Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вязкой жидкости движение в цилиндра

На поверхности цилиндра г = Ь п и, распределения скоростей, как известно из 2 гл. 7, характерен для потенциального течения в поле одиночного плоского вихря идеальной жидкости. Следовательно, в рассматриваемом случае движения вязкой жидкости поле скоростей является потенциальным. При этом граничные условия для вязкой жидкости, состоящие в прилипании частиц жидкости к твердой поверхности.  [c.335]


Максвелл описывает метод исследования этого явления, которого большею частью придерживались почти все дальнейшие исследователи. В этом методе он пользуется тем видом движения в вязкой жидкости, который можно считать тщательно разобранным, а именно — он предполагает существование так называемого пластинчатого движения, тогда как хорошо известно, что если будет превзойдена некоторая критическая скорость, этот вид движения становится неустойчивым и уступает место вихревому движению, некоторые детали которого до настоящего времени в достаточной мере не поддаются математической теории. Изучаемая вязкая жидкость помещается в пространство, образуемое двумя концентрическими цилиндрами с радиусами а и Ь (Ь у> а). Внешний цилиндр радиуса Ь остается неподвижным, а внутреннему цилиндру радиуса а придается равномерное вращение с угловой скоростью ш. Когда движение примет устойчивый характер, частица Р на расстоянии г от оси равномерно вращается по кругу со скоростью v.  [c.244]

Неустойчивость движения жидкости может проявляться не только в переходе от ламинарного режима к турбулентному, но и в резком изменении макроскопической структуры потока. Например, при движении вязкой жидкости между соосными вращающимися цилиндрами линиями тока могут служить плоские кривые в виде концентрических окружностей (см. п. 8.4). Но при определенных условиях такой характер течения может нарушиться, и в зазоре между цилиндрами возникнут крупные кольцевые вихри с осями, параллельными окружной скорости. Сечения таких вихрей плоскостью, проходящей через ось вращения, показаны на рис. 9.4.  [c.363]

Рассмотрим это явление на простейшем примере движения в поле прямолинейной одиночной вихревой нити (плоская задача), которая в начальный момент характеризуется циркуляцией Гд. Если бы эта нить существовала неопределенно долго при / > 0, то это поле скоростей сохранялось бы так же, как при вращении цилиндра в вязкой жидкости. Предположим, что в момент (  [c.336]

Ламинарная аналогия. Эта аналогия основана на том, что, как показано в гл. X, для ламинарного движения вязкой жидкости между двумя близко расположенными пластинками существует потенциал средних скоростей. Следовательно, если между пластинками поместить какое-либо тело (цилиндр), то спектр обтекания его будет соответствовать обтеканию этого тела идеальной жидкостью.  [c.478]

Свойства наследственно-упругого тела, обнаруживаемые при испытаниях на ползучесть или релаксацию и проиллюстрированные графиками на рис. 17.5.1 и 17.5.2, легко воспроизвести на модели, изображенной на рис. 1.10.2. Если обозначить через е перемещение, на котором производит работу сила а, то, как совершенно очевидно, при мгновенном приложении нагрузки сначала растянется только пружина 1 жесткость пружины, или модуль El, представляет собою мгновенный модуль. По истечении достаточно большого времени система приблизится к состоянию равновесия, когда скорость, а следовательно, и сопротивление движению поршня в цилиндре с вязкой жидкостью становятся равными нулю. В предельном состоянии податливости пружин складывается, следовательно, длительный модуль определяется следующим образом -f Е . Обозначая через т) коэффициент вязкости, который определяет силу сопротивления движению поршня о в зависимости от скорости по формуле а = цё п вводя обозначения  [c.589]


Для равномерного перемещения поперечно обтекаемого цилиндра в вязкой жидкости результирующая сила в направлении движения не равна нулю, тогда как в невязкой жидкости она равна нулю.  [c.193]

Сопротивление при медленном движении шара и цилиндра в вязкой жидкости  [c.143]

Аналогом тела Гука является пружина, тела Ньютона —поршень, вставленный с зазором в цилиндр, наполненный вязкой жидкостью тела Сен-Венана — элемент сухого трения при этом верхнему пределу текучести соответствует трение покоя, а нижнему—трение движения. Отметим, что модели работают на простое растяжение, но они способны описать и общий случай напряженного состояния.  [c.515]

