Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия оценка

При оценке коррозионной стойкости сплавов и средств противокоррозионной защиты важно также правильно выбрать показатель коррозии. Оценка коррозии по потере массы металла удовлетворительно отражает поведение стали, меди, цинка, но для таких сплавов, как алюминиевые, магниевые и нержавеющие стали, для оценки должен быть выбран другой показатель.  [c.18]

Оценка надежности по критерию коррозионной стойкости, в химической промышленности в 57 случаях из 100 причиной преждевременного выхода оборудования из строя является коррозия. Оценка надежности с использованием традиционных статистических методов для многих видов химического оборудования малопригодна, так как для применения таких методов необходима однородная статистическая информация об отказах. Поэтому оценка эксплуатационной надежности многих видов химического оборудования осуществляется индивидуально для каждого экземпляра.  [c.19]


Одним из основных показателей, определяющих надежность (ресурс) оборудования в условиях коррозионного воздействия сред, является скорость коррозии. Оценка ресурса оборудования в коррозионных средах фактически сводится к определению скорости коррозии металла, из которого оно изготовлено, и расчету срока службы путем деления толщины стенки на скорость коррозии. Такой подход позволяет правильно прогнозировать ресурс оборудования при равномерной (общей, сплошной) коррозии его элементов. Однако равномерная коррозия наблюдается примерно в 1/3 всех случаев причин выхода оборудова-  [c.19]

При отсутствии межкристаллитной коррозии изменение механических свойств алюминиевых сплавов указывает лишь на изменения сечения образцов вследствие коррозии. Оценку коррозии по изменению временного сопротивления производят по формуле  [c.24]

Оценку скорости коррозионных разрушений металлических покрытий чаще всего производят по условной шкале визуально. Определяют количество очагов коррозии или площадь, занятую коррозией. В последнем случае вводят показатель коррозии, соответствующий той или иной площади образца, занятой коррозией (оценка коррозионной стойкости по 5-балльной шкале)  [c.175]

Материал Состояние Темпера- Время Скорость коррозии (оценка стойкости)  [c.54]

Скорость коррозии (оценка стойкости)  [c.80]

Определение скорости не только общей, но и локальной коррозии, наблюдаемой при эксплуатации энергооборудования современных электрических станций, требует применения точных и быстрых методов ее оценки. При этом приобретает важное значение определение указанных видов коррозии в любой момент, т. е. получение кинетической характеристики процесса. Применяющиеся сейчас в практике дисковые индикаторы коррозии позволяют определять только весовые потери металла с единицы поверхности, что наиболее полно характеризует равномерную коррозию. Оценка локального коррозионного разрушения только по весовым потерям металла не дает действительной картины процесса.  [c.131]

Коррозионные испытания 638—640 Коррозия, оценка 642 Красители органические 506  [c.729]

Шероховатость поверхности в значительной степени влияет на износ трущихся поверхностей деталей, на их долговечность, прочность и антикоррозионные свойства. Поверхности с большей шероховатостью быстрее изнашиваются, разрушаются вследствие коррозии, оказываются менее прочными. Однако получение поверхности с меньшей шероховатостью удорожает стоимость обработки детали. Выбор рациональной шероховатости детали существенно влияет на стоимость изготовления детали. В связи с этим важное значение имеет качественная оценка шероховатости поверхности. Оценивают шероховатость поверхности специальными приборами (профило-метром, профилографом и др.) либо сравнивают обработанную поверхность с эталоном,  [c.267]


Для количественной оценки местной коррозии металлов, помимо упомянутых ранее глубинного /( и прочностного Ка показателей коррозии и показателя изменения электрического сопротивления Kr (см. с. 40 и 266), приняты также следующие показатели коррозии  [c.414]

Оценку жаростойкости делают по глубине проникновения коррозии, выраженной в миллиметрах за данный период времени, но допускается оценка и по показателю изменения массы.  [c.441]

