Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Усилия с гидроприводом

В механизмах современных автоматических линий применяют как пневмо-, так и гидроприводы. Пневмопривод работает от цеховой сети сжатого воздуха при давлении 0,6—0,7 МПа. Он проще в обслуживании, чем гидравлический, мало подвержен влиянию пыли, имеет только трубопроводы для подвода воздуха утечка воздуха через различные неплотности не считается аварией. Однако силовые механизмы из-за сравнительно низкого давления получаются громоздкими, что относится в первую очередь к прессовым механизмам. Скорость движения механизмов регулируется плохо и поэтому приходится устанавливать различные гидравлические тормозные устройства. Линии с гидроприводом могут успешно эксплуатироваться в литейных цехах. Этому способствует и общее повышение уровня обслуживания, без чего вообще невозможна эксплуатация современных автоматических линий. Надежность работы гидропривода увеличивается при применении некоторых дополнительных мер использовании специальной гидроаппаратуры, установки гидростанций в закрытых помещениях, в которых вентилятор создает незначительное избыточное давление воздуха. По-видимому, на линиях целесообразно использовать одновременно оба привода для создания больших усилий — гидропривод, в остальных случаях — пневмопривод.  [c.220]


В машиностроении такие механизмы успешно используются в самодействующих головках, агрегатных станках, автоматических линиях и многих других машинах. Чтобы получить возвратно-поступательное движение вперед и назад головки с механическим приводом, требуется много шестерен, подшипников, валиков и других деталей, которые не нужны в силовой головке с гидроприводом. Такая головка может развивать усилие свыше 20 тыс. кг, допуская регулирование скоростей на рабочем ходу и быстрый отвод расположенного на ней инструмента. А быстрый отвод инструмента— это сокращение времени холостого хода, повышение производительности машины.  [c.72]

В 1966 г. была создана первая машина для сварки деталей сечением 500 мм с гидроприводом осевого усилия и раздельными механизмами создания осевого усилия и передачи крутящего момента на одну из свариваемых деталей. Попытка применить серийные гидростанции и гидропанели, используемые в металлорежущих станках, успеха не имела, так как масло в баке нагревалось до температуры свыше 100° за время менее чем 0,5 ч работы. Анализ причин этого явления показал, что гидросистема машины сварки трением должна удовлетворять требованиям, принципиально отличным от требований, предъявляемых к гидросистемам металлорежущих станков в гидросистемах металлорежущих станков вся жидкость, подаваемая насосом, направляется в рабочую полость цилиндра под давлением, необходимым для создания нужного усилия в машине сварки трением почти вся рабочая жидкость под полным рабочим давлением сливается в бак, так как перемещение рабочих органов не превышает 3—4 мм при максимальном усилии, т. е. расход фактически близок к нулевому.  [c.197]

Механизм с гидроприводом свободного управления четко и плавно воспроизводит любое, заданное оператором, движение. При скоростях 0,3 м/ сек отставание рабочего органа не наблюдается. Максимальное усилие на рычаг управления не превышает 2 кГ.  [c.322]

В частности, эти разделители в виде фигурных диафрагм применены в газо-гидравлических аккумуляторах (см. рис. 1.55) для отделения жидкости от газа. Диафрагмы здесь не подвержены действию сил давления, и их функции сводятся к разобщению полостей. Однако они применяются для получения тягового усилия в гидроприводах автоматики с небольшими ходами (рис. 5.19). Центральная часть мембраны в этом случае плотно зажимается между двумя металлическими кольцами а, к которым крепится тяга привода. Толщина прорезиненной ткани, из которой изготовляют мембраны, равна 0,25—1 мм. Волокна ткани должны быть расположены в диафрагме так, чтобы уменьшить осевую ее вытяжку (удлинение). Толщина материалов для изготовления металлических диафрагм равна 0,1—0,5 мм.  [c.494]