При возбуждении соленоида I притягивается якорь 2, соединенный пружиной 3 со штоком поршня 4. движущегося в цилиндре 5, заполненном вязкой жидкостью. При движении поршня жидкость перетекает из одной полости в другую через малые отверстия в поршне 4, шток которого несет контактную планку а. Скорость движения поршня 4 зависит от вязкости жидкости и величины отверстий. Таким образом, контакты Ь замыкаются спустя некоторое время после включения соленоида /. Пружина 6 возвраш,ает поршень 4 в исходное положение.  [c.20]

Движению плунжера препятствуют сопротивления внешней системы с динамической жесткостью g, которые создают на плунжере переменную нагрузку Р = Хв . В реальных системах передаче движения жидкостью от цилиндра пульсатора к грузовому цилиндру препятствуют внутренние сопротивления гидромагистралей, которые в определенном частотном диапазоне могут быть представлены (рис. 5, а) сосредоточенными параметрами, учитывающими упругость объемов жидкости в цилиндрах, а также инерционные и вязкие сопротивления в соединительной магистрали. Внутреннее сопротивление гидропульсатора определяется основными параметрами = Сп1 2 = i(i)kr — йа = Сц.  [c.178]

С другой стороны, для вязко-пластичного бингамовского тела, отличающегося от обычной вязкой жидкости наличием предельного напряжения сдвига (предела текучести удалось разрешить ряд задач, а именно осевое движение в цилиндрическом капилляре [7], движение между двумя вращающимися коаксиальными цилиндрами [8, 9], движение между двумя вращающимися концентрическими сферами [10], осевое движение между двумя коаксиальными цилиндрами и течение в плоском капилляре [11].  [c.31]

Рассмотренные теоремы определяют основные свойства вихревых движений идеальной жидкости. В вязкой жидкости эти движения являются преобладающими, и здесь мы сталкиваемся как с непрерывным распределением завихренности, так и с дискретными вихревыми трубками и вихревыми образованиями. Закономерности вихревого движения, установленные на основе модели идеальной жидкости, позволяют объяснить и многие особенности течения вязкой жидкости. Часто для этого достаточно использовать результаты решення задачи о движении жидкости в круговом вихревом цилиндре и в его окрестности.  [c.97]

Необходимо также отметить применение уравнений медленного течения в гидродинамической теории смазки. Исследование относительного движения двух близко расположенных параллельных поверхностей было начато Рейнольдсом [25]. Развитые им методы применялись с тех пор в разнообразных задачах теории смазки [14]. В дополнение к пренебрежению инерцией принимается, что течение жидкости существенно одномерно. Такие же упрощения применялись также, например, к исследованию аксиального движения сферы в круглой трубе, заполненной вязкой жидкостью, в случае, когда диаметр трубы ненамного больше диаметра сферы [8], и для вязкого течения в зазоре между параллельными круговыми цилиндрами в случае, когда зазор между ними мал по сравнению с их диаметром [17]. В первом случае наблюдается хорошее согласие эксперимента с теорией. Имеется также много других аналогичных применений данной теории.  [c.76]


В качестве простой иллюстрации рассмотрим задачу об аксиальном движении без вращения твердой сферической частицы в круглой цилиндрической трубе, в которой течет вязкая жидкость. Полагаем, что радиус цилиндра много. больше радиуса сферы, а за ось z == Z выбираем ось цилиндра. Сферическая частица движется с постоянной скоростью и = кС/ параллельно оси, в то время как внешний поток жидкости направлен в том же направлении со средней скоростью = kf/o/2, где к — единичный вектор в направлении оси 2 и — невозмущенная скорость на оси трубы. Радиус трубы есть Rq радиальное расстояние от продольной оси трубы до точки в жидкости есть R, а центр сферы расположен на расстоянии R = Ь от оси.  [c.86]

В технической литературе критические режимы рассмотрены только для ротационных вискозиметров типа цилиндр—цилиндр. Из многочисленных опытов известно, что ламинарный режим движения вязкой жидкости в зазоре между коаксиальными цилиндрами осуществим лишь до определенных чисел Рейнольдса. При этом существует два критических числа Рейнольдса нижнее Re и верхнее Re. При Re > Re режим течения будет чисто турбулентным, при Re режим течения ламинарный. Неравенство Re < Re < Re определяет собой область неустойчивости ламинарных течений. Для выяснения вопроса об устойчивости разработаны эффективные теоретические методы, из которых наи-О более общим является метод Ляпунова.  [c.17]