Наиболее важными ионами, находящимися в грунтах и влияющими на скорость коррозионного процесса, являются СП, N0 50 , НСО , Са +, Mg +, К+, На+. Органические соединения, в особенности фенолы и органические кислоты, образующиеся в почве в результате бактериальных процессов, усиливают коррозию. Некоторое значение при оценке коррозионной опасности имеет кислотность грунта. Очень кислые грунты, у которых pH  [c.185]

К числу физических методов определения склонности легированных сталей к межкристаллитной коррозии, разработанных в последние годы, следует отнести метод оценки разрушения металла по изменению внутреннего трения. Разработанный М. А. Веденеевой и Н. Д. Томашовым метод основан на том явлении, что при разрушении границ зерен, нарушающих связь между кристаллитами, изменяются упругие характеристи-  [c.346]

Одна из целлюлозно-бумажных компаний оценила свои ежегодные затраты, связанные с коррозией, в 20 млн. долларов [2]. Общая сумма прямых коррозионных потерь в США по минимальной оценке составляет около 70 млрд. долларов в год, т. е. 4,2 % валового национального продукта [3]. Подсчитано, что около 15 % этих потерь можно избежать, своевременно используя постоянно совершенствуемые средства противокоррозионной защиты [3]. Известны также коррозионные потери в Австралии [4], Великобритании [5], Японии [6] и других странах. В каждой из них эти потери составляют около 3—4 % валового национального продукта.  [c.18]

Влага на поверхности металла, возникшая в результате конденсации или попадания осадков, является электролитом для данного элемента. Кучера и др. для определения скоростей атмосферной коррозии предложили установку, представленную на рис. 8.4 [27, 28]. Элемент В расположен на расстоянии около 1 м над поверхностью земли, под углом 45°. В течение длительных периодов времени электронный интегратор регистрирует появление тока в элементе. Сопоставление результатов электрохимических измерений с параллельными гравиметрическими показало пригодность электрохимической методики для оценки быстрых изменений скорости коррозии [28].  [c.179]

Базируясь на основных положениях механохимической коррозии металлов, профессором Р.С.Зайнуллиным предлагается следующее кинетическое уравнение для оценки ди-  [c.400]

Проектная скорость коррозии является усредненной величиной и предполагает протекание равномерной коррозии, что на практике встречается редко, в связи с чем для случая образования локальных коррозионных дефектов требуется разработка новых критериев оценки ресурса конструкций.  [c.136]

В табл. 13 приведены результаты расчетов остаточного ресурса работы трубопроводов (минимальная толщина стенки 18 мм) по данным внутритрубной дефектоскопии после 15 лет эксплуатации. При этом наружные и внутренние дефекты рассматривали отдельно. Поскольку скорость коррозии внутренней поверхности труб выше, чем наружной, считали, что она определяет остаточный ресурс трубопровода, который рассчитывали, согласно изложенной выше методике, исходя из условия, что глубина повреждений не превысит 3,5 мм (рис. 39). Полученные значения остаточного ресурса трубопроводов справедливы в случае, если ремонт выявленных дефектных участков проводиться не будет. Эти значения можно трактовать так же, как время до завершения ремонта трубопроводов. Вероятность отказа трубопровода за время выработки определенного остаточного ресурса или возможность аварии из-за наличия дефектов, глубина которых превышает критические значения (график V), не поддается расчету, так как она близка к единице, и возможности ЭВМ недостаточны для проведения такого расчета. Для трубопроводов, которые могут иметь дефекты металла глубиной 5 мм, значения вероятности безотказной работы превышают 0,9997, что, в свою очередь, превосходит величины, регламентируемые в нормативно-технических документах [39, 75, 78, 94]. Тем самым подтверждается корректность методики оценки остаточного ресурса и критериев предельного состояния трубопроводов, которую предлагают авторы книги.  [c.149]


Авторы книги предлагают также проводить оценку остаточного ресурса трубопровода по доминирующему дефекту и рассчитанной для него скорости коррозии. При этом пола-  [c.153]