Для пуска, остановки, изменения направления движения, регулирования скорости и усилий исполнительных механизмов машин с гидроприводом используют направляющие и регулирующие гидроаппараты. Направляющие гидроаппараты предназначены для изменения направления потока рабочей жидкости путем полного открытия или полного закрытия рабочего проходного сечения. К ним относятся гидрораспределители, гидроклапаны (обратные, выдержки времени, последовательности, логические) и гидрозамки. Регулирующие гидроаппараты предназначены для изменения давления, расхода и направления потока рабочей жидкости путем частичного открытия рабочего проходного сечения. К ним относятся гидроклапаны давления (напорные, редукционные, разности и соотношения давления), соотношения расходов (делители и сумматоры потока) и дросселирующие гидрораспределители. Основными параметрами гидроаппаратов являются номинальный расход, номинальное давление и диаметр условного прохода.  [c.67]

Машины для точечной сварки содержат силовой привод, сварочный штамп (или сварочную головку), элементы схемы и аппаратуру управления. Автоматы и полуавтоматы имеют узлы подготовки (зачистки) поверхностей деталей под сварку. В машинах для точечной сварки при усилии, не превышающем 500 кН, можно применять пневмогидропривод. При больших сварочных усилиях применяют гидропривод. Давление масла создается насосной станцией, состоящей из насоса с приводным электродвигателем, распределительного и разгрузочного клапанов. Как правило, применяют ротационные (лопастные) насосы, создающие рабочее давление до 10 МПа при подаче 0,3...1,1 л/с. Силовой привод давления должен обеспечивать требуемые усилия и производительность машины, а также возможность контроля давления в момент окончания сварки.  [c.259]

С гидроприводами выпускаются протяжные, строгальные, фрезерные, шлифовальные, сверлильные, расточные, многорезцовые станки. Гидравлика используется также для управления зажимными приспособлениями и приборами гидроавтоматики. Основное достоинство гидроприводов — бесступенчатое регулирование в широких пределах скоростей и подач рабочих механизмов станков. Эти приводы отличаются простотой и легкостью управления, способностью передавать большие усилия при небольших размерах механизмов, долговечностью работы деталей, находяш,ихся в масляной среде.  [c.241]

В настоящее время используют машины в основном с гидроприводом усилием от 100 до 2000 кН для универсальных машин, а для специальных до 5000 кН.  [c.152]

В случае применения в подъемно-транспортных машинах управляемых дисково-колодочных тормозов с гидроприводом их конструкция не отличается от приведенных выше. Конструкция же стопорных дисково-колодочных тормозов существенно отличается. Так в нормально замкнутом крановом тормозе (рис. 5.26) торможение металлического тормозного диска 4, закрепленного на приводном валу, осуществляется прижатием двух тормозных накладок-колодок 2, изготовленных из фрикционного материала, к диску 4. Прижатие накладок производится усилиями двух замыкающих пружин 6 с помощью рычажной системы. Для размыкания тормоза используется тормозной электромагнит 9. При включении электромагнита его якорь опускается и, поворачивая рычаг 8, поворачивает кулачок 7, раздвигающий тормозные рычаги 5. Цилиндры 3, с которыми скреплены фрикционные накладки, движутся в жестких направляющих 1. Для устранения перекосов цилиндров при повороте тормозных рычагов осуществлено шарнирное соединение цилиндров 3 с рычагами 5.  [c.270]

Усилие Р2 зажима нижней части штампа создается устройством с гидроприводом. Зажим 8 перемещается под давлением масла и штамп фиксируется в направляющих.  [c.117]

Схема позволяет в зависимости от условий работы комбинировать величину тягового усилия и скорость движения автопогрузчика. Сцепление с гидроприводом допускает увеличивать крутящий момент в 7,6 раза больше, чем в рассмотренных ранее схемах. Кривая тягового усилия в зависимости от скорости движения автопогрузчика (рис. 37, б) аналогична рассмотренной ранее.  [c.104]


Для манипуляторов с гидроприводом механизма зажима склонность клещей к разжатию будем характеризовать усилием, необходимым для смещения поршня в осевом направлении со скоростью, квадрат которой равен единице [35].  [c.105]

