температурах до 1000 С.  [c.123]

В регенеративных теплообменниках в качестве промежуточного теплоносителя используется твердый достаточно массивный материал — листы металла, кирпичи, различные засыпки. Регенеративные теплообменники незаменимы для высокотемпературного ( >1000°С) подогрева газов, поскольку жаростойкость металлов ограничена, а насадка из огнеупорных кирпичей может работать при очень высоких температурах. Иногда регенеративные теплообменники выгодно использовать и для охлаждения запыленных газов, которые способны быстро изнашивать или забивать, трубки рекуператоров.  [c.124]

Испытание в условиях агрессивных сред выдвигает ряд требований к конструкции нагревательных устройств. Материал нагревателя должен обладать высокой жаростойкостью в условиях рабочих сред.  [c.53]

Одним из таких недостатков является высокая температура процесса алитирования (950—1000° С), вследствие чего алитирование нельзя применить для крупногабаритных деталей из-за больших поводок и короблений их при таких температурах. Это сокращает область применения жаростойких покрытий и приводит к необходимости применения дорогих высоколегированных материалов в тех случаях, когда по условиям работы можно было бы применять менее легированный материал с защитой детали или узла жаростойким покрытием.  [c.157]

Покрытия наносились на графит, поверхностно силицирован-ный графит и борсодержащие материалы методом наплавления в инертной или окислительной средах при 1300—1600 . Содержание наполнителя (Мо8 2, 81С) в покрытии изменялось (вес. %) от 10 до 95, связки — от 5 до 95. Установлено, что наполнитель в покрытии сохраняет свою индивидуальность. Это дает возможность придавать поверхности защищаемого материала разнообразные свойства жаростойкость, твердость, устойчивость в различных агрессивных средах и т. д.  [c.193]

Жаростойкость покрытий исследовали при окислении на воздухе при 900° С в течение 5 ч. Материал защищаемых образцов — сталь 3. Из полученных данных (см. таблицу) следует, что покрытия из легированных композитных порошков (за исключением легированных оловом) имеют показатель интенсивности окисления в 2—2.5 раза ниже, чем в случае двухкомпонентного (№— А1) покрытия. Наименьшее значение достигнуто при комплексном легировании фосфором и цирконием (0.42 мг/(см -ч)).  [c.126]

Состав металлических жаростойких покрытий, получаемых методами плакирования, плазменного и электронно-лучевого напыления, можно задавать, исходя из требуемого комплекса служебных свойств. Предварительная оценка жаростойкости и коррозионной стойкости выбранного состава может быть сделана на основе свойств материала покрытия в литом или деформированном состоянии. Однако в отличие от таких материалов с фиксированным составом, содержание легирующих в покрытии изменяется по ходу его службы. Покрытие обедняется компонентами, обеспечивающими образование защитного окисла, и насыщается элементами из сплава, которые ухудшают стойкость покрытия [1].  [c.215]

Наряду с разработкой и освоением рациональной технологии производства ядерного топлива большое значение для развития атомной техники имеют конструкционные материалы, применяемые в производстве специального промышленного и исследовательского оборудования. Помимо обычных требований механической прочности, теплопроводности, жаростойкости, коррозионной, эрозионной стойкости и т. д. к ним предъявляются специфические, определяемые особенностями атомной техники требования радиационной стойкости, необходимой степени поглощения нейтронов в зависимости от производственного назначения материала и пр. С учетом этих требований выбирались и изучались различные марки стали для элементов конструкции атомных реакторов, искусственного графита для элементов систем замедления и отражения нейтронов.в активной зоне реакторов, алюминия для защитных оболочек твэлов, предотвращающих возникновение химической реакции между химически несовместимыми урановыми сердечниками твэлов и теплоносителем (например, водой), бетона для нужд противорадиационной защиты и т. д. Применительно к этим же требованиям отечественной промышленностью освоены в производстве новые конструкционные материалы, ранее получавшиеся лишь в крайне ограниченных количествах на лабораторных установках — тяжелая вода, бериллий, цирконий и его сплавы и др.  [c.163]


Пригодность стали к использованию в качестве материала пароперегревательных труб определяется ее жаростойкостью и стабильностью во времени при повышенных температурах, а также технологическими свойствами при изготовлении труб и пароперегревателей из них. В связи с перечисленными особенностями хромомарганцевые стали могут использоваться в качестве материала пароперегревателей при условии их дополнительного легирования (редкоземельными элементами либо молибденом, вольфрамом, бором) для удовлетворения перечисленных выше требований.  [c.247]