G помощью формулы (8-24) на основе непосредственных измерений распределения давления по контуру профиля было подсчитано сопротивление давления для семейства симметричных профилей, показанных на рис. 15-3. Сопротивление трения может быть получено как разность между измеренным полным лобовым сопротивлением и измеренным сопротивлением давления. Отношение сопротивления трения к полному лобовому сопротивлению показано на рис., 15-4. Для вытянутых (тонких) сече-йий профилей сопротивле-1,0 ние трения составляет 70— 80% от полного для круглого цилиндра, однако, оно составляет только около 3% от полного. В последнем случае происходит отрыв пограничного слоя, причем точки отрыва лежат перед диаметральным сечением цилиндра. В результате вся кормовая часть оказывается в зоне пониженного давления в следе, что и приводит к высокому сопротивлению формы. Сопротивление поверхности почти целиком определяется пограничным слоем до точки отрыва. Теория движения идеальной (невязкой) жидкости предсказывает симметричное распределение давления и нулевое значение лобового сопротивления. Различия, имеющие место между случаями обтекания цилиндрического тела идеальной и вязкой жидкостями, иллюстрируются на рис. 15-1 и обсуждаются ниже.  [c.402]

Действительно, рассмотрим плоское движение вязкой жидкости между двумя вращающимися с разными угловыми скоростями ю, со коаксиальными цилиндрами соответственно с радиусами Н и Я (штрих относится к внешнему цилиндру). Считая движение стационарным и происходящим по концентрическим окружностям, расположенным в плоскостях, перпендикулярных к общей оси цилиндров, из соображений симметрии заключим, что (в настоящем параграфе обычное обозначение азимутального угла е заменим на ср)  [c.412]

Такое поле может одинаково существовать как в идеальной, так и в вязкой жидкости. В самом деле, движение это безвихревое, а следовательно, повсюду вокруг вихревой линии 2 = 0 уравнения вязкой жидкости при этом не отличаются от уравнений идеальной жидкости, а единственное граничное условие F —о при г —оо одинаково выполняется в обоих случаях. Разница лишь в том, что в идеальной жидкости, где нет диссипации энергии за счет работы сил внутреннего трения, такой вихрь не диффундирует в толщу всего объема жидкости и может сохраняться бесконечно долго, поддерживая указанное установившееся круговое движение частиц без притока энергии извне в вязкой же жидкости для поддержания такого движения необходимо сообщение энергии от источника завихренности, например от вращающегося в жидкости тонкого цилиндра, а если такой источник исчезнет, то постепенно затухнет и движение жидкости.  [c.432]

Изменяя угловые скорости вращения внутреннего и внешнего цилиндра, можно отчетливо наблюдать процессы возникновения и разрушения различных режимов движений вязкой жидкости между вращающимися цилиндрами, от периодических тэйлоровских до двоякопериодических спиральных структур. Большой интерес заслуживает факт связи характеристик турбулентности в пробках с тэйлоровскими вторичными течениями, которые, таким образом, служат конечными возмущениями, способствующими переходу от ламинарного движения к турбулентному ).  [c.527]

В свете результатов Закржевского и Крафта, приведенных выше, можно считать, что теория Амбронн — Винера повидимому дает объяснение согласно этой теории поток жидкости может оказывать влияние на систематическую ориентацию взвешенных частиц. Подобная систематическая ориентация в случае частиц, имеющих форму эллипсоидов в вязкой жидкости, находящейся в пластинчатом движении, была на основании математических выводов предсказана Джеффери 2 и позже проверена путем опытов Тэйлором з для пространства между двумя цилиндрами. Последним, например, было найдено, что если частицы имеют форму иголок , то амплитуда колебаний их больших осей в плоскости, перпендикулярной к радиусу, будет больше амплитуды колебания их в самой аксиальной плоскости. Это указывает на стремление осей группироваться в среднем вокруг направления, перпендикулярного 0 -Поляризатор  [c.247]