Ограничители грузоподъемности состоят из датчика усилия, передающего механизма и уравновешивающего элемента. По характеру передающего механизма они делятся на рычажные, эксцентриковые, электрические и гидравлические (в кранах с гидроприводом, где их функции могут выполняться предохранительными клапанами). Уравновешивающие элементы выполняются в виде пружин, торсионов и гидравлическими. Следует иметь в виду, что с увеличением передаточного числа передающего механизма снижаются его к. п. д. и точность работы ограничителя.  [c.114]

Расчеты, связанные с гидроприводом. Основные расчеты гидропривода поперечно-строгального станка связаны с определением размеров поршня и цилиндра, скорости перемещения поршня, усилия, передаваемого поршнем ползуну, и, наконец, размером трубопровода.  [c.409]

Тягач обеспечивает энергоснабжение рабочих и исполнительных органов, а также тяговое усилие при работе и транспортировании экскаватора. Рабочие скорости передвижения изменяются бесступенчато благодаря ходо-уменьшителю с гидроприводом.  [c.92]

Усилия, развиваемые пневмоприводом, обычно меньше усилий, развиваемых гидроприводом тех же размеров это связано с тем, что силовое давление воздуха в промышленных пневмосетях составляет обычно 0,4...0,6 МПа. В авиации применяют питающее давление порядка 10 МПа и более, что обеспечивает большие усилия при сравнительно небольших габаритных размерах пневмопривода. Применение в промышленных установках сравнительно низкого давления воздуха связано с опасностью поломки и взрыва самого пневмопривода, подводящих трубопроводов и иных узлов, находящихся под давлением. Для гидропривода опасности взрыва не существует, так как масло практически несжимаемо.  [c.323]

У гидравлического аппарата управления потоком рабочей жидкости дроссельные канавки А на цилиндрической части золотника 3 выполнены в форме прямоугольного сечения (рис. 14, а). Гидроаппарат состоит из цилиндрического корпуса 1 с ввинченными в него штуцерами 7 в 8. Во внутренних расточках корпуса установлены втулка 4 и стакан 5, зафиксированные в нейтральном положении пружинами 2 и 6. Во втулке расположен дросселирующий золотник 3. При отсутствии достаточной нагрузки на гидравлическом домкрате подъема вышки (дроссельный гидравлический аппарат применен в гидроприводе подъема вышки агрегата А-50), рабочая жидкость с незначительным сопротивлением перетекает по каналам В, Б, А в Г к сливной линии гидравлической системы. По мере увеличения перепада давления между полостями В в Г (увеличения давления в полости В) усилие, действующее на торец золотника, возрастает, и он через стакан 5, сжимая пружину 6, перемещается вправо. При перемещении золотника площадь дросселирующих щелей А уменьшается, в связи с чем уменьшается и поток рабочей жидкости, поступающей через гидравлический аппарат.  [c.39]

Распределители с электрическим управлением получают в последнее время все более широкое распространение. Они лишены недостатков, присущих распределителям с ручным управлением, но могут быть применены в маломощных гидроприводах с малыми потоками жидкости. Последнее объясняется тем, что на переключение золотников большого диаметра требуются огромные осевые усилия, которые создать электромагнитом размерами, соизмеримыми с корпусом распределителя, невозможно.  [c.206]

Выбор гидро-цилиндров. Гидроцилиндры выбираем по двум параметрам величине хода и диаметру гильзы цилиндра. В курсовой работе ход поршня не известен. Поэтому гидроцилиндр можно выбрать только по диаметру (см. табл. 35). В задании указано усилие на гидроцилиндре Т = 22 10" Н. Необходимо учесть только гидромеханический КПД гидропривода, который при t = 20 С равен 0,82 (см. табл. 78).  [c.307]