Большая часть повреждений оборудования и трубопроводов бывает вызвана, как правило, несколькими факторами, среди которых один может являться реперным. При этом отсутствие воздействия на конструкцию определенных факторов часто играет не менее важную роль, чем его присутствие. При выявлении реперных факторов и оценке их значимости необходимо использовать наиболее полную информацию, получаемую из всех доступных источников. Лишь при таком подходе удается установить основные причины разрушения объекта коррозию (сероводородное растрескивание, водородное расслоение и другие виды, согласно [104, 105]), усталость, водородное охрупчивание, перегрузку, износ, эрозию, перегрев, дефекты изготовления или монтажа, отклонения от технических условий на материал объекта, несовершенство конструкции, отклонения от проектных условий эксплуатации (несоответствие состава, температуры и влажности среды непредвиденные нагрузки, неэффективные противокоррозионные мероприятия) и т. п.  [c.160]

Наружный и внутренний осмотр конструкции, включая все резьбовые соединения, проводят в соответствии с [31, 57, 81, 84, 106-109]. При визуальном и измерительном контроле объекта определяют состояние изоляционного покрытия (наличие адгезии, трещин, нарушений сплошности и механических повреждений). Оценку состояния изоляционного покрытия трубопроводов и системы ЭХЗ осуществляют согласно ГОСТ 9.602-89 и методике [77]. Устанавливают наличие и размеры поверхностных дефектов конструкции трещин, вздутий, рисок, рванин, надрывов, закатов, вмятин, сплошной или локальной (язвы, каверны, питтинги) коррозии. При наличии на дефектном участке диагностируемого объекта продольного или кольцевого сварных швов отмечают их дефекты трещины, кратеры, вмятины, подрезы, поры, смещение кромок, виды коррозионных поражений.  [c.161]

В связи с актуальностью проблемы и возрастающими требования.ми к подготовке специалистов возникла необходимость разработки новых учебных и учебно-методических изданий по рассматриваемой тематике. Данная книга яв-ляе-гся второй частью учебно1-о пособия Коррозия и защита конструкционных материалов и содержит обшие представления о способах защиты конструкционных материалов от коррозии. Более глубокое внимание уделено разделам, слабо освещенным в учебной литературе или содержащимся в редких изданиях. Таковыми являются, в частности, разделы, посвященные методам расчета анодной защиты химического и нефтехимического оборудования от коррозии, оценке защитных свойств неметаллических покрытий, описанию техники и технологии антикоррозийных работ на предприятиях. При подготовке учебного пособия использовались также данные, почерпнутые из отгга работы промышленных предприятий,  [c.3]

Более глубокое внимание уделено разделам, слабо освещенным в учебной литературе или содержащимся в редких изданиях. Таковыми являются, в частности, разделы, посвященные анодной защите оборудования от коррозии, оценке защитных свойств неметаллических покрытий, описанию 1ехники и технологии антикоррозийных работ на предприятиях.  [c.4]

Самая простая и надежная оценка коррозии — оценка по потерям массы металла, разрушенного коррозией. Этот способ обычно применяют при сплошной коррозии, протекающей с более или мецее одинаковой скоростью по всей поверхности металла.  [c.58]

Следует отметить, что на создание защитных потенциалов оболочек кабелей совместно с контуром будет расходоваться незначительная часть мощности катодной станции. Основная мощность пойдет на побочные параллельные цепи тока, не связанные с необходимостью защиты от коррозии. Оценка этих цепей (рис. 6.4) может быть дана только ориентировочно, так как при развет-  [c.80]

При оценке результатов испытаний на МКК принимается, что если сталь не склонна к иитеркристаллитной коррозии после закалки и отпуска в течение часа при 650°С, то такую сталь можно применять в закаленном виде в сварных изделиях, причем после сварки термическая обработка не требуется.  [c.491]

Изучить методику определения феррита в металле шва по диаграмме Шеффлера и ферритометром дать оценку склонности сварных соединений к межкристаллитной коррозии на паспортных образцах, подвергшихся испытанию.  [c.86]