Эксплуатационные, или служебные свойства. В зависимости от условий работы машины или конструкции определяют коррозионную стойкость хладостойкость жаропрочность, жаростойкость анти-фрикционность материала.  [c.10]

Модели из форм удаляют выплавлением в горячей воде. Для этого их погружают на несколько минут в бак 8, наполненный водой 9, которая устройством 10 нагревается до температуры 80—SO С (рис, 4.27, е). При выдержке модельный состав расплавляется, всплывает на поверхность ванны, откуда периодически удаляется для нового использования. После извлечения из ванны оболочки промывают водой и сушат в шкафах в течение 1,5—2 ч при температуре 200 °С. Затем оболочки 12 ставят вертикально в жаростойкой опоке IS и вокруг засыпают сухой кварцевый песок 14 и уплотняют его, после чего форму направляют в электрическую печь У / (рис, 4.27, ж), в которой ее прокаливают не менее 2 ч при температуре 900—950 С. При прокалке частички связуюитсго спекаются с частичками огне-упоргюго материала, испаряется влага, выгорают остатки модельною состава. Формы сразу же после прокалки (горячими) заливают расплавленным металлом /6 из ковша 15 (рис. 4,27, з).  [c.149]

Упрочняющие окислы влияют на жаростойкость упрочняемых металлов, находясь в исходном или растворенном виде в окалине, образующейся на композиции при ее окислении. Иногда они присутствуют на границе материал — окалина и препятствуют стоку катионных вакансий из окалины в материал, способствуют скоплению вакансий, возникновению микрополостей на границе раздела материал— окалина и росту окалины внутрь по механизму Мровеца —Вербера (см. с. 74), что приводит к образованию двухслойной окалины.  [c.110]

Следует подчеркнуть, что выбор материала зависит не только от его прочиостпо-массовых характеристик, но и назначения и условий работы детали. При выборе материала учитывают присущие ему жесткость, твердость, вязкость, пластичность, технологические характеристики (обрабатываемость, штампуемость, свариваемость), износостойкость, коррозионнобтойкость, жаростойкость и жаропрочность (для деталей, работающих при повышенных температурах). Важную роль играет стои.мосгь материала, отсутствие в нем дорогих и дефицитных компонентов.  [c.199]

По схеме 2 обозначают болты, винты н Н1пильки классов прочности 8.8, 10.9, 12.9, 14.9 и гайки классов прочности 10 12 14 и 06, изделия нз коррозионно-стойких, жаростойких, жаропрочных и теплоустойчивых сталей, а также изделия, материал или покрытие которых не предусмотрены ГОСТ 1759—70 .  [c.337]

Болты, винты и шпильки классов прочности 8.8—14.9, гайки классов прочности 10—14, изделия из коррозионно- и жаростойких, жаропрочных и теплоустойчивых сталей. а также изделия, материал или покрытие которых не предусмотрены настоящим стандартом, обозначают по следующей схеме иБолт 2 М12 Х X 1,25. 6в X 60. 88. 35X. КД ГОСТ 7805-70 .  [c.97]

Свариваемость — способы сварки — РДС и АДС Сварка нагревателей с рабочей температурой выше 1100 °С производится постоянным током электродами из того же материала с обмазкой О.ЗЛ-8. Сварка нагревателей с рабочей температурой до 1100 С производится обычными электродами из жаростойки материалов. АДС — неплавящимися электродами с применением присадочного материала из сплава Х27Ю5Т. При сварке нагревателей необходимо прикрывать их асбестовыми листами во избежание попадания брызг и повреждения проволоки в этом месте.  [c.559]

Чугунами называются сплавы железа с углеродом, содержащие 2-4% С. Чугун является наиболее распространенным материалом для изготовления фасонных отливок, так как он обладает хорошими литейными свойствами, лучшими по сравнению со сталью. Область применения чугуна как конструкционного материала расширяется вследствие повышенных прочностных эксплуатационных свойств, а также в результате разработки чугунов новых марок со специальными физическими (износостойкости) и химическими свойствами (жаропрючности и жаростойкости) при повышенных температурах (600 - 1000°С).  [c.61]