Для удержания тяжелых деталей в роботах этого типа применяются схваты с двумя поступательными кинематическими парами (рис. 7.1, б), что позволяет обеспечить значительные усилия зажима при малом ходе, а также более высокую жесткость схвата. Для переноса труб используют специализированные схваты с пневмоприводом (рис. 7.1, в). С целью устранения деформаций и перегрузок звеньев робота и захватываемых предметов применяют самоустанавливающиеся схваты. Самоустановка достигается плавающими губками, обладающими двумя свободами движения относительно корпуса схвата, как это сделано в отечественном универсальном манипуляторе УМ-1. Для лучшей приспособляемости губок схвата к форме детали широко применяют резиновые или подпружиненные элементы, что необходимо при захвате хрупких деталей. Часто для захвата хрупких деталей применяют надувные элементы в виде резиновых подушечек или пальцев. Схваты с пневматическим приводом отличаются широким распространением, так как обеспечивают простоту, надежность и удобство эксплуатации. Гидропривод применяется преимущественно в промышленных роботах большой грузоподъемности. Электрический привод захватных устройств находит достаточно широкое применение.  [c.122]

Каждая степень свободы ПР управляется индивидуальным приводом, в результате чего ПО получает направленное вполне определенное движение. В современных манипуляторах используют электрические, гидравлические и пневматические приводы. Различные конструкции ПР отличаются друг от друга расположением двигателей, которые приводят в движение отдельные звенья механических рук (МР). Первоначально двигатели в ПР размещали вне МР, и усилия к звеньям руки передавались посредством зубчатых передач, или передач с гибкими звеньями. В современных конструкциях ПР рабочие цилиндры гидропривода размещают на суставах МР. С применением волновых редукторов оказалось возможным усовершенствовать электропривод и размещать его также на суставах МР.  [c.509]


Схема стенда для исследования износостойкости пары ходовой винт—гайка показана на рис, 158, г [45]. Исследуемый винт 1 получает реверсивное вращение от гидропривода. Между двумя гайками 2 помещается нагрузочное устройство, пружина которого 3 создает необходимую осевую нагрузку. Рычаги 4 с роликами, которые перемещаются по планкам 5, удерживают гайки от поворота под действием сил трения. На стенде возможно измерение момента трения, осевых усилий, температуры на поверхности трения, осциллографирование плавности движения и колебаний сил трения. Износ винта измеряется по изменению толщины витков, а износ сопряжения — по изменению относительного положения пары винт—гайка. Пример схемы стенда для исследования износа спаренных кулачков текстильных машин приведен на рис. 158, д [161]. Здесь два одинаковых кулачковых механизма с повернутыми на 180° кулачками /, роликами 2 и качающимися толкателями 3 работают так, что концы рычагов совершают встречное движение по одному закону. Поэтому нагрузочное устройство состоит из гибкой ленты 4, охватывающей ролик 5, ось которого при работе остается неподвижной. Нагрузка создается пружиной 6. На стенде можно измерять динамические нагрузки в паре кулачок—ролик, частоту вращения и проскальзывание ролика при движении его по кулачку. Последнее необходимо для оценки износа кулачковой пары, поскольку из-за инерционных сил в реальных кулачковых механизмах не наблюдается чистого качения ролика по кулачку, а проскальзывание приводит к повышенному износу пары.  [c.495]

Реверсирование гидроцилиндра объемного гидропривода поступательного движения (рис. 13.1, б) производится с помощью золотника (рис. 13.7). Определить усилие на штоке гидроцилиндра, если его диаметр d = 25 мм, диаметр цилиндра D = 50 мм, расход рабо-  [c.170]

Определить КПД гидропривода и момент на валу гидромотора, если постоянная подача насоса Q = 42 л/мин, а его КПД т] = 0,83. Усилие на штоке гидроцилиндра при движении поршня вправо со скоростью = 5 см/с равно R = 50 кН. Полные и объемные КПД гидроцилиндра и гидромотора соответственно равны т]ц = = 0,95, т)оц = 1 т) = 0,90, т)о = 0,98.  [c.186]

Вопросы динамики силового гидропривода и отдельных его элементов отражены достаточно полно в литературе [1—4]. Более узкие проблемы динамики, касающиеся аксиально-поршневых гидромашин, детально исследованы в работе [5]. Там же показано, что характер усилий, возникающих на отдельных элементах аксиально-поршневых гидромашин, тесно связан с рабочим процессом. В частности, было показано, что регулирующий орган насоса (люлька) подвержен воздействию переменного во  [c.149]