В кормовой области (после точки отрыва потока) поверхность цилиндра омывается потоком со сложным вихревым движением, и значение коэффициента теплоотдачи увеличивается. Отрыв вязкой жидкости с поверхности цилиндра происходит в результате совместного влияния подтормаживапия жидкости твердой стенкой и действия перепада давления, в результате чего на линии отрыва образуются обратные токи, которые оттесняют набегающий поток от поверхности тела.  [c.245]


Точные решения уравнений Навье — Стокса для плоской неизотермической задачи о движении вязкой жидкости и газа вокруг вращающегося цилиндра в безграничном пространстве и в полости между двумя вращающимися цилиндрами бесконечной длины были впервые даны Л. Г. Степанянцем (1953). Появление электронно-вычислительных машин открыло возможность численного изучения более сложных, неплоских движений вязкой жидкости между вращающимися цилиндрами. Из рабог этого вычислительного направления отметим исследования Н. П. Жидкова, А. А. Корнейчука, А. Л. Крылова и С. Б. Мосчинской (1962), в которых получено численное решение уравнений Навье — Стокса для случая когда движение вязкой жидкости зависит от расстояния до общей оси вращения цилиндров и от азимута, и А. Л. Крылова и Е. К. Произволо-вой (1963), где найдено решение аналогичной задачи, зависящее от того же расстояния и координаты, параллельной оси цилиндров. Л, А. Дорфман и Ю. Б. Романенко (1966) также численным методом рассмотрели движение в неподвижном стакане, доверху заполненном вязкой жидкостью приводимой в движение вращающейся крышкой, соприкасающейся с жидкостью. И в этом случае обнаружено наличие зон вторичных течений в виде замкнутых линий тока, расположенных в меридиональных плоскостях (рис. 1),  [c.511]

Этот вопрос рассматривался самим Ньютоном в Prin ipia (отдел IX). Согласно Ньютону, если однородная вязкая жидкость приводится в движение равномерно вращающимся вокруг своей оси цилиндром (шаром), то в стационарном случае времена обращений частиц жидкости пропорциональны первой (соответственно, второй) степени их расстояния до оси вращения. В соответствие же с третьим законом Кеплера должна была бы получиться полукубическая функция от расстояния. Поучение к своим теоремам Ньютон заключает словами Пусть философы сами посмотрят, при каком условии может быть объяснено вихрями явление, заключающееся в существовании указанного полукубического отношения .  [c.8]

Пример 91. Гидравлический демпфер. Разберем движение груза, подвешенного на пружине, при наличии тормозящего приспособления — демпфера, или катаракта. Демпфирование может осуществляться различными механическими, в частности гидравлическими, электромагнитными (например, вихревыми токами Фуко) и другими способами. Гидравлический демифер (рис. 259) представляет собой закрытый цилиндр С с поршнем Я, соединенным жестким стержнем 5 с телом М. В цилиндр налита вязкая жидкость при движении груза и связанного с ним поршня жидкость перетекает из одной части цилиндра в другую через перепускные трубки К (которых мо кет быть несколько) или непосредственно через просверленные в поршне отверстия.  [c.86]

Чтобы выяснить особегпюсти обтекания тела вязкой жидкостью, вернемся к уже рассмотренному случаю обтекания цилиндра невязкой жидкостью и посмотрим, какие изменения в эту картину должны внести силы вязкости. В набегающем потоке (рис. 326) картина будет такой же, как и при обтекании цилиндра невязкой жидкостью, т. е. аналогичная изображенной па рис, 324. Однако при дальнейшем течении жидкости от точки А к точкам А и А", вследствие действия сил вязкости в пограничном слое, частицы жидкости, идущие из области АА и АА", теряют скорость и приходят в области jB и С с меньшими скоростями, чем в случае отсутствия сил вязкости. Потеря скорости на участках АА и А А" приводит к тому, что поток, обтекающий цилиндр, не может проникнуть в области D D и D"D. В результате вблизй точек D и D" происходит отрыв потока от поверхности цилиндра. В этом и заключается существенное изменение картины обтекания цилиндра, вносимое силами вязкости. В отличие от невязкой жидкости, полное обтекание цилиндра вязкой жидкостью оказывается невозможным. Позади цилиндра образуется область, в которую потоки, обтекающие цилиндр, не проникают и в которой движение жидкостей носит совсем особый характер —возникают вихревые  [c.547]