Основными требованиями, предъявляемыми к конструкционным металлам и сплавам являются прочность и пластичность, высокие упругость и износостойкость, жаростойкость и жаропрочность, стойкость к криогенным температурам, высокая коррозионная стойкость, стойкость к тепловым ударам и перегрузкам, технологичность, стойкость к радиационому облучению, экономичность. Непременным требованием, предъявляемым ко всем авиационным материалам, является их высокий коэффициент качества, т. е. отношение величины данной характеристики материала к плотности.  [c.261]

Чем больше величина R, тем меньше тепловой поток (при неизменном значении 6q ) или тем тоньше (при q = onst) толщина обмуровки, а следовательно, тем, меньше ее масса. Чем выше температуры От и в. ст. тем более/термостойкий материал следует применять, толще и тяжелее получается обмуровка, Наименьшую толщину и высокую температуростойкость имеет многослойная обмуровка (из разных материалов). Со стороны теплоносителя применяют высокотемпературную обмуровку, а снаружи — с наименьшей теплопроводностью. Обычно внутренний слой обмуровки изготовляют огнеупорным (жаростойким), на него накладывают изоляционный слой, а затем уплотнительный. Термическое сопротивление такой обмуровки  [c.125]

Важнейшее требование к материалам для нагревательных приборов (жаростойким сплавам) — высокая рабочая температура — может быть удовлетворено при достаточно высокой температуре плавления материала и полном отсутствии окисления или окислении с образованием тугоплавких нелетучих, непористых окислов, предохраняющих от дальнейшего окисления. Неокисляющимся материалом с вы-  [c.258]


Пластические массы. Пластмассы обладают многими ценными свойствами (диэлектрической прочностью, антикоррозионной стойкостью, прозрачностью, малой плотностью, быстротой изготовления и др.), выгодно отличающими их от черных, цветных металлов и других известных природных материалов. Применение пластмасс эффективно только тогда, когда выбор их для того или другого назначения производится с учетом их свойств. Практически при выборе полимерных материалов следует руководствоваться потребительскими рядами пластмасс, составленными по таким главнейшим их свойствам, как ударная прочность, износостойкость, фрикционность, антифрикционность, тепло-жаростойкость и химическая стойкость и др. Такой ряд, например, конструкционных, ударопрочных пластмасс содержит несколько наименований и марок, обладающих важными свойствами для выбора материала (табл. 13.1)  [c.241]

К числу физических явлений, оказывающих влияние на жаростойкость покрытий, относятся полиморфные превращения и рекристаллизация. Даже покрытие с нулевой начальной пористостью может утратить свои защитные свойства в результате рекристаллизации, которая способствует проникновению газов через покрытие к металлу за счет граничной диффузии [1, 2]. В случае фазовых превращений из-за напряжений, возникающих вследствие разницы удельных объемов фаз, участвующих в превращении, должна происходить диффузия входящего в избытке в данную фазу компонента по направлению к растущему центру, тем самым автокаталитически ускоряя реакцию. Скорость диффузии, вызванной напряжениями, может значительно превысить скорость объемной диффузии. Именно эти диффузионные токи приводят к быстрому и полному разделению компонентов в большинстве фазовых превращений диффузионного типа [3, 4]. Поэтому предотвращение рекристаллизации и полиморфных превращений материала покрытия имеет существенное значение для повышения его жаростойкости.  [c.20]

Другим важным средством повышения жаростойкости является обеспечение цостоянного химического состава покрытий. Известно, что химический состав защитного покрытия может измениться либо в результате взаимодействия с газовой средой, либо за счет взаимодействия с основным металлом. Химическое разрушение покрытия газами предотвращается при образовании сплошной газонепроницаемой пленки в пограничном слое покрытие—газ. Такой слой образуется, например, при нагревании на воздухе дисилицида молибдена [5], на поверхности которого в начальной стадии окисления образуется стекловидная пленка кремнезема, изолирующая силицид от газовой среды. Иногда для предотвращения миграции атомов газообразных окислителей на поверхность покрытия наносят тончайший слой стекловидного материала, обладающего высокой вязкостью [6]. Предотвратить же взаимодействие защищаемого материала с покрытием при высоких температурах практически невозможно.  [c.20]

Повышенные жаростойкие свойства термоплакированного слоя объясняются более высоким содержанием в слое алюминия (85—90%), в результате чего во время работы детали на поверхности слоя образуется пленка окиси алюминия, хорошо защищающая основной материал от окисления. Окисную пленку мон но создавать предварительным окислением детали в токе кислорода при температуре 750°. Целесообразность предварительного окисления определяется условиями работы детали.  [c.158]