Таким образом, гомогенная трактовка протекания электрохимического коррозионного процесса, являющаяся вполне законной для жидкого металла, при переходе к твердому металлу может слуокить только известным приближением являющимся упрош,ен-ной картиной при наличии в металле инородных включений и пригодным только для металлов повышенной частоты или для количественной оценки случаев более или менее равномерного характера разрушения поверхности корродирующего металла, т. е. когда общая величина коррозии представляет интерес.  [c.186]

При количественой оценке коррозии металлов ется учитывать фактор неравномерности коррозии  [c.338]

Для проведения испытания по этому методу применяют так называемый водородный коррозиметр, показанный на рис. 220. Оценка скорости коррозии производится с помощью объемного показателя коррозии — объема V выделившегося водорода в про-22  [c.339]

Оценка коррозии по изменению механических снойстп металла после воз.тейст-Ш1Я на него агрессивной среды имеет значение д,чя соответствующих расчетов при конструировании химической аипарату-р[> . Этот метод широко применяется наряду с массовым методом и при равномерной коррозии. При статическом растяжении образца после коррозионных  [c.341]

Методы исследования газовой коррозии. Исследования газовой коррозии предусматривают оценку процессов разрущения металлов, протекаюпгих по химическому механизму, главным образом под действием газовых сред при повышенных температурах.  [c.350]


Приведены основные сведения по творив химической и электрохимической коррозии металлов. Дана краткая оценка коррозионной стойкости конструкционных материалов в различных условиях, рассмотрены принципы основных видов защиты металлов от коррозии, технология производства некоторых видов антикоррозионных работ и ремонта обо дования.  [c.2]

При оценке коррозионной стойкости железобетона (бетона, армированного сталью) одедует учитывать также возможную коррозию  [c.52]

Критериями отказов по параметрам коррозии можс г бы гь величина коррозии или ее скорость. В тех случаях, когда бывает необходимо регламентировать или оценить надежность изделий в зависимости от коррозионного разрушения или проводить ее оценку при различных видах коррозии, могут использоваться показатели средняя наработка на отк 13 при коррозии, срок сохраняемости при коррозии и др.  [c.144]

Уточнение характеристик металла должно производиться на образцах, вырезанных из элементов в соответствии с программой исследований. На действующей аппаратуре допускается оценка характеристик металла по измерениям твердости. В зависимости от параметров технического состояния оборудования перечень характеристик должен быть расширен и включать кроме стандартных свойств характеристики малоцикловой и коррозионной устатости, трещиностойкости, механохимической коррозии и др.  [c.168]

Работоспособность оборудования (трубопроводы, сосуды, аппараты и др.) зависит от качества проектирования, изготовления и эксплуатации. Качество проектирования, в основном, зависит от метода расчета на прочность и долговечность, определяется совершенством оценки напряженного состояния металла, степенью обоснованности критериев наступления предельного состояния, запасов прочности и др. В области оценки напряженного состояния конструктивных элементов аппарата к настоящему времени достигнуты несомненные успехи. Достижения в области вычислительной техники позволяют решать практически любые задачи определения напряженного состояния элементов оборудования. Достаточно обоснованы критерии и коэффициенты запасов прочности. Тем не менее, существующие методы расчета на прочность и остаточного ресурса тр>ебуют существенного дополнения. Они должны базироваться на временных факторах (коррозия, цикличность нагружения, ползучесть и др.) повреждаемости и фактических данных о состоянии металла (физико-механические свойства, дефектность и др.).  [c.356]

Во втором томе (том 1. Основы теории и практики применения вышел в 1997 г. под ред. Д. Л. Рахманкулова) приведен ретроспективный анализ коррозионного состояния и технологий ингибиторной защиты оборудования и трубопроводов Оренбургского и Астраханского нефтегазоконденсатных месторождений. Рассмотрены методы диагностики, прогнозирования дефектности и оценки остаточного ресурса металлоконструкций, эксплуатиЬующихся в условиях воздействия сероводородсодержащих сред. Особое внимание уделено методологии разработки ингибиторов коррозии под напряжением, анализу позитивных и негативных моментов в применении ингибиторов отечественными и зарубежными фирмами.  [c.2]