Рассмотрим это явление на простейшем примере движения в поле прямолинейной одиночной вихревой нити (плоская задача), которая в начальный момент характеризуется циркуляцией Го. Если бы эта нить существовала неопределепио долго при t > О, то это поле скоростей сохранялось бы так же, как при вращении цилиндра в вязкой жидкости. Предполол<им, что в момент i = О действие нити исчезает. Возникает неустановившееся движение, которое мы и исследуем.  [c.301]

На рис. 91 приведены значения коэффициента для шара (кривая 7), цилиндра (кривая 2) и круглой пластинки (кривая 3) в зависимости от числа Рейнольдса, полученные из опыта. Там же нанесены теоретические кривые для Сх = =/(R), полученные Стоксом (кривая 4) и Осееном (кривая 5) для случая движения шара в вязкой жидкости при относительно небольших значениях числа Рейнольдса (см. 41).  [c.162]

Модель Максвелла представляет последовательное соединение алемепта упругости и элемента вязкости (последний иллюстрируется в виде движения поршня с зазором внутри цилиндра с вязкой жидкостью (рис. 5.21)). Относи-тольноэ перемещение точек Л п В  [c.138]

При движении поршня 1 в цилинд-ре 2, заполненном вязкой жидкостью, производится торможение, для регулирования которого предусмотрен 2 винт 3 в перепускной трубе 4. Труба 4 соединяет части цилиндра, расположенные по обе стороны от  [c.267]

При таком применении этот метод является промежуточным между методом истечения из капилляра, в котором напряжение также создается разностью давлений на концах столба жидкости, и методом осевого движения коаксиальных цилиндров [6], в котором вязкость вычисляется из линейной скорости, но твердого внутреннего цилиндра. Однако в случае весьма вязких жидкостей описанный метод имеет преимущества перед капиллярным методом в том, что для измерения линейной скорости на оси достаточно незначительного объема истечения, и процесс измерения ускоряется, а перед методом продольного смещения коаксиальных цилиндров — в том, что исключается основной источник ощибок, связанный с необходимостью строгой коаксиальности цилиндров.  [c.136]

Это уравнение получается из следующих соображений. Как и ранее, при рассмотрении упругого материала, представим себе конструкционный элемент машины или соорун<ения, состоящий из множества малых единичных кубиков, плотно прилегающих друг к другу. Внутри каждого кубика можно представить себе два соединенных последовательно элемента один элемент обладает упругим сопротивлением, другой — вязким (рис. 22.1). В качестве упругого элемента обычно изображают пружину, в качестве вязкого — цилиндр, заполненный вязкой жидкостью, внутри которого с некоторым зазором может двигаться поршень. Вязкое сопротивление при движении поршня относительно цилиндра возникает вследствие перетекания жидкости через зазор из одной полости в другую. Единичный кубик с описанным здесь внутренним устройством принято называть моделью вязкоупругого материала Максвелла.  [c.395]

В этом разделе рассматривается медленное поступательное движение одиночной сферической частицы параллельно образующей бесконечно длинного кругового цилиндра, через который может протекать вязкая жидкость. Сфера может занимать любое наперед заданное положение. В рамках первого приближения был разработан [6] общий метод, использующий процедуру отражений. Хаберман [27] и др. исследовали более подробно осесимметричный случай, когда центр сферы лежит на оси цилиндра. Эти решения кратко рассмотрены в конце раздела. Нужно отметить, что здесь рассматривается случай, когда сфера не может вращаться в процессе движения. Так как здесь учитываются только поправки первого порядка, то влияние вращения на силу сопротивления будет незначительным.  [c.342]


Движение жидкости между двумя бесконечными коаксиальными цилиндрами, вращающимися с постоянными угловыми скоростями вокруг их общей оси, рассматривалось Ландау и Лифши-цем [40]. Предметом многих исследований была устойчивость таких течений [41]. Решение более сложной задачи о движении вязкой жидкости в узком зазоре между цилиндрами, оси которых параллельны, но не совпадают, можно найти в книгах Кочина, Кибеля и Розе [37] и Зоммерфельда [55].  [c.407]