Испытания на жаропрочность термоплакированных и непокрытых образцов из сплава ЭИ598 показали, что термоплакирование значительно повышает длительную жаропрочность. Повышение на 40% длительной жаропрочности лопаток турбины с нанесенным поверхностным слоем алюминия наблюдали американские исследователи [4]. Этот эффект можно объяснить, если считать, что на разрушение образца при испытании на длительную жаропрочность действуют два фактора — ползучесть и газовая коррозия. При наличии на поверхности образца более жаростойкого (при температуре испытания) материала, чем основа, образец будет длительное время защищен от действия коррозии, т. е. один из факторов, разрушающих образец, будет таким образом устранен.  [c.160]

На основе бескислородных тугоплавких соединений кремния Мо312, 81С (наполнитель) и бесщелочного борокремнеземного стекла (связка) созданы покрытия, эффективно защищающие графит и борсодержащие материалы от окисления в воздухе при температурах до 1200—1600°. Показано, что на процесс формирования и физико-химические свойства покрытий оказывает влияние природа наполнителя, связки, защищаемого материала, а также газовая среда. Покрытия способны формироваться в воздушной и инертной средах. Наряду с высокой жаростойкостью покрытия отличаются химической устойчивостью в контакте с жаропрочными сплавами, в газовых (водород, азот, перегретые пары серы и др.) и жидких (кипящие водные растворы НС1, НаЗО , HN0з) средах. Библ. — 9 назв., табл. — 4, рис. — 5.  [c.344]

ПолученнМе покрытия были подвергнуты испытанию на жаростойкость в атмосфере спокойного воздуха при температурах 1350 и 1600° С. Сравнительное изучение влияния нагрева при температуре 1350° С с выдержкой 4 ч на микроструктуру алюминидного йокрытия без церия и легированного церием показало, что легирование препятствует росту зерна при нагреве, повышает температуру рекристаллизации материала покрытия и тем самым обеспечивает повышение ресурса его жаро- и термостойкости.  [c.45]

Материал покрытия Износо- стойкость, мг/ч 1 число теплосмен ер.чостонкость состояние образца Жаростойкость, характер окиег.е- Ш1Я  [c.157]

Под жаростойкостью (окалиностойкостью) понимают [2051 способность материала противостоять химическому разрушению поверхности под воздействием горячего воздуха или другого газа в ненагру-женном или слабо нагруженном состоянии. Жаростойкие стали, сплавы и покрытия должны надежно работать при температурах выше 550°С.  [c.125]

Роль ресурса пластичности материала, подвергаемого действию циклического нагружения, является определяющей для его работоопособности. Однако для количественной оценки долговечности необходимо учитывать относительную долю исчерпания ресурса пластичности в каждом цикле. Поэтому более пластичные, но менее прочные сплавы показывают большее сопротивление тер мической усталости в области малых значений долговечности (т. е. при больших уровнях Ас), а спла1вы с относительно небольшим ресурсом пластичности (5—7%) оказываются во много раз долговечнее при малых уровнях Ас, когда деформирование происходит в упругой области. Подобное пересечение кривых термической усталости наблюдается также при сравнении долговечности наклепанного и исходного материала, образцов с хрупкими жаростойкими покрытиями и без покрытий.  [c.189]


Смотреть страницы где упоминается термин Материал жаростойкий : [c.340]    [c.102]    [c.473]    [c.62]    [c.118]    [c.245]    [c.4]    [c.354]    [c.190]   
Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.288 , c.370 ]

Справочник по электротехническим материалам (1959) -- [ c.414 ]



ПОИСК



Жаростойкие и теплостойкие материалы

Жаростойкие материалы Панайоти)

Жаростойкие проводниковые материалы

Жаростойкость

Жаростойкость материала — Понятие

Железохромоалюминиевые Использование в качестве жаростойких материалов

Материалы высокопористые жаропрочные, жаростойкое

Методы определения теплостойкости и жаростойкости пластмассовых материалов

Огнеупорные и жаростойкие материалы

Прочность и жаростойкость материалов с покрытиями при высоких температурах

ШЛИКЕРНО-ОБЖИГОВЫЕ ПОКРЫТИЯ Сазонова, Г. Н. Горбатова, Е. А. Карпиченко, Г. Т. Смирнова, Курапова. Жаростойкие покрытия для волокнистых неметаллических материалов



© 2025 Mash-xxl.info Реклама на сайте