Станок портального типа. Подача поперечины с укреплённой на ней многошпиндельной головкой осуществляется с помощью гидропривода. Портальная конструкция станка позволяет вести обработку со значительными осевыми усилиями  [c.354]

Привод протяжных станков (фиг. 16, 17) преимущественно гидравлический, так как он обеспечивает повышенную стойкость инструмента и чистоту обработанной поверхности. Ввиду значительных усилий резания в гидроприводах протяжных станков применяются насосы с рабочим давлением Р — 60н-75 ати — нерегулируемые, обычно лопастные двойного действия (на станках с тяговым усилием до 5—10 т) и регулируемые, чаще всего с радиальным расположением поршней (на станках с тяговым усилием свыше 10 т).  [c.481]

С целью дальнейшего уменьшения габаритов и веса гидроагрегатов повышают давление жидкости, которое во многих случаях доведено до 700 кПсм . Важность последнего фактора становится очевидной, если учесть, что требуемые усилия, развиваемые гидроприводом мощных прессов, достигают 50 000 Т и выше.  [c.3]

Грейферные подачи с индивидуальным механическим приводом, с консольными или двухопорными грейферами (рис. 39) могут применяться дая автоматизации КГШП усилием 16—50 МН при штамповке поковок массой до 30 кг производительностью 8—12 шт/мин. Они более надежны, чем грейферные модели с гидроприводом, но нужны специальные предохранители от перегрузок. Такие подачн работают в последовательном цикле с прессом.  [c.365]

Пневматический усилитель состоит из двух корпусов, между которыми зажаты диафрагмы следящего устройства. В переднем корпусе расположены пневмопоршень 6, клапаны управления 5 и диафрагма 4. В заднем корпусе установлены гидропоршень 2 выключения сцепления и поршень 3 следящего устройства. Следящее устройство автоматически изменяет давление на пневмопоршень в соответствии с изменением усилия в гидроприводе педали сцепления.  [c.184]

Бульдозеры предусмотрены типажем как навесное оборудование к тракторам и колесным двухосным тягачам с гидроприводо.м рабочих органов. Бульдозеров к тракторам предусматривается шесть типоразмеров к колесному трактору Беларусь класса 1,4 т к гусеничным тракторам промышленной модификации классов 3 4 6 9 и 15 т. К двухосным колесным тягачам предусматривается семь типораз.ме-ров бульдозеров со следующим номинальны.м тяговым усилием (при коэффициенте сцепления 0,6) и мощностью 0,75 т и 16—22 л. с. 1,55 т и 40—55 я. с. 2,25 т и 63— 75 л. с. 4 т и 90—ПО л. с. 6 т и 160—180 л. с.] 9 т и 240—300 л. с. 15 ш и 375— 430 л. с.  [c.586]

В системах управления дорожных машин наряду с гидроприводом распространены механические передачи — редукториые, канатно-блочные и рычажные. Эти передачи надежны в работе и просты в обслуживании. На их эксплуатацию не оказывает влияния температура окружающей среды. Редукториые передачи применяются на автогрейдерах и грейдер-элеваторах, канатно-блочные — на скреперах, бульдозерах, кусторезах и некоторых других навесных машинах. На рис. 38 изображена канатноблочная система бульдозера. Она состоит из лебедки 1, каната 2, направляющего блока 3 и полиспаста, в неподвижной обойме которого закреплены блоки 4 и 5, а в подвижной — 6 и 7. Подвижная обойма закреплена на отвале. При наматывании каната на барабан отвал поднимается, так как расстояние между обоймами сокращается. Когда барабан вращается в обратную сторону, отвал под действием силы тяжести опускается, поэтому максимальное усилие на грунт ограничивается массой бульдозерного оборудования. Так как канаты дорожных машин работают в тяжелых условиях при больших динамических нагрузках, необходимо конструктивными мерами повышать их работоспособность и надежность. С этой целью следует по возможности сокращать количество перегибов, а диаметры блоков и барабанов выбирать как можно больше. В зависимости от режима работы отношение диаметра блока или барабана к диаметру каната должно находиться в пределах от 15 до 30. Из-за громоздкости конструкций, очень низкого к. п. д. и возможности создания принудительного движения только в одном направлении канатно-блочные системы вытесняются гидравлическими, которые обеспечивают незави- 62  [c.62]