Особое внимание уделено коррозионному мониторингу оборудования, методам и средствам прогнозирования его дефектности, определению важнейших характеристик надежности металлоконструкций, внутритрубной диагностике газопроводов, методам оценки остаточного ресурса узлов оборудования, опыту применения отечественных и зарубежных ингибиторов коррозии на этих объектах, а также новым ингибиторам коррозии под напряжением, разработанным на основе концепций, которые изложены в первом томе 11астоящей монографии [1].  [c.6]

Отсутствие совершенных средств контроля зарождения и развития повреждений металла, общепринятых принципов назначения новых сроков службы оборудования и трубопроводов с учетом их фактического состояния и условий работы не позволяют осуществлять высокоточное прогнозирование момента отказа конструкции. Оценку показателей надежности и определение остаточного ресурса оборудования и трубопроводов по зафиксированным параметрам их технического состояния проводят согласно научно-технической документации [57, 62-65] и методикам [30, 64, 66-81, 89 91]. Оценку фактической нагруженности оборудования и трубопроводов выполняют расчетными методами с учетом фактической геометрии и размеров конструкций, вида и величины выявленных дефектов и вызываемой ими концентрации напряжений, а также результатов экспериментальных исследований напряженно-деформированного состояния металла и изменения его физико-механических свойств. За исключением трещин механического или коррозионного происхождения развитие остальных повреждений трубопроводов прогнозируют по результатам внутритруб-ной или наружной дефектоскопии и контроля коррозии.  [c.139]


Смотреть страницы где упоминается термин Коррозия оценка : [c.267]    [c.73]    [c.141]    [c.333]    [c.344]    [c.36]    [c.172]    [c.331]    [c.106]    [c.137]   
Металловедение и термическая обработка стали Справочник Том1 Изд4 (1991) -- [ c.2 , c.378 ]



ПОИСК



ВЫБОР ПОКАЗАТЕЛЯ КОРРОЗИИ И МЕТОДА ОЦЕНКИ КОРРОЗИОННОЙ СТОЙКОСТИ Изменение массы образцов (весовой метод)

Выбор показателя коррозии и метода оценки коррозионной стойкости

Гравиметрический метод оценки скорости кислородной и углекислотной коррозии

К вопросу оценки интенсивности пароводяной коррозии энергоблоков по водороду. Ю. И. Бланк, И. В Пасечник (Одесский политехнический институт)

Количественная и качественная оценки коррозии и коррозионной стойкости

Коррозия Оценка количественная

Коррозия металлов и ее оценка

Коррозия оценка коррозионной стойкости

Коррозия оценка разрушения

Методы коррозионных испытаний и способы оценки коррозии

Методы оценки коррозии

Н у р к и Е. Э. Вернер. Метод оценки коррозии подшипников свинцовистой бронзы

Новая установка для оценки стойкости против атмосферной коррозии материалов при циклическом увлажнении и высушивании

Оценка влияния вторичных явлений на скорость коррозии и глубину коррозионных разрушений

Оценка интенсивности язвенной коррозии по слепкам

Оценка стойкости по времени до появления первого коррозионного очага или определенной площади коррозии

Оценка эффективности защиты от коррозии

Роль термодинамики при оценке процессов коррозии

Способы оценки коррозии

Сравнительная оценка производства и потребления ингибиторов коррозии металлов в СССР и за рубеРекомендации

Термодинамическая оценка газовой коррозии металлов

Технический проект, рабочие чертежи и технорабочий проИзыскания исходных данных для оценки опасности коррозии подземных коммуникаций

Шкала оценок коррозии



© 2025 Mash-xxl.info Реклама на сайте