Поместим в однородный поток вязкой несжимаемой жидкости с кинематическим коэффициентом v, плотностью р и постоянной скоростью Voo цилиндр диаметра d и поставим задачу об определении сопротивления цилиндра набегающему на него потоку в предположении, что движение стационарно, а объемных сил нет. Тогда среди необходимых условий подобия (40) остаются лишь два Ей = idem и Re = idem. Число Рейнольдса, в данном случае равное Re = V odiv, является критерием подобия, так как содержит заданные наперед масштабы скоростей — Foo, длин — d ж также заданную физическую константу V. Сила сопротивления — обозначим ее величину через W— может быть определена только после решения задачи обтекания, так как она вычисляется суммированием по поверхности цилиндра сил давления потока на поверхность и сил трения жидкости о поверхность цилиндра, которые в свою очередь зависят от решения задачи обтекания. Число Эйлера, содержащее в своем составе масштаб неизвестного наперед давления, не может  [c.370]

Будущим теоретическим исследованиям по устойчивости ламинарных движений предстоит отразить основные детали тех сложных, граничащих со случайными движений, которые возникают при потере устойчивости изучаемого начального движения, а пока внимание многих ученых привлекает гидродинамический эксперимент, на современном уровне развития позволяющий глубоко проникнуть в процессы перехода ламинарных движений в турбулентные. Появившиеся в последнее десятилетие исследования в этом направ-.тении показывают, что нелинейные эффекты в вязких потоках крайне своеобразны. Чрезвычайно характерны в этом смысле явления, возникающие в круглой трубе при переходе рейнольдсова числа через критическое значение. Явления эти аналогичны и другим случаям ламинарного движения вязкой жидкости, в частности куэттовскому движению между движущимися параллельными плоскостями, между поверхностями вращающихся соосных цилиндров и в пограничных слоях.  [c.525]

Наряду с движением вязкой жидкости в круглых цилиндрических трубах Д. Колзом были изучены также и переходные движения в пространстве между соосными вращающимися цилиндрами ). При переходе через некоторое значение рейнольдсова числа устойчивое вначале круговое движение частиц жидкости в плоскостях, перпендикулярных оси вращения, сменяется движением с ячеистой структурой замкнутых вторичных течений, расположенной периодически в направлении, параллельном оси вращения. Такое — его обычно называют тэйлоровским — движение образуется в случае доминирующего вращения внутреннего цилиндра. В случае же доминирующего значения вращения внешнего цилиндра устойчивое круговое движение частиц переходит в спиральное, смешанное ламинарно-турбулентное движение. Эти периодически расположенные в пространстве спирали, сохраняя свою форму и взаимное расположение, вращаются как одно целое вокруг общей оси цилиндров с угловой скоростью, близкой к среднему арифметическому угловых скоростей цилиндров.  [c.527]

Следует быть точным, делая различия между равновесием и покоем. Жидкость не только движется, но и постоянно испытывает действие сдвига, и тем не менее она находится в равновесии, так как вязкое сопротивление пог.т1от,ает работу внеп1них сил (например, работу электродвигателя, приводящего в движение внешний цилиндр в приборе Хатчека), так что не возникает дополнительной кинетической энергии.  [c.47]

Используем для оценки взаимодействия метод Озеена, Это метод был предложен в 1910 г. К. Озееном, и состоит он в устранении нелинейности в уравнениях гидродинамики. Первоначально метод был применен для уточеен-ного решения задачи движения сферы в вязкой жидкости, В 1927 г. метод был развит Озееном [39] для решения более сложных задач движения других тел в вязкой жидкости, в частности цилиндра и эллипсоида, как в жидкости неограниченной, так и ограниченной стенками каналов и труб.  [c.212]


Смотреть страницы где упоминается термин Вязкой жидкости движение в цилиндра : [c.301]    [c.425]    [c.545]    [c.289]    [c.324]    [c.267]    [c.135]    [c.86]    [c.435]   
Механика сплошных сред Изд.2 (1954) -- [ c.88 ]



ПОИСК



Вязкая жидкость в движении

Движение вязкой жидкости

Движение цилиндра

Движение цилиндра в жидкости

Жидкость вязкая



© 2025 Mash-xxl.info Реклама на сайте