Универсальная полуавтоматическая линия с выносными пресс-формами для штамповки изделий из пластмасс, разработанная A. . Езжевым в МГТУ им. Н.Э. Баумана, изготовлена на Оренбургском заводе Гидропресс . Полуавтоматическая линия содержит два гидравлических пресса с номинальным усилием 300 кН каждый (первый - для закрытия пресс-форм и создания требуемого давления на заготовку, второй - для их раскрытия, конвейер с гидроприводом и пульт управления. Время выдержки под давлением 5,3 мин, производительность 360 дет/ч, давление рабочей жидкости 20 МПа.  [c.212]

Меньших усилий требует изгиб труб на тру-богибе с гидроприводом, выпускаемым Ногинским опытным заводом монтажных приспособлений (рис. 2-2-5). Этот сравнительно недорогой инструмент может быть использован еще и для рихтовки вмятин на кузове легковой автомашины.  [c.346]


Следует отметить, что распределители с ручным управлением, обладая простой конструкцией и доступностью в управлении, имеют ряд существенных недостатков. Во-первых, большие усилия (до 30 Н) на переключение рычагов и угол размаха (до 20°) повышают утомляемость оператора. Если учесть, что оператор, например, экскаватора за смену переключает рычаги до 8 тыс. раз, то этот недостаток выглядит более остро. Во-вторых, усложняется гидравлическая система, так как сливную и напорную линии гидродвигателя необходимо подводить ближе к кабине оператора, туда, где размещен распределитель. Этот недостаток особенно проявляется в разветвленных гидросистемах и на машинах, где гидродвигатели удалены на значительные расстояния. В-третьих, такие распределители не позволяют автоматизировать, хотя бы частично, управление гидроприводом машины. Поэтому во многих случаях распределители с ручным управлением вытесняются распределителями с электрическим, электрогидрав-лическим и гидравлическим управлением (автогрейдеры, одноковшовые универсальные экскаваторы пятой и шестой размерных фупп и др.).  [c.206]

Гидроцилиндры выбирают по двум параметрам величине хода и диаметру гильзы цилиндра. В курсовой работе ход поршня не известен. Поэтому гидроцилиндр можно выбрать только по диаметру (см. табл. 37). В курсовых и дипломных проектах студент по кинематической схеме рабочего оборудования выбирает ход гидроцилиндра и указывает его в пояснительной записке. В задании на курсовую работу указано усилие на гидроцилиндре T=2d l0 Н. Необходимо учесть только гидромеха ни-ческий КПД гидропривода, который при t=20° С равен  [c.326]

Определить мощность, потребляемую насосом объемного гидропривода с дроссельным регулированием (рис. 13.12), потери мощности из-за слива Ma via через гидроклапан И КПД гидропривода, если усилие на штоке гидроцилиндра 7 = 63 кН, потери давления 13 напорной гидролинии при движении поршня вправо = 0.2 МПа, расход масла через гидроклапан — 1,55 л/мин, объемный и механический КПД гидроцилиндра tIo = 1. iIm = КПД насоса т)ц = = 0,80. Диаметр поршня D = 125 мм, диаметр штока d = 63 мм. Дроссель настроен на пропуск расхода iQflp = 12 л/мин. Утечками масла в гидроаппаратуре пренебречь.  [c.184]

Для получения более полных характеристик переходных и неустановившихся процессов, возникающих при разгоне и торможении системы с учетом упругости жидкости и трубопроводов, уточнения предложенного закона изменения проходного сечения встроенного гидротормоза, назначения оптимальной последовательности работы и характеристик управляющей и регулирующей аппаратуры, выбора оптимальных характеристик и разработки методов расчета систем такого типа выполнены теоретические исследования, в которых расчетная схема гидропривода (рис. 3) принята в виде четырехмассовой системы с упругими связями одностороннего действия. Масса 9 представляет собой суммарную массу вращающихся частей насосного агрегата, масса Шд — приведенную к поршню массу связанных с ним деталей и части жидкости гидросистемы, массы и Шз — эквиваленты распределенной массы жидкости в трубопроводах гидросистемы. Упругие связи гидросистемы обусловлены податливостью жидкости и трубопроводов. Система находится под действием концевых усилий электродвигателя Рд, подпорного клапана Рп и приложенных в промежуточных сечениях упругих связей сил сопротивления ДР,, величины которых зависят от расходов жидкости через соответствующие сечения гидросистемы. В сечениях 1 и 8 прикладываются силы сопротивления, возникающие при протекании жидкости через проходные сечения электрогидравлического распределителя. После подачи команды на перемещение золотника распределителя площади указанных проходных сечений изменяются во времени от нулевой до максимальной. В сечениях Зяб прикладываются силы сопротивления, возникающие при протекании жидкости через автономные дроссели, проходное сечение которых изменяется от максимального до минимального, обеспечивающего ползучую скорость поршня в конце хода и обратно, в зависимости от пути поршня на участке торможения и разгона.  [c.140]

Появление такого Смещения золотника приводит к значительному увеличению проводимости кромки I в момент сложения величин а в и а з и к такому же уменьшению проводимости кромки IV. Кромка III полностью перекрыта. Это соответствует началу нестационарного процесса. В результате сначала убывает давление в сервоцилиндре 1 при почти постоянном давлении в сервоцилиндре 2. Начавшееся движение люльки тут же прекращается, так как втулка золотника теперь совершает обратное движение,, перекрывая сливную кромку I. Кинетическая энергия движения люльки гасится в закрытом гидроцилиндре 1, вызывая импульс давления под поршнем. В то же время возникает подобный импульс давления в сервоцилиндре 2, обусловленный гидравлическим ударом, так как при этом поток рабочей жидкости внезапно тормозится. Эти пики усилий на штоках цилиндров смещены по времени на 0,003—0,005 сек, считая по низшей гармонике усилий, что обусловлено высокой жесткостью системы сервоцилиндры— люлька (рис. 4, 5). В течение всего времени нестационарного режима работы машины эти явления повторяются с частотой колебаний золотниковой втулки, но прекращаются, как только исчезает смещение волотника относительно среднего положенйя. Следует отметить, что частота осцилляции золотниковой втулки во время нестационарного режима работы уменьшается с 25 до 23 гц из-за влияния инерционной нагрузки на перепад давлений в гидроприводе и через него — на электродвигатель, е валом которого вибратор имеет кинематическую связь.  [c.152]

Задвижки с электромоторным и гидравлическим приводом. Конструктивной особенностью задвижек с электромоторным и гидравлическим приводом являются лишь узлы и детали их устройства, служащие для перемещения шпинделя. На фиг. 3 показан электромоторный привод, позволяющий осуществить управление на расстоянии. Путём переключающего устройства обеспечивается использование ручного привода. Детали устройства привода показаны на фиг. 57. Гидравлический привод задвижки показан на фиг. 4. Исходные данные для расчёта электропривода и гидропривода в части усилий см. на стр. 783 (расчёт шпинделя). Скорость перемещения шпинделя в зависимости от диаметра задвижки и других условий колеблется в пределах от 200 до 400 mmImuh.  [c.799]


Смотреть страницы где упоминается термин Усилия с гидроприводом : [c.78]    [c.655]    [c.577]    [c.224]    [c.94]    [c.113]    [c.10]    [c.40]    [c.23]   
Машиностроение Энциклопедический справочник Раздел 1 Том 2 (1948) -- [ c.799 ]



ПОИСК



Гидропривод



© 2025 Mash-xxl.info Реклама на сайте